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Language models: the traditional view1

• Language models answer the question:

How likely is it that we observe this string of English words?

• Helps distinguish correct word order:

plm(the house is small) > plm(small the is house)

• Helps with word choice:

plm(I am going home) > plm(I am going house)

1
LM slides adapted from Philipp Koehn’s excellent open source MT course.



Language models: another view

Most of Natural Language Processing can be structured as
(conditional) language modeling:

Translation

plm(Les chiens aiment les os ||| Dogs love bones)

Question Answering

plm(What do dogs love? ||| bones . |β)

Dialogue

plm(How are you? ||| Fine thanks. And you? |β)



History: cryptography



N-gram language models

• Given: a string of English words W = w1,w2,w3, . . . ,wn

• Question: what is p(W )?

• Sparse data: Many good English sentences will not have been
seen before

→ Decomposing p(W ) using the chain rule:

p(w1,w2,w3, . . . ,wn) =p(w1) p(w2|w1) p(w3|w1,w2)×
. . .× p(wn|w1,w2, . . .wn−1)

(not much gained yet, p(wn|w1,w2, . . .wn−1) is equally sparse)



The Traditional Markov Chain

• Markov assumption:
• only previous history matters
• limited memory: only last k words are included in history

(older words less relevant)
→ kth order Markov model

• For instance 2-gram language model:

p(w1,w2,w3, . . . ,wn) ' p(w1) p(w2|w1) p(w3|w2) . . . p(wn|wn−1)

• The conditioning context, wi−1, is called the history



Estimating N-Gram Probabilities

• Maximum likelihood estimation

p(w2|w1) =
count(w1,w2)

count(w1)

• Collect counts over a large text corpus

• Millions to billions of words are easy to get

(trillions of English words available on the web)



How good is a LM?

A good model assigns a text of real English W a high probability.
This can be measured with cross entropy:

H(W ) = −1

n
log2 p(W n

1 )

Intuition 1: Cross entropy is a measure of how many bits are
needed to encode text with our model.

Alternatively we can use perplexity:

perplexity(W ) = 2H(W )

Intuition 2: Perplexity is a measure of how surprised our model is
on seeing each word.



Comparison 1–4-Gram

word unigram bigram trigram 4-gram

i 6.684 3.197 3.197 3.197

would 8.342 2.884 2.791 2.791

like 9.129 2.026 1.031 1.290

to 5.081 0.402 0.144 0.113

commend 15.487 12.335 8.794 8.633

the 3.885 1.402 1.084 0.880

rapporteur 10.840 7.319 2.763 2.350

on 6.765 4.140 4.150 1.862

his 10.678 7.316 2.367 1.978

work 9.993 4.816 3.498 2.394

. 4.896 3.020 1.785 1.510

</s> 4.828 0.005 0.000 0.000

average 8.051 4.072 2.634 2.251

perplexity 265.136 16.817 6.206 4.758



Unseen N-Grams

• We have seen i like to in our corpus

• We have never seen i like to smooth in our corpus

→ p(smooth|i like to) = 0

• Any sentence that includes i like to smooth will be assigned
probability 0



Add-One Smoothing

• For all possible n-grams, add the count of one.

p =
c + 1

n + v

• c = count of n-gram in corpus
• n = count of history
• v = vocabulary size

• But there are many more unseen n-grams than seen n-grams

• Example: Europarl 2-bigrams:
• 86, 700 distinct words
• 86, 7002 = 7, 516, 890, 000 possible bigrams
• but only about 30, 000, 000 words (and bigrams) in corpus



Add-α Smoothing

• Add α < 1 to each count

p =
c + α

n + αv

• What is a good value for α?

• Could be optimized on held-out set



Example: 2-Grams in Europarl

Count Adjusted count Test count
c (c + 1) n

n+v2 (c + α) n
n+αv2 tc

0 0.00378 0.00016 0.00016

1 0.00755 0.95725 0.46235

2 0.01133 1.91433 1.39946

3 0.01511 2.87141 2.34307

4 0.01888 3.82850 3.35202

5 0.02266 4.78558 4.35234

6 0.02644 5.74266 5.33762

8 0.03399 7.65683 7.15074

10 0.04155 9.57100 9.11927

20 0.07931 19.14183 18.95948

• Add-α smoothing with α = 0.00017

• tc are average counts of n-grams in test set that occurred c
times in corpus



Good-Turing Smoothing

Adjust actual counts r to expected counts r∗ with formula

r∗ = (r + 1)
Nr+1

Nr

Nr number of n-grams that occur exactly r times in corpus

Derivation sketch: estimate the expectation of the probability of a
given ngram (αi ) that occurs r times in the corpus:

r∗ = N × E[pi |count(αi ) = r)].

See the references for the complete derivation.



Good-Turing for 2-Grams in Europarl

Count Count of counts Adjusted count Test count
r Nr r∗ t

0 7,514,941,065 0.00015 0.00016

1 1,132,844 0.46539 0.46235

2 263,611 1.40679 1.39946

3 123,615 2.38767 2.34307

4 73,788 3.33753 3.35202

5 49,254 4.36967 4.35234

6 35,869 5.32928 5.33762

8 21,693 7.43798 7.15074

10 14,880 9.31304 9.11927

20 4,546 19.54487 18.95948

Adjusted count fairly accurate when compared against the test count



Back-Off

• In given corpus, we may never observe
• Montreal poutine eaters
• Montreal poutine drinker

• Both have count 0

→ our smoothing methods will assign them the same
probability

• Better: backoff to bigrams:
• poutine eaters
• poutine drinker



Back-Off

• Trust the highest order language model that contains n-gram

pBOn (wi |wi−n+1, . . . ,wi−1) =

=


αn(wi |wi−n+1, . . . ,wi−1)

if countn(wi−n+1, . . . ,wi ) > 0

dn(wi−n+1, . . . ,wi−1) pBOn−1(wi |wi−n+2, . . . ,wi−1)

else

• Requires
• adjusted prediction model αn(wi |wi−n+1, . . . ,wi−1)
• discounting function dn(w1, . . . ,wn−1)



Back-Off with Good-Turing Smoothing

• Previously, we computed n-gram probabilities based on relative
frequency

p(w2|w1) =
count(w1,w2)

count(w1)

• Good Turing smoothing adjusts counts c to expected counts c∗

count∗(w1,w2) ≤ count(w1,w2)

• We use these expected counts for the prediction model (but 0∗

remains 0)

α(w2|w1) =
count∗(w1,w2)

count(w1)

• This leaves probability mass for the discounting function

d2(w1) = 1−
∑
w2

α(w2|w1)



Diversity of Predicted Words

• Consider the bigram histories spite and constant
• both occur 993 times in Europarl corpus

• only 9 different words follow spite

almost always followed by of (979 times), due to expression in
spite of

• 415 different words follow constant

most frequent: and (42 times), concern (27 times), pressure
(26 times),
but huge tail of singletons: 268 different words

• More likely to see new bigram that starts with constant than
spite

Witten-Bell smoothing considers diversity of predicted words



Diversity of Histories

• Consider the word York:
• fairly frequent word in Europarl corpus, occurs 477 times,
• as frequent as foods, indicates and providers,
→ in unigram language model: a respectable probability.

• However, it almost always directly follows New (473 times).

• Recall that the unigram model alone is used if the bigram
model is inconclusive:
• York unlikely second word in unseen bigram,
• in back-off unigram model, York should have low probability.

Kneser-Ney smoothing takes diversity of histories into account.



Evaluation

Evaluation of ngram smoothing methods:

Perplexity for language models trained on the Europarl corpus

Smoothing method bigram trigram 4-gram
Good-Turing 96.2 62.9 59.9

Witten-Bell 97.1 63.8 60.4

Modified Kneser-Ney 95.4 61.6 58.6

Interpolated Modified Kneser-Ney 94.5 59.3 54.0



Provisional Summary

Language models: How likely is this string of English words?

• N-gram models (Markov assumption)

• Perplexity

• Count smoothing

• add-one, add-α
• Good Turing

• Interpolation and backoff

• Good Turing
• Witten-Bell
• Kneser-Ney

Reference:
An empirical study of smoothing techniques for language modeling.
Stanley Chen and Joshua Goodman. Harvard University, 1998
http://research.microsoft.com/en-us/um/people/joshuago/tr-10-98.pdf

http://research.microsoft.com/en-us/um/people/joshuago/tr-10-98.pdf


Provisional Summary

Count based ngram language models are very scalable, but:

• large ngrams are sparse, so hard to capture long range
dependencies,

• symbolic nature does not capture correlations between
semantically similary word distributions, e.g. cat ↔ dog,

• similarly morphological regularities, running ↔ jumping, or
gender etc.



Neural language models
BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh
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i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V | ⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

A Neural Probabilistic Language Model. Bengio et al. JMLR 2003.



Log-linear models for classification

Features: φ(x) ∈ RD and weights: λk ∈ RD for k ∈ {1, ...,K} classes:

p(Ck |x) =
exp(λT

kφ(x))∑K
j exp(λT

j φ(x))

Gradient required for training:

∂

∂λj

[
− log p(Ck |x)

]
=

∂

∂λj
logZ(x)− ∂

∂λj
λT
kφ(x)

=
1

Z(x)

∂

∂λj
exp

(
λT
j φ(x)

)
− ∂

∂λj
λT
kφ(x)

=
exp

(
λT
j φ(x)

)
Z(x)

φ(x)− ∂

∂λj
λT
kφ(x)

= p(Cj |x)φ(x)︸ ︷︷ ︸
expected features

− δ(j , k)φ(x)︸ ︷︷ ︸
observed features

δ(j , k) is the Kronecker delta function which is 1 if j = k and 0 otherwise, and

Z(x) =
∑K

j exp(λT
j φ(x)) is referred to as the partition function.



A simple log-linear (tri-gram) language model

Classify the next word wn given wn−1,wn−2: Features:
φ(wn−1,wn−2) ∈ RD and weights: λi ∈ RD :2

p(wn|wn−1,wn−2) ∝ exp
(
λT
wn
φ(wn−1,wn−2) + bwn

)
Traditionally the feature maps φ(·) are rule based, but can we learn them
from the data?

2
we now explicitly include a per-word bias parameter bwn that is initialised to the empirical log p(wn).



A simple log-linear (tri-gram) language model

Traditionally the feature maps φ(·) are rule based, but can we learn them
from the data?
Assume the features factorise across the context words:

p(wn|wn−1,wn−2) ∝ exp
(
λT
wn

(
φ−1(wn−1) + φ−2(wn−2)

)
+ bwn

)



Learning the features: the log-bilinear language model

Represent the context words by the columns of a D × |vocab|
matrix Q, and output words by the columns of a matrix R; assume
φi is a linear function of these representations parametrised by a
matrix Ci :



Learning the features: the log-bilinear language model

φ(wn−1,wn−2) = C−2Q(wn−2) + C−1Q(wn−1)

p(wn|wn−1,wn−2) ∝ exp
(
R(wn)Tφ(wn−1,wn−2) + bwn

)
This is referred to as a log-bilinear model.3

3
Three new graphical models for statistical language modelling. Mnih and Hinton, ICML’07.



Learning the features: the log-bilinear language model

p(wn|wn−1,wn−2) ∝ exp
(
R(wn)Tφ(wn−1,wn−2) + bwn

)
Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂R(j)
E =

∂

∂R(j)
logZ(wn−1,wn−2)− ∂

∂R(j)
R(wn)Tφ

=
(
p(j |wn−1,wn−2)− δ(j ,wn)

)
φ



Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂φ
E =

∂

∂φ
logZ(wn−1,wn−2)− ∂

∂φ
R(wn)Tφ

=
[∑

j

p(j |wn−1,wn−2)R(wj)︸ ︷︷ ︸
model expected next word vector

]
− R(wn)︸ ︷︷ ︸

data vector



Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂Q(j)
E =

∂φ

∂Q(j)
× ∂E

∂φ

∂φ

∂Q(j)
=

∂

∂Q(j)

[
C−2Q(wn−2) + C−1Q(wn−1)

]
= δ(j ,wn−2)CT

−2 + δ(j ,wn−1)CT
−1



Learning the features: the log-bilinear language model

Error objective: E = − log p(wn|wn−1,wn−2)

∂

∂C−2
E =

∂E

∂φ
× ∂φ

∂C−2

∂φ

∂C−1
=

∂

∂A

[
C−1Q(wn−2) + C−2Q(wn−1)

]
= Q(wn−2)T



Adding non-linearities: the neural language model

Replacing the simple bi-linear relationship between context and
output words with a more powerful non-linear function f(·)
(logistic sigmoid, tanh, etc.):

p(wn|wn−1,wn−2)

∝ exp
[
R(wn)Tf

(
C 1Q(wn−1) + C 2Q(wn−2)

)
+ bwn

]
This is a neural language model!



Adding non-linearities: the neural language model
Replacing the simple bi-linear relationship between context and
output words with a more powerful non-linear function f(·)
(logistic sigmoid, tanh, etc.):

if f = the element wise logistic sigmoid σ(·):

∂

∂φ
E =

∂σ(φ)

∂φ
◦ ∂E

∂σ(φ)

= σ(φ)(1− σ(φ)) ◦
[∑

j

p(j |wn−1,wn−2)R(wj)− R(wn)
]

where ◦ is the element wise product.



Infinite context: a recurrent neural language model

A recurrent LM drops the ngram assumption and directly
approximate p(wn|wn−1, . . . ,w0) using a recurrent hidden layer:

φn = Cf(φn−1) + WQ(wn−1)

p(wn|wn−1, . . . ,w0) ∝ exp
[
R(wn)Tf(φn) + bwn

]
Simple RNNs like this are not actually terribly effective models.
More compelling results are obtained with complex hidden units
(e.g. Long Short Term Memory (LSTM) etc.), or by making the
recurrent transformation C conditional on the last output.



Infinite context: a recurrent neural language model

wn-1

p(wn | wn-1, … , w0)

hn-1 hn-1



Infinite context: a recurrent neural language model



LSTM LM

An LSTM cell,

x(t) = Q(wt−1),

i(t) = σ (Wxix(t) +Whih(t − 1) +Wcic(t − 1) + bi ) ,

f (t) = σ (Wxf x(t) +Whf h(t − 1) +Wcf c(t − 1) + bf ) ,

c(t) = f (t)c(t − 1) + i(t) tanh (Wxcx(t) +Whch(t − 1) + bc) ,

o(t) = σ (Wxox(t) +Whoh(t − 1) +Wcoc(t) + bo) ,

h(t) = o(t) tanh (c(t)) ,

y(t) = Wyh(t) + by ,

where h(t) is the hidden state at time t, and i , f , o are the input, forget, and
output gates respectively.

p(wt |wt−1, . . . ,w0) ∝ exp
[
R(wt)

Ty(t) + bwt

]



Infinite context: a recurrent neural language model

wn-1

p(wn | wn-1, … , w0)

cn-1 cnf

i

o

hn-1

hn



Deep LSTM LM

A Deep LSTM cell with skip connections,

x ′(t, k) = Q(wt−1)||y ′(t, k − 1),

i(t, k) = σ
(
Wkxix

′(t, k) +Wkhih(t − 1, k) +Wkcic(t − 1, k) + bki
)
,

f (t, k) = σ
(
Wkxf x

′(t, k) +Wkhf h(t − 1, k) +Wkcf c(t − 1, k) + bkf
)
,

c(t, k) = f (t, k)c(t − 1, k) + i(t, k) tanh
(
Wkxcx

′(t, k) +Wkhch(t − 1, k) + bkc
)
,

o(t, k) = σ
(
Wkxox

′(t, k) +Wkhoh(t − 1, k) +Wkcoc(t, k) + bko
)
,

h(t, k) = o(t, k) tanh (c(t, k)) ,

y ′(t, k) = Wkyh(t, k) + bky ,

y(t) = y ′(t, 1)|| . . . ||y ′(t,K),

where || indicates vector concatenation h(t, k) is the hidden state for layer k at
time t, and i , f , o are the input, forget, and output gates respectively.

p(wt |wt−1, . . . ,w0) ∝ exp
[
R(wt)

Ty(t) + bwt

]



Deep LSTM LM

<s> Dogs love bones

Dogs love bones </s>



Deep LSTM LM

<s> Dogs love bones

Dogs love bones </s>



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.

Solutions
Short-lists: use the neural LM for the most frequent words, and a
traditional ngram LM for the rest. While easy to implement, this nullifies
the neural LM’s main advantage, i.e. generalisation to rare events.
Batch local short-lists: approximate the full partition function for data
instances from a segment of the data with a subset of the vocabularly
chosen for that segement.3

3On Using Very Large Target Vocabulary for Neural Machine Translation. Jean et
al., ACL’15



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.

Solutions
Approximate the gradient/change the objective: if we did not have
to sum over the vocabulary to normalise during training it would be much
faster. It is tempting to consider maximising likelihood by making the log
partition function a separate parameter c , but this leads to an ill defined
objective.

pmodel(wn|wn−1,wn−2, θ) ≡ punnormalised
model (wn|wn−1,wn−2, θ)× exp(c)



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.

Solutions
Approximate the gradient/change the objective: Mnih and Teh use
noise contrastive estimation. This amounts to learning a binary classifier
to distinguish data samples from (k) samples from a noise distribution (a
unigram is a good choice):

p(Data = 1|wn,wn−1, θ) =
pmodel(wn|wn−1, θ)

pmodel(wn|wn−1, θ) + kpnoise(wn)

Now parametrising the log partition function as c does not degenerate.
This is very effective for speeding up training, but has no impact on
testing time.3

3
In practice fixing c = 0 is effective. It is tempting to believe that this noise contrastive objective justifies

using unnormalised scores at test time. This is not the case and leads to high variance results.



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.

Solutions
Factorise the output vocabulary: One level factorisation works well
(Brown clustering is a good choice, frequency binning is not):

p(wn|φ) = p(class(wn)|φ)× p(wn|class(wn), φ),

where the function class(·) maps each word to one class. Assuming
balanced classes, this gives a

√
|vocab| speedup.

This renders properly normalised neural LMs fast enough to be directly
integrated into an MT decoder.3

3Pragmatic Neural Language Modelling in Machine Translation. Baltescu and
Blunsom, NAACL’15



Efficiency

Most of the computational cost of a neural LM is a function of the size
of the vocabulary and is dominated by calculating RTφ.

Solutions
Factorise the output vocabulary: By extending the factorisation to a
binary tree (or code) we can get a log |vocab| speedup,3 but choosing a
tree is hard (frequency based Huffman coding is a poor choice):

p(wn|φ) =
∏
i

p(di |ri , φ),

where di is i th digit in the code for word wn, and ri is the feature vector
for the i th node in the path corresponding to that code.

3A scalable hierarchical distributed language model. Mnih and Hinton, NIPS’09.



Comparison with traditional n-gram LMs

Good

• Better generalisation on unseen ngrams, poorer on seen ngrams.
Solution: direct (linear) ngram features mimicking original log-linear
language model features.

• Simple NLMs are often an order magnitude smaller in memory
footprint than their vanilla ngram cousins (though not if you use the
linear features suggested above!).

Bad

• Ngram NLMs are not as effective for extrinsic tasks such as
Machine Translation compared to Kneser-Ney models, even when
their intrinsic perplexity is much lower.

• NLMs easily beat Kneser-Ney models on perplexity for small
training sets (<100M), but the representation size must grow with
the data to be competitive at a larger scale.



Learning better representations for rich morphology

Illustration of how a 3-gram morphologically factored neural LM
model treats the Czech phrase “pro novou školu” (for [the] new
school).4

4Compositional Morphology for Word Representations and Language Modelling.
Botha and Blunsom, ICML’14



Learning better representations for rich morphology



Learning representations directly

Collobert and Weston, Mikolov et al. word2vec, etc.

If we do not care about language modelling, i.e. p(w), and just
want the word representations, we can condition on future context
and/or use more efficient margin based objectives.



Intro to MT

The confusion of tongues:



Intro to MT: Language Divergence5

5
example courtesy of Kevin Knight.



Models of translation

We observe an input sentence and require a model to produce
its translation in another language:

Ich wollte dieses Buch lesen .

⇓

I wanted to read this book.

The set of possible output translations is, at best, exponential. We
must structure our model according to a decomposition of the
translation process.



MT History

Warren Weaver memorandum, July 1949:

Thus it may be true that the way to
translate from Chinese to Arabic, or
from Russian to Portuguese, is not to
attempt the direct route, shouting from
tower to tower. Perhaps the way is to
descend, from each language, down to
the common base of human
communication the real but as yet
undiscovered universal language and
then re-emerge by whatever particular
route is convenient.



MT History

Warren Weaver memorandum, July 1949:

It is very tempting to say that a book
written in Chinese is simply a book
written in English which was coded into
the Chinese code. If we have useful
methods for solving almost any
cryptographic problem, may it not be
that with proper interpretation we
already have useful methods for
translation?



Parallel Corpora



Parallel Corpora

100s of million words of translated text available for some language pairs,
and billions of words of monolingual text, more than an educated person
would read in a lifetime.



MT History: Statistical MT at IBM

Fred Jelinek, 1988:

“Every time I fire a linguist, the
performance of the recognizer goes up.”



MT History: Statistical MT at IBM



Models of translation

The Noisy Channel Model

P(English|French) =
P(English)× P(French|English)

P(French)

argmax
e

P(e|f) = argmax
e

[P(e)× P(f|e)]

• Bayes’ rule is used to reverse the translation probabilities

• the analogy is that the French is English transmitted over a
noisy channel

• we can then use techniques from statistical signal processing
and decryption to translate



Models of translation

The Noisy Channel Model

French English

Statistical
Translation table

Statistical
Language Model

Bilingual Corpora
French/English

Monolingual Corpora
English

Je ne veux pas travailler
I not work

I do not work

I don't want to work

I no will work

I don't want to work

...



IBM Model 1: The first translation attention model!

A simple generative model for p(s|t) is derived by introducing a
latent variable a into the conditional probabiliy:

p(s|t) =
∑
a

p(J|I )
(I + 1)J

J∏
j=1

p(sj |taj ),

where:

• s and t are the input (source) and output (target) sentences
of length J and I respectively,

• a is a vector of length J consisting of integer indexes into the
target sentence, known as the alignment,

• p(J|I ) is not importent for training the model and we’ll treat
it as a constant ε.

To learn this model we use the EM algorithm to find the MLE
values for the parameters p(sj |taj ).



Models of translation

Phrase-based translation

I wanted to read this

Ich wollte dieses Buch

book

lesen

Current state of the art: map larger sequences of words
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I wanted to read this

Ich wollte dieses Buch

book

lesen

Current state of the art: map larger sequences of words



Models of translation

Phrase-based translation

Large Parallel Corpus

Word Based Translation Models

A Word Aligned Parallel 
Corpus

Phrase Extraction and Relative 
Frequency Scoring

Phrase Table 

Small Development Corpus

Discriminative Training

A Translation Model!

Current state of the art: map larger sequences of words



Encoder-Decoders6

� � 我 一 杯

i 'd like a glass of white wine , please .

Generation

白 葡萄酒 。

Generalisation

6

Recurrent Continuous Translation Models. Kalchbrenner and Blunsom, EMNLP’13
Sequence to Sequence Learning with Neural Networks. Sutskever et al., NIPS’14
Neural Machine Translation by Jointly Learning to Align and Translate. Bahdanau et al., ICLR’15



Encoder-Decoders

S(s1) S(s2) S(s3) S(s4) S(s5) S(s6) S(s7) S(s8)

cn

CSM

+

+ =

Q(wn-2)
T Q(wn-1)

T øn

xC2 xC1

φn = C−2Q(wn−2) + C−1Q(wn−1) + CSM(n, s)

p(wn|wn−1,wn−2, s) ∝ exp
(
R(wn)Tσ(φn) + bwn

)



Encoder-Decoders: A naive additive model

S(s1) S(s2) S(s3) S(s4) S(s5) S(s6) S(s7) S(s8)

cn

+ + + + + + +

=

+

+ =

Q(wn-2)
T Q(wn-1)

T øn

xC2 xC1

pn = C−2Q(wn−2) + C−1Q(wn−1) +

|s|∑
j=1

S(sj)

p(wn|wn−1,wn−2, s) ∝ exp
(
R(wn)Tσ(φn) + bwn

)



Encoder-Decoders: A naive additive model

明天 早上 七点 叫醒 我 好 � ?
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Encoder-Decoders: A naive additive model
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=



Encoder-Decoders: A naive additive model

明天 早上 七点 叫醒 我 好 � ?

may i have a wake-up call at seven tomorrow morning ?

+ + + + + + +

=

CLM



Encoder-Decoders: A naive additive model

�� ��� 在 哪里 ?

where 's the currency exchange office ?

+ + + +

=

CLM



Encoder-Decoders: A naive additive model

� � 我 一 杯

i 'd like a glass of white wine , please .

+ + + +

=

CLM

白

+

葡萄酒

+

。

+



Encoder-Decoders: A naive additive model

今天 下午 准� 去 洛杉�

i 'm going to los angeles this afternoon .

+ + + +

=

CLM

。

+



Encoder-Decoders: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +



Encoder-Decoders: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +

Rough Gloss
I would like a night thirty dollars under room.



Encoder-Decoders: A naive additive model

我 想 要 一 晚 三十 美元

i 'd like to have a room under thirty dollars a night .

+ + + + + + +

=

CLM

以下

+

的 房� 。

+ +

Google Translate
I want a late thirties under $’s room.



Encoder-Decoders: A naive additive model

想想 �� 的 � 我 会 ��

+ + + + + + +

=

CLM

you have to do something about it .

+

不

+

。的



Encoder-Decoders: A naive additive model

想想 �� 的 � 我 会 ��

+ + + + + + +

=

CLM

i can n't urinate .

+

不

+

。的



Recurrent Encoder-Decoders for MT7

Les chiens aiment les os ||| Dogs love bones

Dogs love bones </s>

Source sequence Target sequence

7Sequence to Sequence Learning with Neural Networks. Sutskever et al., NIPS’14
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Recurrent Encoder-Decoders for MT7

Leschiensaimentlesos ||| Dogs love bones

Dogs love bones </s>

7Sequence to Sequence Learning with Neural Networks. Sutskever et al., NIPS’14



Attention Models for MT8

Les chiens aiment les os </s>

Source sequence Target sequence

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Attention Models for MT8

Les chiens aiment les os </s>

Source sequence Target sequence

+

<s>

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Attention Models for MT8

Les chiens aiment les os </s>

Dogs

Source sequence Target sequence

+

<s>

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Attention Models for MT8

Les chiens aiment les os </s>

Dogs

Dogs

love

Source sequence Target sequence

+
+

<s>

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Attention Models for MT8

Les chiens aiment les os </s>

Dogs

love

Dogs

love

bones

Source sequence Target sequence

+
+
+

<s>

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Attention Models for MT8

Les chiens aiment les os </s>

Dogs

love

bones

Dogs

love

bones

</s>

Source sequence Target sequence

+
+
+

+

<s>

8Neural Machine Translation by Jointly Learning to Align and Translate.
Bahdanau et al., ICLR’15



Montreal WMT Bleu Scores

Attention based neural MT is competitive with other state of the art
academic systems translating out of English. Augmenting with a
language model improves performance in to English.



Issues, advantages and the future of MT

Summary

• The easiest gains from neural translation models can be had
by incorporating them into a phrase based architecture,

• The full potential of neural translation models lie in their
ability to capture multiple levels of representation,
morphological, syntactic, and discourse dependencies.

Future
Since the 1980s research in Machine Translation has followed
developments in Speech Recognition with a lag of approximately 5
years. There is not reason to doubt that this pattern will continue.



Google DeepMind and Oxford University


