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What this is about

Extending feature learning to model relations.
“Bi-linear models”, “energy-models”, “complex cells”,
“spatio-temporal features”, “covariance features”, “bi-linear
classification”, “mapping units”, “quadrature features”, “gated
Boltzmann machine”, “mcrbm”, ...
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Recognition tasks

Recognition has become a focus of interest in Computer Vision.
Recognition of static objects started to work very well. In fact –
Recognition is getting quite serious.

(PASCAL challenge)
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“It’s the feature, stupid!”

A main reason is the use of the right representation:
Recognition started to work after the community converged on
local features, like SIFT.
With the right representation, the choice of top level classifier
(SVM, logreg, NN) doesn’t matter all that much.

(PASCAL challenge)
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Recognition with local features

Task: Recognize the building.
Two approaches:

1 Bag-Of-Features
2 Convolution
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Bag-Of-Features

Bag-Of-Features
1 Find interest points (AKA keypoints).
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 9 / 174



Bag-Of-Features

Bag-Of-Features
1 Find interest points (AKA keypoints).
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 9 / 174



Bag-Of-Features

f1

fn

Bag-Of-Features
1 Find interest points (AKA keypoints).
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 9 / 174



Bag-Of-Features

fM1

fMnf1n

f11

Bag-Of-Features
1 Find interest points (AKA keypoints).
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 9 / 174



Bag-Of-Features

fM1

fMnf1n

f11

Bag-Of-Features
1 Find interest points (AKA keypoints).
2 Crop patches around interest points.
3 Represent each patch with a sparse local descriptor (“features”).
4 Add all local descriptors to obtain a global descriptor for the

image.
Roland Memisevic (Uni Frankfurt) Multiview Feature Learning Tutorial at CVPR 2012 9 / 174



Convolutional

Convolutional
1 Crop patches along a regular grid (dense or not).
2 Represent each patch with a local descriptor.
3 Concatenate all descriptors into a very large vector.
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Classification

high-rise

?

cathedral

f2

f1

When images are represented as points in Rn, we can use a
simple classifier to do recognition.
Eg., Logistic regression, SVM, NN, ...
(There are various extensions, like fancy pooling, etc.)
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Feature Learning

f1

fn

How do we get good features?
Option B: Engineer them. SIFT, HOG, LBP, etc.
Natural Images are not nandom.
Option A: Learn the representation from image data.
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Why Feature Learning

f1

fn

Feature Learning, Dictionary Learning, Receptive Field
Learning, Sparse Coding, etc.

Helps overcome tedious engineering.
Helps adapt models to different data domains (including a model’s
own representations! – “deep learning”)
Biologically consistent.
Brings us closer to end-to-end learning of vision systems.
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Feature Learning Works

(CIFAR) (NORB)

More importantly... it works well
See, eg., (Coates, et al., 2011)
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Feature Learning

yj
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Feature Learning
Encode patch y using latent variables z.
Learn weights W from training data of image patches.

Feature Learning works well for recognition, so...
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Beyond object recognition

Can we do more with Feature Learning than recognize things?

Good features work well for object recognition.
But brains can do much more than recognize objects.
A large number of vision tasks goes beyond object recognition.
In surprisingly many vision tasks, the relationship between images
carries the relevant information
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Correspondences in Computer Vision

Correspondence is one of the most ubiquitous problems in
Computer Vision.

Some correspondence tasks in Vision
Tracking
Stereo
Geometry
Optical Flow
Invariant Recognition
Odometry
Action Recognition
Contours, Within-image structure
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Heider and Simmel

Adding frames is not just about adding proportionally more
information.
The relationships between frames contain additional information,
that is not present in any single frame.
See Heider and Simmel, 1944: Any single frame shows a bunch
of geometric figures. The motions reveal the story.
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Learning features to model correspondences

If correspondences matter in vision, can we learn them?

?

x y

z
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Learning features to model correspondences

It turns out that this requires
latent variables to act like
gates, that dynamically
change the connections
between fellow variables.

zk

xi

yj
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Learning features to model correspondences

This amounts to letting
variables multiply connections
between other variables.
And it is equivalent to having
three-way multiplicative
interactions.

zk

xi

yj
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Learning features to model correspondences

Learning and inference in the
presence of gating variables is
(slightly) different from
learning without.
We can set things up, such
that inference is almost
unchanged. Yet the meaning
of the latent variables will be
entirely different.

zk

xi

yj
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Learning features to model correspondences

Multiplicative interactions allow
hidden variables to blend in a
whole “sub”-network.
This leads to a qualitatively
quite different behaviour from
all common bi-partite feature
learning models.

zk

xi

yj
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Multiplicative interactions

Brief history of multiplication
“Mapping units” (Hinton; 1981), “dynamic mappings” (v.d.
Malsburg; 1981)
Binocular+Motion Energy models (Adelson, Bergen; 1985),
(Ozhawa, DeAngelis, Freeman; 1990), (Fleet et al., 1994)
Higher-order neural nets, “Sigma-Pi-units”
Bi-linear models (Tenenbaum, Freeman; 2000), (Ohlshausen;
1994), (Grimes, Rao; 2005)
Subspace SOM (Kohonen, 1996)
ISA, topographic ICA (Hyvarinen, Hoyer; 2000), (Karklin, Lewicki;
2003): Higher-order within image structure
(2006 –) GBM, mcRBM, RAE, convISA, applications...
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Mapping units 1981

(Hinton, 1981)
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Example application: Action recognition

(Hollywood 2)

(Marszałek et al., 2009)
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ISA applied to action recognition

(Le, et al., 2011)
KTH Hollywood2 UCF YouTube

until 2011 92.1 50.9 85.6 71.2
hierarchical ISA 93.9 53.3 86.5 75.8
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Learning higher-order features

(Ranzato et al., 2010)
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Bi-linear classification

x y

xi

z

zk

yj

Let labels act like gates. (Nair et al., 2009; Memisevic et al., 2010)
SVMs NNet RBM DEEP GSM

dataset/model: SVMRBF SVMPOL NNet DBN1 DBN3 SAA3 GSM (unfact)
rectangles 2.15 2.15 7.16 4.71 2.60 2.41 0.83 (0.56)
rect.-images 24.04 24.05 33.20 23.69 22.50 24.05 22.51 (23.17)
mnistplain 3.03 3.69 4.69 3.94 3.11 3.46 3.70 (3.98)
convexshapes 19.13 19.82 32.25 19.92 18.63 18.41 17.08 (21.03)
mnistbackrand 14.58 16.62 20.04 9.80 6.73 11.28 10.48 (11.89)
mnistbackimg 22.61 24.01 27.41 16.15 16.31 23.00 23.65 (22.07)
mnistrotbackimg 55.18 56.41 62.16 52.21 47.39 51.93 55.82 (55.16)
mnistrot 11.11 15.42 18.11 14.69 10.30 10.30 11.75 (16.15)
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Tracking

(Bazzani et al.), (Larochelle, Hinton, 2011)
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