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Can you solve Zero-Shot Problem?

Description [edit]

These birds have yellow underparts, blue-grey upperparts and pink legs; they
also have yellow eye-rings and thin, pointed bills. Adult males have black
foreheads and black necklaces. Females and immatures have faint grey
necklaces. They have yellow “spectacles” round the eyes.

The Canada warbler is the host to the parasite Apororhynchus amphistomi.l]
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Can you solve Zero-Shot Problem?

Description [edit]

Fritillaries often have nodding, bell- or cup-shaped flowers, and the majority are
spring-flowering. Certain species have flowers that emit disagreeable odors. The
scent of Fritillaria imperialis has been called "rather nasty", while that of F. agrestis,
known commonly as stink bells, is reminiscent of dog droppings.[6! On the other
hand, F. striata has a sweet fragrance.[®!




The Model

* Consider binary one vs. all classifier for class c:

gc:w;rx

/

Weight vector for a
particular class c

* How can we deal with previously unseen classes using this
standard formulation?



The Model

* Consider binary one vs. all classifier for class c:
A T
Ye = wc L
* Assume that we are given an addition text feature ¢, € RP.

* Simple idea: Instead of learning a static weight vector w,. , the
text feature can be used to predict the weights:

We = ft (tc)a

where f; : R? — R is a mapping that transforms the text
features to the visual image feature space.

 We can use this idea to predict the output weights of a classifier
(both the fully connected and convolutional layers of a CNN).



Model Architecture

birds found in North and South America
The South American cardinals in the genus...

Wikipedia article



Fritillary

Fritharia ks 2 Qenus of about 100 species of bulbous plants In the
family Lincens, rutive 1 tamperale regions of the Norhern

m‘m“nmtmmum-mh-m
Box (Pl and probabiy refees 1o pattern,
frequarntly of mmmsmy-u that s
common 1O iy species” Nowers. Collectively. the genus i
lenown In English as Filiaries. some North American sgecies are
caliod mssonbeln
They cfien have bell- o cup-ahaged fowers, and the
mcrily sre speing- Mot species’ Sowers hive @ rather
Chimgyosstie scert, clen

* Minimize the cross-entropy or hinge-loss objective.

Alternative View

Joint Semantic
Feature space

Corn Poppy

Papever rhoass [common fimes INchude 0OMm POEEY, COrn 1oee,
fleld poppy, Flanders popgy, red popgy, fed weed, cogquelicot,
and, due 10 e odour, which i skt 10 cause them, &8 hesdeche
and headwirk) s & species of fowering phant Is the poppy family,
Papeveracese. This popgy, & native of Eusope, s notedie & an

oulturel weed (hence the “cormn® end “lekd”) and e & symbol
P thoses someltimen s s0 sbundant in agriouiiure fekds that it
may Do misteken for @ arop. The only species of Papeveracese
grown i & fald cop on & lrge scale i Papever somniferum, the
opham popey.

The phent s & varieble snnusl, forming & long-ved soll seed bank
Dt can gaeminle when the sol s disturbed. In he rorthen
hamischers It generadly Sowess In late spring, but If the weather &
wirm enough cther Nowses frequently appesr @t the Beginming of
auturme. The Nower s krge and showy, with four petels Dt we
wivid red, moat comemonty with & Dleck spot ot thel base. Like
My oher apecies of Pepaver, It axudes & whits lstax when the
Sasues e broken.




Problem Setup

* The training set contains N images & & RY and their associated
class labels [ € {1, ..., C'}. There are C distinct class labels.

* During test time, we are given additional 779 number of the
previously unseen classes, such that ;. € {1,...,C,...C+ng}.

e Our goal is to predict previously unseen classes and perform
well on the previously seen classes.

* Interpretation: Learning a good similarity kernel between
images and encyclopedia articles .



Caltech UCSD Bird and
Oxford Flower Datasets

* The CUB200-2010 contains 6,033 images from 200 bird species
(about 30 images per class).

* There is one Wikipedia article associated with each bird class (200
articles in total). The average number of words per articles is 400.

e Out of 200 classes, 40 classes are defined as unseen and the
remaining 160 classes are defined as seen.

* The Oxford Flower-102 dataset contains 102 classes with a
total of 8189 images.

* Each class contains 40 to 260 images. 82 flower classes are used
for training and 20 classes are used as unseen during testing.



Results: Area Under ROC

The CUB200-2010 Dataset

Learning Algorithm Unseen Seen Mean
DA [Elhoseiny, et.al., 2013] 0.59 - -
DA (VGG features) 0.62 - -
Ours (fc) 0.82 0.96 0.934
Ours (conv) 0.73 0.96 0.91
Ours (fc+conv) 0.80 0.987 0.95

M. Elhoseiny, B. Saleh, and A. Elgammal, ICCV, 2013.



Results: Area Under ROC

The Oxford Flower Dataset

Learning Algorithm Unseen Seen Mean
DA [Elhoseiny, et.al.] 0.62 - -
GPR+DA [Elhoseiny, et.al.] 0.68 - -
Ours (fc) 0.70 0.987 0.90
Ours (conv) 0.65 0.97 0.85
Ours (fc+conv) 0.71 0.989 0.93

M. Elhoseiny, B. Saleh, and A. Elgammal, ICCV, 2013.



Attribute Discovery

Scarlet Tanager Word sensitivities of unseen classes

The Scarlet Tanager (Piranga olivacea) is a medium-sized
American songbird. Formerly placed in the tanager family

(Thraupidae), it and other members of its genus are now

classified in the cardinal family (Cardinalidae). The species's ( . \
plumage and vocalizations are similar to other members of the - Ta Nna ge rs - Th rau p | d ae

cardinal family.

Adults have pale stout smooth bills. Adult males are bright red - Sca rI et - Ca rd i n a I i d a e

with black wings and tail; females are yellowish on the underparts
and olive on top, with olive-brown wings and tail. The adult
male's winter plumage is similar to the female's, but the wings - Ta n a ge r‘s
and tail remain darker. Young males briefly show a more complex

variegated plumage intermediate between adult males and k )
females. It apparently was such a specimen that was first

scientifically described.{Citation needed|date=July 2010} Hence

the older though somewhat confusing specific epithet olivacea

("the olive-colored one") is used rather than erythromelas ("the

red-and-black one"), as had been common throughout the 19th

e Nearest Neighbors
( N W D
Scarlet Tanager Summer Tanager Vermillion Flycatcher Brown Thrasher
g DN /

* Wikipedia article for each class is projected onto its feature space
and the nearest image neighbors from the test-set are shown.



Attribute Discovery

Bearded Iris Word sensitivities of unseen classes

Irises are perennial plants, growing from creeping
rhizomes (rhizomatous irises) or, in drier climates, from \

bulbs (bulbous irises). They have long, erect flowering -r h | y4 O m e - d e pt h

stems which may be simple or branched, solid or
hollow, and flattened or have a circular cross-section. - fre e Z| N g -CcCoMm p (0] St
The rhizomatous species usually have 3-10 basal ..
sword-shaped leaves growing in dense clumps. The - IrIS
bulbous species have cylindrical, basal leaves. k )

Nearest Neighbors

- o8 - -
s 2 Y. —p
R 1R

Bearded Iris Corn Poppy Grape Hyacinth Giant White
Arum Lily

. AN J

* Wikipedia article for each class is projected onto its feature space
and the nearest image neighbors from the test-set are shown.
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Zero-Shot Learning

Caption Generation

Kiros, Salakhutdinov, Zemel,
ICML 2014, TACL 2015
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Generating Sentences

* More challenging problem.

* How can we generate complete descriptions of images?

Input Output
L T

A man skiing down the snow
covered mountain with a dark
sky in the background.




Encode-Decode Framework

Multimodal space SC-NLM Decoder

' content

|

;Mw V/"

ESteam ship at the dock :

CNN - LSTM Encoder

..........................................

 structure

* Encoder: CNN and Recurrent Neural Net for a joint image-
sentence embedding.

* Decoder: A neural language model that combines structure
and content vectors for generating a sequence of words



Representation of Words

Key Idea: Each word w is represented as a D-dimensional
real-valued vector r,, € RX.

Semantic Space

dolphin
o whale
+

@\
5 | table
[ November
é + chair +
a ==

Dimension 2

Bengio et.al., 2003, Mnih et. al., 2008, Mikolov et. al., 2009, Kiros et.al. 2014



An Image-Text Encoder

Joint Feature space

A

=+
+ +

Encoder:
ConvNet

ship water

* Learn a joint embedding space of images and text:
— Can condition on anything (images, words, phrases, etc)

— Natural definition of a scoring function (inner products in the
joint space).

Socher 2013, Frome 2013, Kiros 2014



An Image-Text Encoder

Sentence

Representation Image
Representation

(Kiros et.al. arXiv 2015)

¢/ See Skip-Thought Vectors, /

| )|

Wy W, W3

1-of-V encoding of words ]
Convolutional Neural Network

Recurrent Neural Network
(LSTM)



An Image-Text Encoder

Joint Feature space

A castle and P +\ A ship sailing

in the ocean

+

reflecting water

in the sky

+
\\ A plane flying
\

Minimize the following objective: ¢

Images: ZZmax{O a—s(x,v)+ s(x,vi)} +
Text: Z ZmaX{O a—s(v,x)+ s(v,xg)}



The dogs are in the snow in ~ Four men playing basketball , A boy skateboarding

front of a fence . two from each team .

Two men and a woman Women participate in A man is doing tricks on a bicycle
smile at the camera . a skit onstage . on ramps in front of a crowd .



Tagging and Retrieval

mosque, tower,
building, cathedral,
dome, castle

kitchen, stove, oven,
refrigerator,
microwave

ski, skiing,
skiers, skiiers,
snowmobile

bowl, cup,
soup, cups,
coffee



Retrieval with Adjectives

fluffy

delicious




Multimodal Linguistic Regularities

(Kiros, Salakhutdinov, Zemel, TACL 2015)



Multimodal Linguistic Regularities
Nearest Images

(Kiros, Salakhutdinov, Zemel, TACL 2015)



How About Generating Sentences!

Output

A man skiing down the snow
covered mountain with a dark
sky in the background.




Log-bilinear Neural Language Model

Wy
R
C ) 4 r
rr || Taa || T

Wy W, W,

1-of-V encoding
of words

Feedforward neural network with a single
linear hidden layer.

Each word w is represented as a K-dim real-
valued vector r,, € RX,

R denote the V x K matrix of word
representation vectors, where V is the

vocabulary size.

(wWy, ..., W, ) is tuple of n-1 words,
where n-1 is the context size. The next
word representation becomes:

n—1
P=>)» Clr,,

i=1"~~

K X K context parameter matrices



Log-bilinear Neural Language Model

R f\f :LleC(i)rwi,

C(z) | ! Predicted representation of r,.
r r . -
"wi w2 w3 * The conditional probability of the next
R word given by:
B P(wn — 7:|w1:n—1) —
- exp(t'r; + b;)
|%4 ~
1-of-V encoding \ v J
of words

Can be expensive to

compute
Bengio et.al. 2003 P



Multiplicative Model

* We represent words as a tensor:

7— c RVXKXG

where G is the number of tensor slices.

e Given an attribute vector u € R® (e.g. image features), we can
compute attribute-gated word representations as:

Tu — Zf:l uiT(i)

* Re-represent Tensor in terms of 3 lower-rank matrices (where F is
the number of pre-chosen factors):

Wk ¢ RF%K, W/d c RFXG Wiv ¢ RFXV
T = (W) . diag(W7 %) - W/

(Kiros, Zemel, Salakhutdinov, NIPS 2014)



Multiplicative Log-bilinear Model

Wa + Let E = (W/F)TW /v denotea
Gating LOV‘I’( folded K x V matrix of word embeddings.
' _ran
attributes f
| * Then the predicted next word
u | ' representation is:
r n—1
c@ . = E COE(:, w;)
Ear | | Ewz | | Eus | =1 |
* Given next word representation r, the
Low rank factor outputs are:
- o f = (Wfkf') o (Wfdx)

W, w, A
1-of-V encoding of words

Component-wise product

(Kiros, Zemel, Salakhutdinov, NIPS 2014)



Multiplicative Log-bilinear Model

E = (W/k)Tw/v

Gating n-1
attributes f Low rank I = Z C(Z)E(:, w’&)
| 1=1
u '
f = (W7Ft) o (W/ix
S LT (W) o (W)
c £ E * The conditional probability of the next
wl w2 w3 . .
. word given by:
Low rank ,
m P(wy, = i|lwi.p—1,u) =
I
N exp((W7¥(:,4)) 'f + b;)
14 V. y
Wy W, W3 Zj=1 exp((wf (7]))Tf+b.7)

1-of-V encoding of words



Decoding: Neural Language Model

Steam
I'fwl C
1
Sh|p CQ £ th aardvark
Ty, # w h abacus
" o
- 3 Wiz zebra

* Image features are gating the hidden-to-output connections
when predicting the next word!

 We can also condition on POS tags when generating a

sentence.
(Kiros, Salakhutdinov, Zemel, ICML 2014)



Decoding: Structured NLM

(NN VBN IN DT NN)

DT

P(wn |w1:n—17 bnintks X)

L

n-th word word context POS context



Decoding: Structured NLM

(NN VBN IN DT NN)

DT

A (VBN IN DT NN -)
NN

P(wn |w1:n—17 bnintks X)

L

n-th word word context POS context



Decoding: Structured NLM

P(wn |w1:n—17 bin+k X)

L

n-th word word context POS context

DT
A

NN
A bicycle

VBN

(NN VBN IN DT NN)

(VBN IN DT NN -)

(INDT NN - -)



Decoding: Structured NLM

(NN VBN IN DT NN)

DT
A (VBN IN DT NN -)
NN
A bicycle (INDT NN --)
VBN
A bicycle parked (DT NN - --)

IN

P(wn |w1:n—17 bin+k X)

L

n-th word word context POS context



Decoding: Structured NLM

(NN VBN IN DT NN)

DT
A (VBN IN DT NN -)

NN
A bicycle (INDT NN --)

VBN
A bicycle parked (DT NN - --)
IN
P(wn|w1m_1, tn:n—i—ka X) A bicycle parked on (NN ----)

DT
\ \ A bicycle parked on the (-----

n-th word word context POS context NN



Caption Generation

Ty a wooden table and chairs
a car is parked in arranged in a room .
the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .




the two birds are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .

(can't count) (hallucination) (contradiction)



3 y
e S |

the two birds are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .
(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
in a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Filling in the Blanks

The (cat) s in the box.
NN

The catis in the (box)
NN

The catis __ (sitting) in the box .
VBG

The (cute) catisin the box .
3




Filling in the Blanks

The (cat) s in the box.

NN
The cat is in the (box)
NN
The catis __ (sitting) in the box .
VBG
The (cute) catisin the box .
KR
Thisisa  (bus)
NN
The busis (parked)
2]
Thereisa  (car)  behind the bus .
NN
The tree is (on) the bus.

IN



Caption Generation

TAGS:

colleagues waiters waiter
entrepreneurs busboy

Model Samples

* Two men in a room talking on a table..

* Two men are sitting next to each other.

 Two men are having a conversation at a table .
* Two men sitting at a desk next to each other .



Caption Generation

TAGS:

speaker techie typist laptop
computers

Top-5 Model Samples

* A man working on his computer .

* A man is sitting down with a laptop typing on a computer .
* A man wearing a blue shirt is using a laptop .

* Aman in a blue shirt is working on a laptop .

* A man wearing headphones is working on something on the desk .



Caption Generation

TAGS:

speakers panelist presenters
newscasters audience

Top-5 Model Samples

* Two people are sitting and looking at their laptops at a cafe.
* A man and a woman are sitting at a desk with their feet .
* Two people sitting at a desk with their laptops .

 Several young people sitting in front of a laptop .

* A couple of people are sitting in front of tables .



Caption Generation

. TAGS:

balcony woman skylit pinny
flowerpots

Top-5 Model Samples

A woman stands in the middle of a small art gallery .

A woman is standing in front of a wall .

* A painting of a woman leaning up against a wall in a room .

* A young woman painting a picture of a wall in the middle of an art
gallery .

* Awoman in a blue shirt sits in the middle of a wall .



Results

Flickr30K
Image Annotation Image Search

Model R@1 R@5 R@10 Medr | R@1 R@5 R@10 Medr
Random Ranking 0.1 0.6 1.1 631 0.1 0.5 1.0 500
1 DeViSE [5] 4.5 18.1 29.2 26 6.7 21.9 32.7 25
T SDT-RNN [6] 9.6 29.8 41.1 16 8.9 29.8 41.1 16
T DeFrag [15] 142  37.7 51.3 10 10.2 30.8 44.2 14
1 DeFrag + Finetune CNN [15] 16.4 40.2 54.7 8 10.3 31.4 44.5 13
m-RNN [7] 184  40.2 50.9 10 12.6 312 41.5 16
Our model 14.8 39.2 50.9 10 11.8 34.0 46.3 13
Our model (OxfordNet) 23.0 50.7 62.9 5 16.8 42.0 56.5 8

« R@K is Recall@K (high is good).
* Med r is the median rank (low is good).



Caption Generation with
Visual Attention

A woman is throwing a frisbee in a park.

Xu et.al., ICML 2015



Caption Generation with
Visual Attention

A woman is throwing a frisbee in a park.

A(0.98) woman(0.54) is{(0.37)

throwing(0.33) : frisbee(0.37)

-

Xu et.al., ICML 2015

park(0.35)




Caption Generation with
Visual Attention

* Montreal/Toronto team takes 3™ place on Microsoft COCO
caption generation competition, finishing slightly behind Google
and Microsoft. This is based on the human evaluation results.

Table-C5 Table-C40 Last update: June 8, 2015. Visit Codalab for the latest results.

M1 15 M2 M3 M4 M5
Humanl®! 0.638 0.675 4.836 3.428 0.352
Googlel 0.273 0.317 4.107 2.742 0.233
MSRIE] 0.268 0.322 4.137 2.662 0.234
Montreal/Torontol'®  0.262 0.272 3.932 2.832 0.197
MSR Captivator®  0.250 0.301 4.149 2.565 0.233
Berkeley LRCNI?l  0.246 0.268 3.924 2.786 0.204
m-RNN['5] 0.223 0.252 3.897 2.595 0.202
Nearest 0.216 0.255 3.801 2.716 0.196
Neighbor!!"]

Xu et.al., ICML 2015



Improving Action Recognition

* Consider performing action recognition in a video:

www VideoGolfClub.com 0 www VideoGolfClub.com www VideoGolfClubicom

- | - ‘ 4

ub

* Instead of processing each frame, we can process only a small
piece of each frame.



Improving Action Recognition

Cycling Soccer juggling Horse back riding Basketball Shooting

o

Sharma, Kiros, Salakhutdinov, 2015



Talk Roadmap

e Zero-Shot Learning

* Caption Generation

* Learning Recurrent Attention Models

Wake-Sleep Recurrent Attention Models
Ba, Grosse, Frey, Salakhutdinov, 2015

Lei Jimmy Ba Roger Grosse

* Learning Skip-Thought Vectors



Recurrent Attention Model

Sample action:

ar ~p(a1|X)  az ~ plaz|X)

Recurrent Neural
Network

VIV T Y
Coarse \ \ \ \

Image \ \ \ \
\ > V> —b — p(yla, X)
* Hard Attention: Sample \ \ \ \ Classification
action (latent gaze location) \\ T \\ I \\ T \\T
« Soft Attention: Take v v v v

expectation instead of ! u n m

sampling (Xl, Cll) (Xz, az) (3, a3) (Xm, am)



Model Setup

We assume that we have a dataset with labels y for the
supervised prediction task (e.g. object category).

Goal: Learn an attention policy: The best locations to attend to
are the ones which lead the model to predict the correct class.




Model Definition

 We aim to maximize the probability of correct class by
marginalizing over the actions (or latent gaze locations):

LL =logp(y|X, W) =log» p(a|X, W)p(yla, X, W).

where
— W is the set of parameters of the recurrent network.
— ais a set of actions (latent gaze locations, scale).
— X:is the input (e.g. image, video frame).

For clarity of presentation, | will sometimes omit conditioning on W or X. It should be obvious
from the context.



Variational Learning

* Previous approaches used variational lower bound:

LL=1log» p(alX,W)p(yla, X, W) >

> qlaly, X)logp(y,a| X, W) + H|q] = F.

* Here q(aly, X) is some approximation to posterior over the
gaze locations.

* Inthe case where q is the prior, q(aly, X) = p(a| X, W), the
variational bound becomes:

JF = ZP a,|X W) logp(y|a X, W) Ba et.al., ICLR 2015

Mnih et.al., NIPS 2014



Variational Learning

F = Zp(a|X, W) lng(y|a’7 X7 W)

* Derivatives w.r.t model parameters:

OF 0logp(yla, X, W)
S = Soplalxw) | B e
* logp(al X, W
| X. W .
\ogp(yla, , )} e
( ~ )

Very bad term as it is unbounded.

Introduces high variance in the estimator.
\. y,

* Need to introduce heuristics (e.g. replacing this term with
a 0/1 discrete indicator function, which leads to

REINFORCE algorithm of Williams, 1992). ﬁ/?n?rt{zlt"allalilic5)125014
ih et.al.,



Variational Learning

F=> plalX,W)logp(yla, X, W).
* Derivatives w.r.t model parameters:

OF 0logp(yla, X, W)
i = S_ptalx, w) | FELE

log p(y|a, X, W)

0logp(alX, W)
ow '

* The stochastic estimator of the gradient is given by:

oF 1 Z [dlogp(yla™, X, W)
oW M oW

m=1
log p(yla™, X, W)

_|_

dlogp(a™|X, W)
ow '

where we draw M samples from the prior: ™ ~ p(a|X, W).



Sampling from the Prior

 Generate M samples from the prior @' ~ p(a|X, W).

OF 1 i [810gp(y|&m,X,W)

~ M
WM oW 8 1og p(@™| X, W)

log p(yla™, X, W) ST
Run the network forward:

>
p(ar]|X) plaz|X) plas|X) plas|X)

1 11

> > > > >
‘.l
Coarse image T T T T

= = = > p(y’aaX)

I R

(Xl, Cll) (X2: az) (Xs, 613) (XM, aM)




Key Observation

 We can maximize the marginal class log-probability directly
without adhering to the variational lower bound:

LL =logp(y|X, W) =log » p(alX,W)p(yla, X, W).

oLL 1 [ Jlog p(yla, X, W)
= 2 Zp\ X, Wpyla, X, W)| =="55

| . 1 Ologp(alX,W)
here [Postenor: plaly, X, W) ) EYT

= > _op(a| X, W)p(yla, X, W)

 We can use importance sampling to estimate required
expectations.



Maximizing Marginal Likelihood

e Need to estimate:

oLL 1
= = =N p(alX, W)p(yla, X, W : ,_
o = 7 2 PalX. Wp(la. X, )[ oW oW

* Let g(aly, X) be some approximation to the posterior:
q(aly, X) =~ p(aly, X, W).
* Using Importance Sampling, we obtain:

pa™| X, Wip(yla™, X, W) -
= . ., a ~qlaly, X).
g(a™ly, X) (ay )

 The stochastic estimator of the gradient is given by:

oLL 1 i [810gp(y|&m,X, W) N dlogp(a™| X, W)

~m

w

~

ow Z

where / = Z w™.

m

oW ow

Ologp(yla, X, W)  Ologp(alX, H’)]

Y



Comparing the Two Estimators

* Variational bound v.s..MarglnaI likelihood:

’_——~

alogp(yl X W) 810gp(&m|X, W) ]
] X, W
8W Mmzi oRr e BN o .
T - Very t;aa term, as it
e - _ -~ Tsunbounded

7 N 7

- oW NN aw Lt

-
~ ’/ \\ -

---_—

ocL 1 i m fﬁlogp(ylém,X, W), 10logp(a™| X, W)]
~ 5D <

-~
o e o -

* The performance gain from importance sampling heavily relies
on an appropriate choice of the proposal proposal distribution g

When approximate posterior q is equal to the prior, this approach is equivalent to Tang
and Salakhutdinov for learning generative networks (NIPS 2013). It is also similar to the
Reweighted Wake-Sleep of Bornschein and Bengio (ICLR 2015).



Another Key Observation

* Using finite number of samples M, our importance sampling
estimator can be viewed as the gradient ascent on the following

objective: - 1 M 7
E |log 7 mz::l w

» Using Jensen’s inequality we obtain:
_ Iy _

] v i
1 1

E |log i Z w™ | <logE i w™| =logE [w™] = LL
. m=1 _ .

m=1

* Hence in expectation, we are optimizing a lower bound on the
marginal likelihood (although the variance can be high).

* The bound becomes tighter as we increase M.



Another Key Observation

* Using finite number of samples M, our importance sampling
estimator can be viewed as the gradient ascent on the following

objective:

E

1 M
| m=1

» Using Jensen’s inequality we obtain:

E
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i m=1

<logk

= log E |w

m = Lf

* However, our proposed bound is at least as accurate as the
variational bound:

F =E|logw
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Relationship To Helmholtz Machines

 Goal: Maximize the probability of correct class (sequence of words)
by marginalizing over the actions (or latent gaze locations):

LL =logp(y|X, W) =log Yy pla|lX,W)p(yla, X, W).
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Relationship To Helmholtz Machines

 View this model as a conditional Helmholtz Machine with

stochastic and deterministic units.

* Can use Wake-Sleep, Re-weighted Wake Sleep, variational
autoencoders, and their variants to learns good attention policy!

Coarse image
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Deterministic
Units

“p(yla, X)

Helmholtz Machine

Input data



The Wake-Sleep Recurrent
Attention Model

* We can learn both: generative model P and recognition model Q.

o g g S g N
Q Network
iinference >
: network
J
— )

s_’ _.p(y|a,X)

n m e
P Network

(X1, al) (.X,'2: Clz) ()C3, 613) (XM, aM)



Training Inference Network

* We train an inference network to predict glimpses, given the
observations as well as the class label, where the network should
look to correctly predict that class.

N
Q(a|y7Xa 9) — H Q<an |y7 X, 97 al:n—l)-

n=1

_ * This distribution is analogous

nerence 1O the prior, except that each

: network . . .

decision also takes into
account the class label y.

~p(y\a, X)

~

(1, ar) (o, a2) (x5, a3) (om, am)



Training Inference Network

* To train g network we optimize:

ODkr(Pll9) _ o 0logg(aly, X, 0)
80 p(a | anvw) 89

* Using importance sampling, we get the following stochastic
estimate of the gradient:

Dt (plla) , 1§~ ;mOloga(@” |y, X, 0)
00 Z 00

m=1

* In fact we can reuse the importance weights computed for the
attention model update.



Training Error

MNIST Example
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Caption Generation: Flickr 8K

* Comparing the variational method with our wake-sleep based
estimator using an inference network:

BLEU1 | BLEU2 | BLEU3 | BLEU4
VAR 62.3 41.6 26.9 17.2
WS-RAM+Qnet 61.1 40.4 26.9 17.8

w
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E
o

E
N

Training Negative Loglikelihood

..........................................

o
[=2]
T

2

w
o0
T

w
[<2)
T

[ — Ws-RAM+q+c|]

* Training negative log-
likelihood on Flickr8K for the
first 10,000 updates.



MNIST Attention Demo

* Actions contain:
— Location: 2-d Gaussian latent variable
— Scale: 3-way softmax over 3 different scales

.
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Recurrent Attention Model

Coarse
Image

Instead of sampling, we
take an expectation over
image locations:
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Recurrent Neural
Network
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Classification
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5 a2) (X3, as) (xw, awv) Bahdanau, etal. 2015,

Graves 2013.



Hard vs. Soft Attention

* Soft attention models:
— Computationally expensive. They have to examine every
image location. Hard to scale to large video datasets.
— Deterministic. They can be trained by backprop.

* Hard attention models:
— Computationally more efficient. They need to process
only small part of each image frame.
— Stochastic. Require some form of sampling, because they
must make discrete choices.

e Research is taking place on both fronts!



Talk Roadmap

Zero-Shot Learning

Caption Generation

_earning Recurrent Attention Models

_earning Skip-Thought Vectors

Skip-Thought Vectors
Kiros, Zhu, Salakhutdinov, Zemel,
Torralba, Urtasun, Fidler, arXiv 2015

Ryan Kiros Yukun Zhu



Sequence to Sequence Learning

Learned Output Sequence

Representation

Encoder

* RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

v v

Decoder

Input Sequence



Skip-Thought Model

| got back home <eos>

b’ <eos> }.I got }b:ck %:ne
O0—>0——>0——>0——>0——>0—>0—>0——>»C(.

..... Thi
| could cee the cat on the steps L Is was strange <eos>

<eos> This was strange

- Given a tuple (S;—1, Si, Si+1) of contiguous sentences:
— the sentence S; is encoded using LSTM.
— the sentence S; attempts to reconstruct the previous
sentence and next sentence S;+1.

* The input is the sentence triplet:
— | got back home.
— | could see the cat on the steps.
— This was strange.



Skip-Thought Model

Encoder

Sentence

Generate Previous Sentence

Generate Forward Sentence



Learning Objective

« We are given a tuple (s;—1,S;, S;+1) of contiguous sentences.

* Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

Z logP(w,fH ‘w7j<—lf17
t

.

i)+ Y logP(w;_;|w', hy)
) t L

representation of
encoder \

J

Y
Forward sentence

Y
Previous sentence

| got back home <eos>

))'.

home

[ <eos> | got back

»O 29 »0O »0O »O

could see the cat on

>0—>0—»

the steps strange

30

<eos> This was

<eos>

strange



Book 11K corpus

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420

* Query sentence along with its nearest neighbor from 500K sentences
using cosine similarity:

— He ran his hand inside his coat, double-checking that the unopened
letter was still there.

— He slipped his hand between his coat and his shirt, where the folded
copies lay in a brown envelope.



Book 11K corpus

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420

* Query sentence along with its nearest neighbor from 500K sentences
using cosine similarity:

Query and nearest sentence

he ran his hand inside his coat , double-checking that the unopened letter was still there .
he slipped his hand between his coat and his shirt , where the folded copies lay in a brown envelope .

im sure youll have a glamorous evening , she said , giving an exaggerated wink .
im really glad you came to the party tonight , he said , turning to her .

although she could tell he had n’t been too invested in any of their other chitchat , he seemed genuinely curious about this .
although he had n’t been following her career with a microscope , he °d definitely taken notice of her appearances .

an annoying buzz started to ring in my ears , becoming louder and louder as my vision began to swim .
a weighty pressure landed on my lungs and my vision blurred at the edges , threatening my consciousness altogether .




Semantic Relatedness

e SemkEval 2014 Task 1: semantic relatedness SICK dataset:
Given two sentences, produce a score of how semantically

related these sentences are based on human generated
scores (1 to 5).

 The dataset comes with a predefined split of 4500 training
pairs, 500 development pairs and 4927 testing pairs.

e Using skip-thought vectors for each sentence, we simply train
a linear regression to predict semantic relatedness.

— For pair of sentences, we compute component-wise
features between pairs (e.g. |u-v|).



Semantic Relatedness

Method T p MSE

SemEval [ Ilinois-LH [18] 0.7993 0.7538  0.3692

2014 sub- 4 UNAL-NLP [19] 0.8070 0.7489  0.3550

. Meaning Factory [20] 0.8268 0.7721 0.3224
MISSIONS | ECNU [21] 0.8414 - -

~ Mean vectors [22] 0.7577 0.6738 0.4557

Results DT-RNN [23] 0.7923 0.7319 0.3822

by Tai et.al.) LSTM [22] 0.8528 0.7911 0.2831

Bidirectional LSTM [22] 0.8567 0.7966 0.2736

- Dependency Tree-LSTM [22] 0.8676 0.8083 0.2532

" uni-skip 0.8477 0.7780 0.2872

J  biskip 0.8405 0.7696  0.2995

Ours combine-skip 0.8584 0.7916 0.2687

_ combine-skip+COCO 0.8655 0.7995 0.2561

* Our models outperform all previous systems from the SemEval
2014 competition. This is remarkable, given the simplicity of our
approach and the lack of feature engineering.



Semantic Relatedness

Sentence 1 Sentence 2 GT  pred
A little girl is looking at a woman in costume A young girl is looking at a woman in costume 4.7 4.5
A little girl is looking at a woman in costume The little girl is looking at a man in costume 3.8 4.0
A little girl is looking at a woman in costume A little girl in costume looks like a woman 2.9 3.5
A sea turtle is hunting for fish A sea turtle is hunting for food 4.5 4.5
A sea turtle is not hunting for fish A sea turtle is hunting for fish 34 3.8
A man is driving a car The car is being driven by a man S 4.9
There is no man driving the car A man is driving a car 3.6 3.5
A large duck 1s flying over a rocky stream A duck, which is large, is flying over a rocky stream 4.8 4.9
A large duck is flying over a rocky stream A large stream is full of rocks, ducks and flies 2.7 3.1
A person is performing acrobatics on a motorcycle A person is performing tricks on a motorcycle 4.3 4.4
A person is performing tricks on a motorcycle The performer is tricking a person on a motorcycle 2.6 44
Someone is pouring ingredients into a pot Someone is adding ingredients to a pot 4.4 4.0
Nobody is pouring ingredients into a pot Someone is pouring ingredients into a pot 3.5 4.2
Someone is pouring ingredients into a pot A man is removing vegetables from a pot 24 3.6

* Example predictions from the SICK test set. GT is the ground
truth relatedness, scored between 1 and 5.

* The last few results: slight changes in sentences result in large

changes in relatedness that we are unable to score correctly.



Paraphrase Detection

 Microsoft Research Paraphrase Corpus: For two sentences one
must predict whether or not they are paraphrases.

Method Acc F1
Recursive  feats [24] 73.2
Auto- RAE+DP [24] 72.6
encoders RAE+fCatS [24] . . 74.2
_ RAE+DP+feats [24] 76.8 83.6
Best  FHS [25] 75.0 827
published ) PE 26] 76.1 82.7
results WDDP [27] 75.6 83.0
_ MTMETRICS [28] 774 84.1
(" uni-skip 73.0 81.9
0 bi-skip 712 81.2
urs < combine-skip 73.0  82.0
_ combine-skip + feats 75.8  83.0

The training set
contains 4076 sentence
pairs (2753 are positive)

The test set contains
1725 pairs (1147 are
positive).



Classification Benchmarks

e 5 datasets: movie review sentiment (MR), customer product
reviews (CR), subjectivity/objectivity classification (SUBJ), opinion
polarity (MPQA) and question-type classification (TREC).

Method MR CR SUBJ] MPQA TREC
Bag-of- | NB-SVM[41] 794 818  93.2 86.3
words MNB [41] 790 800  93.6 86.3
cBoW [6] 772 799 913 86.4 87.3
Super- ~ GrConv [6] 76.3 81.3 89.5 84.5 88.4
up RNN [6] 772 823 937 90.1 90.2
vised 4 BRNN[6] 823 8.6 942 903 91.0
CNN [4] 815 850 934 89.6 93.6
\_ AdaSent [6] 831 863  95.5 93.3 92.4
Paragraph-vector [7] 74.8  78.1 90.5 74.2 91.8
" uni-skip 755 793 921 86.9 91.4
bi-skip 739 779 925 83.3 8.4
Ours < combine-skip 765 80.1  93.6 87.1 9.2
combine-skip + NB 804  81.3 93.6 87.5




Summary

* This model for learning skip-thought vectors only scratches the
surface of possible objectives.

 Many variations have yet to be explored, including
— deep encoders and decoders
— larger context windows

— encoding and decoding paragraphs
— other encoders

* It is likely the case that more exploration of this space will result
in even higher quality sentence representations.

e Code and Data are available online
http://www.cs.toronto.edu/~mbweb/



Thank you
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