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Abstract

A fundamental operation in many vision tasks, including motion understand-
ing, stereopsis, visual odometry, or invariant recognition, is establishing corre-
spondences between images or between images and data from other modalities.
We present an analysis of the role that multiplicative interactions play in learn-
ing such correspondences, and we show how learning and inferring relationships
between images can be viewed as detecting rotations in the eigenspaces shared
among a set of orthogonal matrices. We review a variety of recent multiplicative
sparse coding methods in light of this observation. We also review how the squar-
ing operation performed by energy models and by models of complex cells can be
thought of as a way to implement multiplicative interactions. This suggests that
the main utility of including complex cells in computational models of vision may
be that they can encode relations not invariances.

1 Introduction

Correspondence is arguably the most ubiquitous computational primitive in vision:
Tracking amounts to establishing correspondences between frames; stereo vision
between different views of a scene; optical flow between any two images; invariant
recognition between images and invariant descriptions in memory; odometry between
images and motion information; action recognition between frames; etc. In these and
many other tasks, the relationship between images not the content of a single image
carries the relevant information. Representing structures within a single image, such as
contours, can be also considered as an instance of a correspondence problem, namely
between areas, or pixels, within an image1. The fact that correspondence is such a
common operation across vision suggests that the task of representing relations may

1The importance of image correspondence in action understanding is nicely illustrated in Heider
and Simmel’s 1944 video of geometric objects engaged in various “social activities” [15] (althouth the
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have to be kept in mind when trying to build autonomous vision systems and when
trying to understand biological vision.

A lot of progress has been made recently in building models that learn to solve
tasks like object recognition from independent, static images. One of the reasons for the
recent progress is the use of local features, which help virtually eliminate the notoriously
difficult problems of occlusions and small invariances. A central finding is that the right
choice of features not the choice of high-level classifier or computational pipeline are
what typically makes a system work well. Interestingly, some of the best performing
recognition models are highly biologically consistent, in that they are based on features
that are learned unsupervised from data. Besides being biological plausible, feature
learning comes with various benefits, such as helping overcome tedious engineering,
helping adapt to new domains and allowing for some degree of end-to-end learning in
place of constructing, and then combining, a large number of modules to solve a task.
The fact that tasks like object recognition can be solved using biologically consistent,
learning based methods raises the question whether understanding relations can be
amenable to learning in the same way. If so, this may open up the road to learning
based and/or biologically consistent approaches to a much larger variety of problems
than static object recognition, and perhaps also beyond vision.

In this paper, we review a variety of recent methods that address correspondence
tasks by learning local features. We discuss how the common computational principle
behind all these methods are multiplicative interactions, which were introduced to the
vision community 30 years ago under the terms “mapping units” [18] and “dynamic
mappings” [48]. An illustration of mapping units is shown in Figure 1: The three vari-
ables shown in the figure interact multiplicatively, and as a result, each variable (say, zk)
can be thought of as dynamically modulating the connections between other variables
in the model (xi and yj). Likewise, the value of any variable (eg., yj) can be thought
of as depending on the product of the other variables (xi, zk) [18]. This is in contrast
to common feature learning models like ICA, Restricted Boltzmann Machines, auto-
encoder networks and many others, all of which are based on bi-partite networks, that
do not involve any three-way multiplicative interactions. In these models, independent
hidden variables interact with independent observable variables, such that the value of
any variable depends on a weighted sum not product of the other variables. Closely
related to models of mapping units are energy models (for example, [1]), which may be
thought of as a way to “emulate” multiplicative interactions by computing squares.

We shall show how both mapping units and energy models can be viewed as ways to
learn and detect rotations in a set of shared invariant subspaces of a set of commuting
matrices. Our analysis may help understand why action recognition methods seem to
profit from squaring non-linearities (for example, [27]), and it predicts that squaring
and cross-products will be helpful, in general, in applications that involve representing

original intent of that video goes beyond making a case for correspondences). Each single frame depicts
a rather meaningless set of geometric objects and conveys almost no information about the content of
the movie. The only way to understand the movie is by understanding the motions and actions, and
thus by decoding the relationships between frames.
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relations.

1.1 A brief history of multiplicative interactions

Shortly after mapping units were introduced in 1981, energy models [1] received a lot of
attention. Energy models are closely related to cross-correlation models [2], which, in
turn, are a type of multiplicative interaction model. Energy models have been used as
a way to model motion (relating time frames in a video) [1] and stereo vision (relating
images across different eyes or cameras) [33]. An energy model is a computational unit
that relates images by summing over squared responses of, typically two, linear projec-
tions of input data. This operation can be shown to encode translations independently
of content [7], [37] (cf. Section 3).

Early approaches to building and applying energy and cross-correlation models were
based entirely on hand-wiring (see, for example, [37], [41], [7]). Practically all of these
models use Gabor filters as the linear receptive fields whose responses are squared
and summed. The focus on Gabor features has somewhat biased the analysis of energy
models to focus on the Fourier-spectrum as the main object of interest (see, for example,
[7, 37]). As we shall discuss in Section 3, Fourier-components arise just as the special
case of one transformation class, namely translation, and many of the analyses apply
more generally and to other types of transformation.

Gabor-based energy models have also been applied monocularly. In this case they
encode features independently of the Fourier-phase of the input. As a result, their
responses are invariant to small translations as well as to contrast variations of the
input. In part for this reason, energy models have been popular in models of complex
cells, which are known to show similar invariance properties (see, for example, [22]).

Shortly after energy and cross-correlation models emerged, there has been some
attention on learning invariances with higher-order neural networks, which are neural
networks trained on polynomial basis expansions of their inputs, [11]. Higher-order
neural networks can be composed of units that compute sums of products. These units
are sometimes referred to as “Sigma-Pi-units” [40] (where “Pi” stands for product
and “Sigma” for sum). [42], at about the same time, discussed how multiplicative
interactions make it possible to build distributed representations of symbolic data.

In 1995, Kohonen introduced the “Adaptive Subspace Self-Organizing Map” (AS-
SOM) [26], which computes sums over squared filter responses to represent data. Like
the energy model, the ASSOM is based on the idea that the sum of squared responses is
invariant to various properties of its inputs. In contrast to the early energy models, the
ASSOM is trained from data. Inspired by the ASSOM, [23] introduced “Independent
Subspace Analysis” (ISA), which puts the same idea into the context of more conven-
tional sparse coding models. Extensions of this work are topographic ICA [23] and [50],
where sums are computed not over separate but over shared groups of squared filter
responses.

In a parallel line of work, bi-linear models were used as an approach to learning
in the presence of multiplicative interactions [45]. This early work on bi-linear models
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Figure 1: Symbolic representation of a mapping unit [18]. The triangle symbolizes
multiplicative interactions between the three variables zk, xi and yj. The value of any
one of the three variables is a function of the product of all the others. ([18]).

used these as global models trained on whole images rather than using local receptive
fields. In contrast to more recent approaches to learning with multiplicative interac-
tions, training typically involved filling a two-dimensional grid with data that shows two
types of variability (sometimes called “style” and “content”). The purpose of bi-linear
models is then to untangle the two degrees of freedom in the data. More recent work
does not make this distinction, and the purpose of multiplicative hidden variables is
merely to capture the multiple ways in which two images can be related. [13], [36], [30],
for example, show how multiplicative interactions make it possible to model the multi-
tude of relationships between frames in natural videos. [30] also show how they allow
us to model more general classes of relations between images. An earlier multiplicative
interaction model, that is also related to bi-linear models, is the “routing-circuit” [35].

Multiplicative interactions have also been used to model structure within static
images, which can be thought of as modeling higher-order relations, and, in particular,
pair-wise products, between pixel intensities (for example, [25, 23, 49, 21, 38, 6, 29]).

Recently, [32] showed how multiplicative interactions between a class-label and a
feature vector can be viewed as an invariant classifier, where each class is represented
by a manifold of allowable transformations. This work may be viewed as a modern
version of the model that introduced the term mapping units in 1981 [18]. The main
difference between 2011 and 1981 is that models are now trained from large datasets.

2 Learning to relate images

2.1 Feature learning

We briefly review standard feature learning models in this section and we discuss rela-
tional feature learning in Section 2.2. We discuss extensions of relational models and
how they relate to complex cells and to energy models in Section 3.

Practically all standard feature learning models can be represented by a graphical
model like the one shown in Figure 2.1 (a). The model is a bi-partite network that
connects a set of unobserved, latent variables zk with a set of observable variables (for

4



yj

z

wjk

zk

y

zk

yj

wkj

ajk

y

ŷ
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Figure 2: (a) Sparse coding graphical model. (b) Auto-encoder network.

example, pixels) yj. The weights wjk, which connect pixel yj with hidden unit zk,
are learned from a set of training images {yα}α=1,...,N . The vector of latent variables
z = (zk)k=1...K in Figure 2.1 (a) is considered to be unobserved, so one has to infer
it, separately for each training case, along with the model parameters for training.
The graphical model shown in the figure represents how the dependencies between
components yi and zk are parameterized, but it does not define a model or learning
algorithm. A large variety of models and learning algorithms can be parameterized as
in the figure, including principal components, mixture models, k-means clustering, or
restricted Boltzmann machines [16]. Each of these can in principle be used as a feature
learning method (see, for example, [5] for a recent quantitative comparison).

For the hidden variables to extract useful structure from the images, their capacity
needs to be constrained. The simplest form of constraining it is to let the dimensionality
K be smaller than the dimensionality J of the images. Learning in this case amounts
to performing dimensionality reduction. It has become obvious recently that it is more
useful in most applications to use an over-complete representation, that is, K > J ,
and to constrain the capacity of the latent variables instead by forcing the hidden unit
activities to be sparse. In Figure 2.1, and in what follows, we use K < J to symbolize
the fact that z is capacity-constrained, but it should be kept in mind that capacity
can be (and often is) constrained in other ways. The most common operations in the
model, after training, are: “Inference” (or “Analysis”): Given image y, compute z; and
“Generation” (or “Synthesis”): Invent a latent vector z, then compute y.

A simple way to train a model, given training images, is by minimizing reconstruc-
tion error combined with a sparsity encouraging term for the hidden variables (for
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example, [34]): ∑
α

(
‖yα −

∑
k

zαkW.k‖2 + λ|zαk |
)

(1)

Optimization is with respect to both W = (wjk)j=1...J,k=1...K and all zα. For this end,
it is common to alternate between optimizing W and optimizing all zα. After training,
inference then amounts to minimizing the same expression for test images (with W
fixed).

To avoid iterative optimization during inference, one can eliminate z by defining it
implicitly as a function of y. A common choice of function is z = σ (Ay) where A is
a matrix and σ(·) is a squashing non-linearity, such as σ(a) = (1 + exp(−a))−1, which
confines the values of z to reside in a fixed interval. This model is the well-known
auto-encoder (for example, [47]) and it is depicted in Figure 2.1. Learning amounts
to minimizing reconstruction error with respect to both A and W . In practice, it is
common to enforce A := WT in order to reduce the number of parameters and for
consistency with other sparse coding models.

One can add a penalty term that encourages sparsity of the latent variables. Al-
ternatively, one can train auto-encoders, such that they de-noise corrupted version of
their inputs, which can be achieved by simply feeding in corrupted inputs during train-
ing (but measuring reconstruction error with respect to the original data). This turns
auto-encoders into “de-noising auto-encoders” [47], which show properties similar to
other sparse coding methods, but inference, like in a standard auto-encoder, is a simple
feed-forward mapping.

A technique similar to the auto-encoder is the Restricted Boltzmann machine (RBM):
RBMs define the joint probability distribution

p(y, z) =
1

Z
exp

(∑
jk

wjkyjzk
)
, (2)

from which one can derive

p(zk|y) = sigmoid
(∑

j

wjkyj
)

and p(yj|z) = sigmoid
(∑

j

wjkzk
)
, (3)

showing that inference, again, amounts to a linear mapping plus non-linearity. Learning
amounts to maximizing the average log-probability 1

N

∑
α log p(yα) of the training data.

Since the derivatives with respect to the parameters are not tractable (due to the
normalizing constant Z in Eq. 2), it is common to use approximate Gibbs sampling
in order to approximate them. This leads to a Hebbian-like learning rule known as
contrastive divergence training [16].

Another common sparse coding method is independent components analysis
(ICA) (for example, [22]). One way to train an ICA-model that is complete (that is,
where z has the same size as y) is by encouraging latent responses to be sparse, while
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preventing weights from becoming degenerate [22]:

min
W
‖WTy‖1 (4)

s.t. WTW = I (5)

Enforcing the constraint can be inefficient in practice, since it requires an eigen decom-
position.

For most feature learning models, inference and generation are variations of the two
linear mappings:

zk =
∑
j

wjkyj (6)

yj =
∑
k

wjkzk (7)

The set of model parameters W·k for any k are typically referred to as “features” or
“filters” (although a more appropriate term would be “basis functions”; we shall use
these interchangeably). Practically all methods yield Gabor-like features when trained
on natural images. An advantage of non-linear models, such as RBM’s and auto-
encoders, is that stacking them makes it possible to learn feature hierarchies (“deep
learning”) [17].

In practice, it is common to add bias terms, such that inference and generation
(Eqs. 6 and 7) are affine not linear functions, for example, yj =

∑
k wjkzk + bj for

some parameter bj. We shall refrain from adding bias terms to avoid clutter, noting
that, alternatively, one may think of y and z as being in “homogeneous” coordinates,
containing an extra, constant 1-dimension.

Feature learning is typically performed on small images patches of size between
around 5× 5 and 50× 50 pixels. One reason for this is that training and inference can
be computationally demanding. More important, local features make it possible to deal
with images of different size, and to deal with occlusions and local object variations.
Given a trained model, two common ways to perform invariant recognition on test
images are:

“Bag-Of-Features”: Crop patches around interest points (such as SIFT or Harris
corners), compute latent representation z for each patch, collapse (add up) all represen-
tations to obtain a single vector zImage, classify zImage using a standard classifier. There
are several variations of this scheme, including using an extra clustering-step before
collapsing features, or using a histogram-similarity in place of Euclidean distance for
the collapsed representation.

“Convolutional”: Crop patches from the image along a regular grid; compute z
for each patch; concatenate all descriptors into a very large vector zImage; classify zImage

using a standard classifier. One can also use combinations of the two schemes (see, for
example [5]).

Local features yield highly competitive performance in object recognition tasks (for
example, [5]). In the next section we discuss recent approaches to extending feature
learning to encode relations between, as opposed to content within, images.
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Figure 3: Learning to encode relations: We consider the task of learning latent variables
z that encode the relationship between images x and y, independently of their content.

2.2 Encoding relations

We now consider the task of learning relations between two images x and y as illus-
trated2 in Figure 3, and we discuss the role of multiplicative interactions when learning
relations.

2.2.1 The need for multiplicative interactions

A naive approach to modeling relations between two images would be to perform sparse
coding on the concatenation. A hidden unit in such a model would receive as input the
sum of two projections, one from each image. To detect a particular transformation, the
two receptive fields would need to be defined, such that one receptive field is the other
modified by the transformation that the hidden unit is supposed to detect. The net
input that the hidden unit receives will then tend to be high for image pairs showing
the transformation. However, the net input will equally dependent on the images
themselves. The reason is that hidden variables are akin to logical “OR”-gates, which
accumulate evidence (see, for example [51] for a discussion).

It is straightforward to build a content-independent detector if we allow for multi-
plicative interactions between the variables. In particular, consider the outer product
L := xyT between two one-dimensional, binary images, as shown in Figure 4. Every
component Lij of this matrix constitutes evidence for exactly one type of transforma-

2Face images taken from the data-base described in [46]
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Figure 4: (a) The diagonal of L := xyT contains evidence for the identity transforma-
tion. (b) The secondary diagonals contain evidence for shifts. (c) A hidden unit that
pools over one of the diagonals can detect transformations. This hidden unit computes
a sum over products.

tion (translation, in the example). The components Lij act like AND-gates, that can
detect coincidences. Since a component Lij is equal to 1 only when both corresponding
pixels are equal to 1, a hidden unit that pools over multiple components (Figure 4 (c))
is much less likely to receive spurious activity that depends on the image content rather
than on the transformation. Note that pooling over the components of L amounts to
computing the correlation of the output image with a transformed version of the input
image. The same is true for real-valued data.

Based on these observations, a variety of sparse coding models were suggested which
encode transformations (for example, [36, 13, 30]). The number of parameters is typi-
cally equal to (the number of hidden variables) × (the number of input-pixels) × (the
number of output pixels). It is instructional to think of the parameters as populating
a 3-way-“tensor” w with components wijk.

Figure 5 (left) shows two alternative illustrations of this type of model (adapted
from [30]). Sub-figure (a) shows that each hidden variable can blend in a slice w··k
of the parameter tensor. Each slice is a matrix connecting each input pixel to each
output-pixel. We can think of this matrix as performing linear regression in the space
of stacked gray-value intensities, known commonly as a “warp”. Thus, the model as a
whole can be thought of as defining a factorial mixture of warps.

Alternatively, each input pixel can be thought of as blending in a slice wi·· of the
parameter tensor. Thus, we can think of the model as a standard sparse coding model
on the output image (Figure 5 (left)), whose parameters are modulated by the input
image. This turns the model into a predictive or conditional sparse coding model
[36, 30]. In both cases, hidden variables take on the roles of dynamic mapping units
[18, 48] which encode the relationship not the content of the images. Each unit in the
model can gate connections between other variables in the model. We shall refer to this
type of model as “gated sparse coding”, or synonymously as “cross-correlation model”.

Like in a standard sparse coding model one needs to include biases in practice. The
set of model parameters thus consists of the three-way parameters wijk, as well as of
single-node parameters wi, wj and wk. One could also include “higher-order-biases”
[30] like wik, which connect two groups of variables, but it is not common to do so. Like
before, we shall drop all bias terms in what follows in order to avoid clutter. Both simple
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Figure 5: Relating images using multiplicative interactions. Two equivalent views of
the same type of model.

biases and higher-order biases can be implemented by adding constant-1 dimensions to
data and to hidden variables.

2.3 Inference

The graphical model of gated sparse coding models is tri-partite. That of a standard
sparse coding model is bi-partite. Inference can be performed in almost the same as
in a standard sparse coding model, whenever two out of three groups of variables have
been observed.

Consider, for example, the task of inferring z, given x and y (see Figure 6 (a)). Re-
call that for a standard sparse coding model, we have: zk =

∑
j wjkyj (up to component-

wise non-linearities). It is instructional to think of the gated sparse coding model as
turning the weights into a function of x. If that function is linear: wjk(x) =

∑
iwijkxi,

we get:

zk =
∑
j

wjkyj =
∑
j

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj (8)

which is exactly of the form discussed in the previous section.
Eq. 8 shows that inference amounts to computing for each output-component yj a

quadratic form in x and z defined by the weight tensor w·j·. Considering either x or z
as fixed, one can also think of inference as a simple linear function like in a standard
sparse coding model. This property is typical of models with bi-linear dependencies
[45]. Despite the similarity to a standard sparse coding model, the meaning of inference
differs from standard sparse coding: The meaning of z, here, is the transformation that
takes x to y (or vice versa).
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Figure 6: Inferring any one group of variables, given the other two, is like inference in
a standard sparse coding model. Blue shading represents conditioning.

Inferring z, given two images x and y (Figure 6 (b)) yields the analogous expression:

yj =
∑
k

wjkzk =
∑
k

(∑
i

wijkxi
)
zk =

∑
ik

wijkxizk, (9)

so inference is again a quadratic form. The meaning of y is now “x transformed
according to known transformation z”.

For the analysis in Section 4 it is useful to note that, when z is given, then y is a
linear function of x (cf. Eq. 9), so it can be written

y = Lx (10)

for some matrix L, which itself is a function of z. Commonly, x and y represent
vectorized images, so that the linear function is a warp. Note, that the representation
of the linear function is factorial. That is, the hidden variables make it possible to
compose a warp additively from constituting components much like a factorial sparse
coding model (in contrast to a genuine mixture model) makes it possible to compose
an image from independent components.

Like in a standard sparse coding model, it can be useful in some applications to
assign a number to an input, quantifying how well it is represented by the model. For
this number to be useful, it has to be “calibrated”, which is typically achieved by
using a probabilistic model. In contrast to a simple sparse coding model, training a
probabilistic gated sparse coding model can be slightly more complicated, because of
the dependencies between x and y conditioned on z. We discuss this issue in detail in
the next section.

2.4 Learning

Training data for a gated sparse coding model consists of pairs of points (xα,yα).
Training is similar to standard sparse coding, but there are some important differences.
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In particular, note that the gated model is like a sparse coding model whose input is
the vectorized outer-product xyT (cf. Section 2.2), so that standard learning criteria,
such as squared error, are obviously not appropriate.

2.4.1 Predictive training

One way to train the model is utilizing the view as predictive sparse coding (Figure 6
(b)), and to train the model conditionally by predicting y given x [13], [36], [30].

Recall that we can think of the inputs x as modulating the parameters. This
modulation is case-dependent. Learning can therefore be viewed as “sparse coding with
case-dependent weights”. The cost that data-case (xα,yα) contributes is:∑

j

(
yαj −

∑
ik

wijkx
α
i z

α
k )2 (11)

Differentiating with respect to wijk is the same as in a standard sparse coding model.
In particular, the model is still linear wrt. the parameters. Predictive learning is
therefore possible with gradient-based optimization similar to standard feature learning
(cf. Section 2.1).

To avoid iterative inference, it is possible to adapt various sparse coding variants,
like auto-encoders and RBMs (Section 2.1) to the conditional case. As an example, we
obtain a “gated Boltzmann machine” (GBM) by changing the energy function into the
three-way energy [30]:

E(x,y, z) =
∑
ijk

wijkxiyjzk (12)

and exponentiating and normalizing:

p(y, z|x) =
1

Z(x)
exp

(
E(x,y, z)

)
, Z(x) =

∑
y,z

exp
(
E(x,y, z)

)
(13)

Note that the normalization is over y and z only, which is consistent with our goal
of defining a predictive model. It is possible to define a joint model, but this makes
training more difficult (cf. Section 2.4.2). Like in a standard RBM, training involves
sampling z and y. In the relational RBM samples are drawn from the conditional
distributions p(y|z,x) and p(z|y,x).

As another example, we can turn an auto-encoder into a relational auto-encoder, by
defining the encoder and decoder parameters A and W as linear functions of x ([28],
[29]). Learning is then essentially the same as in a standard auto-encoder modeling
y. In particular, the model is still a directed acyclic graph, so one can use simple
back-propagation to train the model. See Figure 7 for an illustration.

2.4.2 Symmetric training

In probabilistic terms, predictive training amounts to modeling the conditional distri-
bution p(y|x) =

∫
z
p(y, z|x) dz. [43] show how modeling instead the joint distribution

12
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Figure 7: (a) Relational auto-encoder. (b) Toy data commonly used to test relational
models. There is no structure in the images, only in their relationship.

can make it possible to perform image matching, by allowing us to quantify how com-
patible any two images are under to the trained model.

Formally, modeling the joint amounts simply to changing the normalization constant
of the three-way RBM to Z =

∑
x,y,z exp

(
E(x,y, z)

)
(cf. previous section). Learning

is more complicated, however, because the simplifying view of case-based modulation
no longer holds. [43] suggest using three-way Gibbs sampling to train the model.

As an alternative to modeling a joint probability distribution, [29] show how one
can instead use a relational auto-encoder trained symmetrically on the sum of the two
predictive objectives∑

j

(
yαj −

∑
ik

wijkx
α
i z

α
k )2 +

∑
i

(
xαi −

∑
jk

wijky
α
j z

α
k )2 (14)

This forces parameters to be able to transform in both directions, and it can give
performance similar to symmetrically trained, fully probabilistic models [29]. Like an
auto-encoder, this model can be trained with gradient based optimization.

2.4.3 Learning higher-order within-image structure

Another reason for learning the joint distribution is that it allows us to model higher-
order within-image structure (for example, [25, 39, 23]).

[39] apply a GBM to the task of modeling second-order within-image features, that
is, features that encode pair-wise products of pixel intensities. They show that this can
be achieved by optimizing the joint GBM distribution and using the same image as
input x and as output y. In contrast to [43], [39] suggest hybrid Monte Carlo to train
the joint.

One can also combine higher-order models with standard sparse coding models, by
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using some hidden units to model higher-order structure and some to learn linear codes
[38, 29].

2.4.4 Toy example: Motion extraction and analogy making

Figure 8 (a) shows a toy example of a gated Boltzmann machine applied to translations.
The model was trained on images showing iid random dots where the output image y is
a copy of the input image x shifted in a random direction. The center column in both
plots in Figure 8 visualizes the inferred transformation as a vector field. The vector-
field was produced by (i) inferring the transformation given the image pair (Eq. 8),
(ii) computing the transformation from the inferred hiddens, and (iii) finding for each
input-pixel the output-position it is most strongly connected to [30]. The two right-
most columns in both plots show how the inferred transformation can be applied to new
images by analogy, that is, by computing the output-image given a new input image
and the inferred transformation (Eq. 9). Figure 8 (b) shows an example, where the
transformations are split-screen translations, that is, translations which are independent
in the top half vs. the bottom half of the image. This illustrates how the model has to
decompose transformations into factorial constituting transformations.

3 Factorization and energy models

In the following, we discuss the close relationship between gated sparse coding models
and energy models. For this end, we first describe how parameter factorization makes
it possible to pre-process input images and thereby reduce the number of parameters.

3.1 Factorizing the gating parameters

The number of gating parameters is roughly cubic in the number of pixels, if we assume
that the number of constituting transformations is about the same as the number of
pixels. It can easily be more for highly over-complete hiddens. [31] suggest reducing
that number by factorizing the parameter tensor W into three matrices, such that each
component wijk is given by the “three-way inner product”

wijk =
∑
ijk

F∑
f=1

wxifw
y
jfw

z
kf (15)

Here, F is a number of hidden “factors”, which, like the number K of hidden units, has
to be chosen by hand or by cross-validation. The matrices wx, wy and wz are I × F ,
J × F and K × F , respectively.

An illustration of this factorization is given in Figure 9 (a). It is interesting to
note that, under this factorization, the activity of output-variable yj, by using the
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(a) (b)

Figure 8: Inferring motion direction from test data. (a) Coherent motion across the
whole image. (b) “Factorial motion” that is independent in different image regions. In
both plots, the meaning of the five columns is as follows (left-to-right): Random test
images x, random test images y, inferred flow-field, new test-image x̂, inferred output
ŷ.
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Figure 9: (a) Factorizing the parameter tensor. (b) Interpreting factorization as filter
matching.

distributive law, can by written:

yj =
∑
ik

wijkxizk =
∑
ik

(
∑
f

wxifw
y
jfw

z
kf )xizk =

∑
f

wyjf (
∑
i

wxifxi)(
∑
k

wzkfzk) (16)

Similarly, for zk we have

zk =
∑
ij

wijkxiyj =
∑
ij

(
∑
f

wxifw
y
jfw

z
kf )xiyj =

∑
f

wzkf (
∑
i

wxifxi)(
∑
j

wyjfyj) (17)

One can obtain a similar expression for the energy in a gated Boltzmann machine. Eq.
17 shows that factorization can be viewed as filter matching : For inference, each group
of variables x, y and z are projected onto linear basis functions which are subsequently
multiplied, as illustrated in Figure 9 (b).

It is important to note that the way factorization reduces parameters is not by
projecting data onto a lower-dimensional space before computing the multiplicative
interactions – a claim that can be found frequently in the literature. In fact, frequently,
F is chosen to be larger than I and/or J . The way that factorization reduces the number
of parameters is by restricting three-way connectivity. Learning then amounts to finding
basis functions that can deal with this restriction optimally. Using the factorization
in Eq. 15 amounts to allowing each factor to engage only in a single multiplicative
interaction.

All gated sparse coding models can be subjected to this factorization. Training
is similar to training an unfactored model by using the chain rule and differentiating
Eq. 15. An example of a factored gated auto-encoder is described in [29]. Virtually
all factored models that were introduced use the restriction of single multiplicative
interactions (Eq. 15). An open research question is to what degree a less restrictive

16



connectivity – equivalently, using a non-diagonal core-tensor in the factorization – would
be advantageous.

[31] show empirically how training factored model leads to filter-pairs that optimally
represent transformation classes, such as Fourier-components for translations and a
polar variant of Fourier-components for rotations. Figures 10 and 11 show examples of
filters learned from translations, affine transformations, split-screen translations, which
are independent in the top and bottom half of the image, and natural video. For training
the filters in the top rows and on the bottom right, we used data-sets described in [31]
and [29] and the model described in [29]. The filters resemble receptive fields found
in various cells in visual cortex [10]. To obtain split-screen filters (bottom left) we
generated a data-set of split-screen translations and trained the model described in
[31]. In Section 4, we provide an analysis that sheds some light onto why the filters
take on this form.

3.2 Energy models

Energy models [1, 33] are an alternative approach to modeling image motion and dis-
parities, and they have been deployed monocularly, too. A main application of energy
models is the detection of small translational motion in image pairs. This makes them
suitable as biologically plausible mechanisms of both local motion estimation and binoc-
ular disparity estimation. Energy models detect motion by projecting two images onto
two phase-shifted Gabor functions each (for a total of four basis function responses).
The two responses across the images are added and squared. The sum of these two
squared, spatio-temporal responses then yields the response of the energy model.

The rationale behind the energy model is that, since each within-image Gabor filter
pair can be thought of as a localized spatio-temporal Fourier component, the sum of the
squared components yields an estimate of spectral energy, which is not dependent of the
phase – and thus to a large degree not dependent on the content – of the input images.
The two filters within each image need to be sine/cosine pairs, which is commonly
referred to as being “in quadrature”.

A detector of local shift can be built by using a set of energy models tuned to
different frequencies. To turn the set of energy responses into an estimate of local
translation, one can, for example, pick the model with the strongest response [41, 37],
or use pooling to get a more stable estimate [7].

[26, 23] suggest learning energy-like models from data by extending a sparse coding
model with an elementwise squaring operation, followed by a linear pooling layer. In
contrast to the original energy model, one may use more than exactly two filters to pool
over, and pooling weights may be learned along with basis functions, instead of being
fixed to be 1. Figure 12 shows an illustration of this type of model applied to an image
pair. As the figure shows, this type of model can be viewed as a two-layer network,
with a hidden layer that uses an elementwise squaring nonlinearity.

For learning, [23] suggest adopting ICA by forcing the responses of latent variables
(which are now sums of squared basis function responses) to be sparse, while keeping the
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Figure 10: Input filters learned from various types of transformation. Top-left: Transla-
tion, Top-right: Rotation, Bottom-left: split-screen translation, Bottom-right: Natural
videos. See figure 11 on the next page for corresponding output filters.

filters orthogonal to avoid degenerate solutions, just like when training a standard ICA
model (cf. Section 2.1). This approach is known as “Independent Subspace Analysis”
(ISA). We shall refer to the hidden layer nodes as “factors” in analogy to the hidden
layer of a factored GBM. Both ISA and factored gated Boltzmann machines were shown
to yield state-of-the-art performance in various motion recognition tasks [27, 44].
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Figure 11: Output filters learned from various types of transformation. Top-left: Trans-
lation, Top-right: Rotation, Bottom-left: split-screen translation, Bottom-right: Natu-
ral videos. See figure 10 on the previous page for corresponding input filters.

3.3 Relationship between gated sparse coding and energy mod-
els

Learning energy models, such as ISA, on the concatenation of two inputs x and y is
closely related to learning gated sparse coding models. Let wx·f (wy·f ) denote the set of
weights connecting part x (y) of the concatenated input with factor f (cf. Figure 12).
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Figure 12: Illustration of Independent Subspace Analysis applied to an image pair
(x,y).

The activity of hidden unit zk in an energy model is given by

zk =
∑
f

wzkf
(
wx·f

Tx + wy·f
Ty
)2

(18)

=
∑
f

wzkf
(
2(wx·f

Tx)(wy·f
Ty) + (wx·f

Tx)2 + (wy·f
Ty)2

)
(19)

Up to the quadratic terms in Eq. 19, hidden unit activities are the same as in a gated
sparse coding model. As we shall discuss in detail below, the quadratic terms do not
have a significant effect on the meaning of the hidden units. They can therefore also
be thought of as a way to implement mapping units that encode relations.

3.4 Implementing gated sparse coding models

Over the years, a variety of tricks and recipes have emerged, which can simplify, stabi-
lize, or speed up, learning in the presence of multiplicative interactions. One approach,
that is used by practically everyone in the field, is to normalize output filter matrices
wx and wy during learning, such that all filter wx·f and wy·f grow slowly and maintain
roughly the same length as learning progresses. A common way to achieve this is to
maintain a running average of the average norm of the filters during learning and to
re-normalize each filter to have this norm after every learning update. Furthermore, it
is common to connect top-level hidden units locally to the factors, rather than using
full connectivity. The theoretical discussion in the next section provides some intuition

20



into why local connectivity helps speed up learning. A slightly more complicated ap-
proach is to let all hidden units populate a virtual “grid” in a low-dimensional space
(for example, 2-D) and to connect hidden units to factors, such that neighboring hidden
units are connected to the same or to overlapping sets of factors. The approach has
been popular mainly in the context of learning energy models (for example, [50, 24]).
Finally, it is common to train the models using image patches that are DC centered
and contrast normalized, and usually also whitened.

4 Relational codes and simultaneous eigenspaces

We now show that hidden variables learn to detect subspace-rotations when they are
trained on transformed image pairs. In Section 2.3 (Eq. 10) we showed that trans-
formation codes z can represent linear transformations, L, that is y = Lx. We shall
restrict our attention in the following to transformations, L, that are orthogonal, that
is, LTL = LLT = I, where I is the identity matrix. In other words, L−1 = LT. Linear
transformations in “pixel-space” are also known as warp. Note that practically all rele-
vant spatial transformations, like translation, rotation or local shifts, can be expressed
approximately as an orthogonal warp, because orthogonal transformations subsume, in
particular, all permutations (“shuffling pixels”).

An important fact about orthogonal matrices is that the eigen-decomposition L =
UDUT is complex, where eigenvalues (diagonal of D) have absolute value 1 [20]. Multi-
plying by a complex number with absolute value 1 amounts to performing a rotation in
the complex plane, as illustrated in Figure 13 (left). Each eigenspace associated with L
is also referred to as invariant subspace of L (as application of L will keep eigenvectors
within the subspace).

Applying an orthogonal warp is thus equivalent to (i) projecting the image onto
filter pairs (the real and imaginary parts of each eigenvector), (ii) performing a ro-
tation within each invariant subspace, and (iii) projecting back into the image-space.
In other words, we can decompose an orthogonal transformation into a set of inde-
pendent, 2-dimensional rotations. The most well-known examples are translations: A
1D-translation matrix contains ones along one of its secondary diagonals, and it is zero
elsewhere3. The eigenvectors of this matrix are Fourier-components [12], and the rota-
tion in each invariant subspace amounts to a phase-shift of the corresponding Fourier-
feature. This leaves the norm of the projections onto the Fourier-components (the
power spectrum of the signal) constant, which is a well known property of translation.

It is interesting to note that the imaginary and real parts of the eigenvectors of a
translation matrix correspond to sine and cosine features, respectively, reflecting the fact
that Fourier components naturally come in pairs. These are commonly referred to as
quadrature pairs in the literature. In the special case of Gabor features, the importance
of quadrature pairs is that they allow us to detect translations independently of the local

3To be exactly orthogonal it has to contain an additional one in another place, so that it performs
a rotation with wrap-around.
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Figure 13: Training gated sparse coding models is equivalent to detecting rotation
angles in the invariant subspaces associated with a set of transformations (left), and it
amounts to detecting multiple applications of the same angle when learning from videos
(right).

content of images [37, 7]. However, the property that eigenvectors come in pairs is not
specific to translations. It is shared by all transformations that can be represented by an
orthogonal matrix, so they can be composed from 2-dimensional rotations. [4] use the
term generalized quadrature pair to refer to the eigen-features of these transformations.

4.1 Commuting warps share eigenspaces

A central observation to our analysis is that eigenspaces can be shared among transfor-
mations. When eigenspaces are shared, then the only way in which two transformations
differ, is in the angles of rotation within the eigenspaces. So shared eigenspaces allow
us to represent multiple transformations with a single set of features. An example of a
shared eigenspace is the Fourier-basis, which is shared among translations. This well-
known observation follows from the fact that the set of all circulant matrices (which
are 1-D translation-matrices) of the same size have the Fourier-basis as eigen-basis [12].
Eigenspaces can be shared between many more transformation not just translation. An
obvious generalization are local translations, which may be considered the constitut-
ing transformations of natural videos. Another, less obvious generalization is spatial
rotation. Formally, a set of matrices share eigenvectors if they commute4 [20].

The importance of commuting transformations for our analysis is that, since these
transformations share an eigen-basis, they differ only in the angle of rotation in the

4 This can be seen by considering any two matrices A and B with AB = BA and with λ, v an
eigenvalue/eigenvector pair of B with multiplicity one. It holds that BAv = ABv = λAv. Therefore,
Av is also an eigenvector of B with the same eigenvalue.
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joint eigenspace. As a result, one may extract a particular transformation from a given
image pair (x,y) by recovering the angles of rotation between the projections of x and
y onto the eigenspaces. For this end, consider the real and complex parts vR and vI of
some eigen-feature v. That is, v = vR + ivI, where i =

√
−1. The real and imaginary

coordinates of the projection of x onto the invariant subspace associated with v are
given by vT

Rx and vT
I x, respectively. For the output image, they are vT

Ry and vT
I y.

Let φx and φy denote the angles of the projections of x and y with the real axis in
the complex plane. If we normalize the projections to have unit norm, then the cosine
of the angle between the projections, φy − φx, may be written

cos(φy − φx) = cosφy cosφx + sinφy sinφx

by trigonometric identity. This is equivalent to computing the inner product between
two normalized projections (cf. Figure 13 (left)). In other words, to estimate the (cosine
of) the angle of rotation between the projections of x and y, we need to sum over the
product of two filter responses.

Note, however, that normalizing each projection to 1 amounts to dividing by the
sum of squared filter responses, an operation that is highly unstable if a projection is
close to zero. Unfortunately, this will be the case, whenever one of the images is almost
orthogonal to the invariant subspace. This, in turn, means that the rotation angle
cannot be recovered from the given image, because the image is too close to the axis of
rotation. One may view this as a subspace-generalization of the well-known aperture
problem beyond translation, to the set of orthogonal transformations. Normalization
would ignore this problem and provide the illusion of a recovered angle even when the
aperture problem makes the detection of the transformation component impossible. In
the next section we discuss how one may overcome this problem by rephrasing the
problem as a detection task.

4.2 Detecting subspace rotations

For each eigenvector, v, and rotation angle, θ, define the complex output image filter

vθ = exp(iθ)v

which represents a projection and simultaneous rotation by θ. This allows us to define
a subspace rotation-detector with preferred angle θ as follows:

rθ = (vT
Ry)(vθR

T
x) + (vT

I y)(vθI
T
x) (20)

where subscripts R and I denote the real and imaginary part of the filters like before.
Like before, if projections are normalized to length 1, we have

rθ = cosφy cos(φx − θ) + sinφy sin(φx − θ) = cos(φy − φx − θ),

which is maximal whenever φy − φx = θ, thus when the observed angle of rotation,
φy−φx, is equal to the preferred angle of rotation, θ. However, like before, normalizing
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projections is not a good idea because of the subspace aperture problem. We now
show that mapping units are well-suited to detecting subspace rotations, if a number
of conditions are met.

4.3 Mapping units as rotation detectors

If features and data are contrast normalized, then the projections will depend only on
how well the image pair represents a given subspace rotation. The value rθ, in turn,
will depend (a) on the transformation (via the subspace angle) and (b) on the content
of the images (via the angle between each image and the invariant subspace). Thus,
the output of the detector factors in both, the presence of a transformation and our
ability to discern it.

The fact that rθ depends on image content makes it a suboptimal representation
of transformation. However, note that rθ is a “conservative” detector, that takes on
a large value only if an input image pair (x,y) is compatible with its transformation.
We can therefore define a content-independent representation by pooling over multiple
detectors rθ that represent the same transformation but respond to different images.
Note that computing rθ involves summing over the two subspace dimensions, which is
also a form of pooling (within subspaces). Thus, encoding subspace rotations requires
two types of pooling.

If we stack imaginary and real eigenvector pairs for the input and output images,
v and vθ, in matrices U and V , respectively, we may define the representation t of a
transformation, given two images x and y, as

t = WTP
(
UTx

)
·
(
V Ty

)
(21)

where P is a band-diagonal “within-subspace” pooling matrix, and W is an appropriate
“across-subspace” pooling matrix. Furthermore, the following conditions need to be
met: (1) Images x and y are contrast-normalized, (2) For each row uf of U there exists
θ such that the corresponding row vf of V takes the form vf = exp(iθ)uf . In other
words, filter pairs are related through rotations only.

Eq. 21 takes exactly the same form as inference in a gated sparse coding model
(cf., Eq. 17), if we absorb the within-subspace pooling matrix P into W . Learning
amounts to identifying both the subspaces and the pooling matrix, so training a multi-
view feature learning model can be thought of as performing multiple simultaneous
diagonalizations of a set of transformations. When a data-set contains more than
one transformation class, learning involves partitioning the set of orthogonal warps
into commutative subsets and simultaneously diagonalizing each subset. Note that, in
practice, complex filters can be represented by learning two-dimensional subspaces in
the form of filter pairs. It is uncommon, albeit possible, to learn actually complex-
valued features in practice.

Diagonalizing a single transformation, L, would amount to performing a kind of
canonical correlations analysis (CCA), so learning a multi-view feature learning model
may be thought of as performing multiple canonical correlation analyzes with tied

24



features. Similarly, modeling within-image structure by setting x = y [38] would
amount to learning a PCA mixture with tied weights. In the same way that neural
networks can be used to implement CCA and PCA up to a linear transformation, the
result of training a multi-view feature learning model is a simultaneous diagonalization
only up to a linear transformation.

It is interesting to note that condition (2) above implies that filters are normalized
to have the same length. Imposing a norm constraint has been a common approach to
stabilizing learning (eg., [38, 29, 43]). It is also common to apply a sigmoid non-linearity
after computing mapping unit activities, so that the output of a hidden variable can be
interpreted as a probability. Pooling over multiple subspaces may, in addition to pro-
viding content-independent representations, also help deal with edge effects and noise,
as well as with the fact that learned transformations may not be exactly orthogonal.

5 Relation to energy models

By concatenating images x and y, as well as filters v and vθ, we may approximate the
subspace rotation detector (Eq. 20) also with the response of an energy detector:

rθ =
(
(vR

Ty) + (vθR
T
x)
)2

+
(
(vI

Ty) + (vθI
T
x)
)2

= 2
(
(vR

Ty)(vθR
T
x) + (vI

Ty)(vθI
T
x)
)

+ (vR
Ty)2 + (vθR

T
x)2 + (vI

Ty)2 + (vθI
T
x)2

(22)

Eq. 22 is equivalent to Eq. 20 up to the four quadratic terms. The four quadratic
terms are equal to the sum of the squared norms of the projections of x and y onto the
invariant subspace. Thus, like the norm of the projections, they contribute informa-
tion about the discernibility of transformations. This makes the energy response more
conservative than the cross-correlation response (Eq. 20). However, the peak response
is still attained only when both images reside within the detector’s invariant subspace
and when their projections are rotated by the detectors preferred angle θ.

By pooling over multiple rotation detectors, rθ, we obtain the equivalent of an energy
response (Eq. 18). This shows that energy models applied to the concatenation of two
images are well-suited to modeling transformations, too.

5.1 More than two images

Both energy models and cross-correlation models can be applied to more than two
images. For gated sparse coding, Eq. 20 can be modified to contain all cross-terms, or
all the ones that are deemed relevant (for example, adjacent frames in a “Markov”-type
gating model of a video). Alternatively, for the energy mechanism, one can compute
the square of the concatenation of more than two images in place of Eq. 22.
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5.1.1 Example: Implementing an energy model via cross-correlation

The close relation between energy models and gated sparse coding makes it possible to
implement one via the other. Figure 14 shows example filters from an energy model
trained on concatenated frames from videos showing moving random dots5. We trained
a gated auto-encoder with F = 256 factors and K = 128 mapping units, where x = y
is given by the concatenation of 10 frames. Filters are constrained, such that wxif =
wyif . Each 10-frame input shows random dots moving at a constant speed. Speed and
direction vary across movies.

Since the gated auto-encoder, a cross-correlation model, multiplies two sets of filter
responses which are the same, it effectively computes a square, and thus implements an
energy model. In the absence of any within-image structure, all filters learn to represent
only across-image correlations. Thus, as predicted by Eq. 19 the energy model, in turn,
implements a cross-correlation model.

Figure 14 depicts, separately, the 10 sets of 256 filters corresponding to the 10
time-frames. It shows that the model learns spatio-temporal Fourier features which are
selective for speed, frequency and orientation.

6 Discussion

Given the predominance of correspondence tasks in vision, it seems conceivable that the
main utility of energy models and complex cells is that they can encode relationships
not (monocular) invariances.

This suggests that squaring non-linearities, for example, as the transfer function in
a feed-forward network, may be useful, in general, in tasks where relations play a role,
such as in recognition tasks that involve motion and stereo. In the long term, comput-
ing squares and/or cross-products could help reduce the requirement for large, hand-
engineered pipelines, which are currently used for solving correspondence problems in
tasks like depth inference. These typically involve keypoint extraction, descriptor ex-
traction, matching and outlier-removal [14]. A learning based system using complex
cells may be able to replace parts of the pipeline with a single, homogeneous model
that is trained from data. This may also help explain how visual cortex may perform
a large variety of tasks using a single, homogeneous module, which can be trained by a
single type of learning mechanism.

Interestingly, invariant object recognition itself can be viewed as a correspondence
problem, where the goal is to match an input observation to invariant templates in
memory. [32] discuss a variation of a gated sparse coding model, which may be con-
sidered as an approach to invariant recognition through modeling mappings that take
images to class labels. The input of the model is an image, the output is an orthogo-
nal encoding of a class label, and prediction amounts to marginalizing over the set of

5The data and an animation of the learned spatio-temporal features is available at http://

learning.cs.toronto.edu/~rfm/relational
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Figure 14: Implementing a cross-correlation model via an energy model via a cross-
correlation model. Sequence of filters learned from the concatenation of 10 frames of
moving random dots.
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possible mappings. The graphical model is also equivalent to a set of class-conditional
manifolds or probability distributions, but inference is feed-forward. The model ef-
fectively transforms an input into a canonical pose, so that it can be matched with
a template, which itself represents the object in some canonical pose. This can help
explain the similarity, in general, between filters that allow for invariant recognition
and those that allow for selective recognition of transformations. [32] show how “swirly
features” similar to the rotation features in Figures 10 and 11 emerge when learning to
perform rotationally invariant recognition. [3] showed that similar features can emerge
in feed-forward recognition models that contain squaring non-linearities.

Most common object recognition systems are somewhat unrealistic in that they
are trained to recognize single, static views of objects. Real biological systems get
to see “movies” of objects that constantly move around or change their relative pose.
It is interesting to note that a model that computes squares or cross-products could
automatically learn to associate object identity with 3-D structure or with articulated
motion, simply by being trained on multiple, concatenated frames.

Using multiplicative interactions can also be related to analogy making [31]. It can
be argued that analogy making is at the heart of many cognitive phenomena [19]. An
interesting question is, to what degree an analogy-making module could be a useful
building block in models of higher-level cognitive capabilities. Since gated sparse cod-
ing and energy models can be trained with standard, even Hebbian-like, learning (cf.,
Section 2.2), analogy-making does not require any uncommon or unusual machinery
besides multiplicative interactions.

Squaring can be approximated using other non-linearities (see, for example, [51]
for a discussion). A possible research question is, what type of approximations of
computing squares or cross-products may be advantageous computationally and/or
more plausible biologically. Of course, squares could be simulated using a layer of a
feed-forward network with sigmoid activations [9]. However, the abundance of matching
and correspondence tasks in vision may provide some inductive bias in favor of genuine
multiplicative interactions or squares.

Another research question is to what degree deviating from exactly commuting
transformations and exactly orthogonal matrices hampers our ability to learn some-
thing useful. Existing experiments (for example in [30, 31]) suggest that there is some
robustness, but there has been no quantitative analysis. It is conceivable, that one could
pre-process data-points, such that they can be related through orthogonal matrices, in
order to make them amenable to an energy or cross-correlation model. Interestingly, it
seems that one way to do this, would be by transforming data to be high-dimensional
and sparse.
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