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RBM 339 || LINEAR 1.99 igits with background images using linear, modu-
DRBM 1.81 || SQUARED (FACTORED) 2.5 lus and sigmoid activation. Interestingly, the filters
HDRBM 1.28 || MODULUS (FACTORED)  2.04 learned by the different models look qualitatively

RELU (FACTORED) 2.35 very different. The modulus autoencoder seems to
MODULUS 1.76 learn “too much” on MNISTbackImg, while the linear
ngI\I]vI[{ (FACTORED) %gg autoencoder captures mostly global structure, such as

the shape of the digit "2”. On more difficult tasks
TABLE 2 however, the more local structure seems to be crucial

Test-error rates on MNIST for the CSAE Model based
on autoencoders with different activation functions.

CSAE model. It also shows error rates for related
generative/discriminative models that are based on
RBMs [32], including the discriminative RBM (DRBM)
and hybrid DRBM (HDRBM). In this experiment, the
sigmoid activation yields the lowest error rates; the
modulus function also performed well. Somewhat
surprising is the comparably good performance of the
linear activation, which is the simplest model.

We then evaluated the best performing activation
functions on the deep learning benchmark set [31].
The results are shown in Table 3| Again, models with
sigmoid activation performed best, with the linear
model performing comparably on the RECTANGLES,
MNISTsmall and MNISTbacklmg tasks. We found
the MNISTrand data set in this experiment not to
have enough samples per class to learn meaningful
class-dependent filters (by inspection). We therefore
initialized the final model for this data set using filters
from the MNISTsmall data.

DATA SET LINEAR  MODULUS  SIGM SIGM

(FACT.)
RECTANGLES 0.84 4.82 2.72 0.84
RECTANGLESIMG 25.3 24.9 21.45 22.76
CONVEXSHAPES 36.34 23.18 21.52 22.12
MNISTSMALL 3.91 5.17 3.18 3.62
MNISTROT 16.19 13.22 13.11 14.46
MNISTRAND 17.96 17.08 19.52 12.64
MNISTBACKIMG 22.37 23.38 21.87 22.77
MNISTROTIMG 56.15 52.88 54.79 47.14

TABLE 3

Test-error rates on deep learning benchmark for the
basic CSAE model.

Error rates by data type and trainig method
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Fig. 8. Test error rates of factored vs unfactored model.

Some learned filters are shown in Figure [/} The
figure shows features learned on rotated digits and

as reflected in the performance table. Figure [/] also
shows the shared features from the factored models
with sigmoid, modulus and rectifier activations on
MNIST. The overall qualitative differences across the
models persists.

Another important observation from Table [3|is that
factored models are not generally better or worse. It
is task-dependent which kind of model to choose.
This is also illustrated in Figure 8, which compares
the factored versus unfactored variants of the CSAE
classifier.

4.7 Comparison of Model Variations

Finally, we trained and compared a variety of varia-
tions of the CSAE model:

(hinge): Pretrain the filters, then minimize hinge-
loss instead of log-loss (negative log of Eq. for
finetuning.

(learn normalization): Train an autoencoder for
each class separately, then learn only the normal-
izing constants by maximizing the conditional log-
likelihood (Eq. 45).

(energies): Train an autoencoder for each class
separately, then compute for each sample x € R"
a vector of energies (Ei(x),--- ,En(x)), setting the
unknown integration constants to zero, and train a
linear classifier on labeled energy vectors instead of
using the original data [2]. This model performs both
normalization and scaling of the pretrained filters.

In our experiments, the log-loss consistently out-
performed the hinge loss in all tasks. Methods en-
ergies and learn normalization are very fast due to
the small amount of trainable parameters, but they
show weaker performance, as shown in Table {4l For
comparison, the table also lists the performances of
the basic CSAE approach without pre-training.

Two lessons to learn from our experiments are that
(i) generative pre-training of each autoencoder on
data from its own class is crucial to achieve good
performance, (ii) it is not sufficient to adjust merely
normalizing and scaling constants, since backpropa-
gating to the filters themselves significantly improves
overall performance.

4.8 Comparisons with Other Models

Table B shows the classification error rates of CSAE
in comparison to various similar models from the
literature. We followed the same validation proce-
dure as discussed above. In these experiments, to
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Fig. 7. Filters learned using autoencoders with different activation functions.

DATA SET ENERGIES NORMALIZE NO PRETR. CSAE
ONLY
MNISTSMALL 3.39 3.66 5.53 3.38
MNISTROTATION 14.32 20.85 19.95 13.77
CONVEX 44.36 33.9 24.02 21.52
TABLE 4
Classification results for variations of the model.
DATA SVYM RBM DEEP GSM CSAE
RBF SAA3
RECTANGLES 215 471 2.14 0.56 0.84
RECTANGLESIM  24.04 23.69 24.05 2251 2145
CONVEXSHAPES  19.13 19.92 18.41 17.08 21.52
MNISTSMALL 303 3.94 346  3.70 2.61
MNISTROT 11.11 14.69 1030 11.75 11.25
MNISTIMG 2261 1615 23.00 22.07 20.15
MNISTRAND 1458 9.80 11.28 10.48 12.64
MNISTROTIMG 55.18 52.21 51.93 55.16 47.14
TABLE 5

Test-error rates on the deep learning benchmark data
set. CSAE results use validation over factored and
unfactored models with sigmoid hidden units.
RBF-kernel SVM and RBM results taken from [40];
deep net and GSM results from [30].

be consistent with [30], we furthermore normalized
filters to have constant norm during the optimization.
For the GSM model, we report the best performance
of factored vs. unfactored on the test data, which
may introduce a bias in favor of that model. Some
example images with corresponding filters learned by
the ordinary and factored CSAE model are shown in

Figure

5 CONCLUSION

We showed how we may assign an unnormalized
energy surface to an autoencoder by interpreting it
as a dynamical system. Unlike previous approaches
to defining an autoencoder energy, the dynamical sys-
tems perspective is not restricted to sigmoid activation
functions, which make the autoencoder resemble an
RBM, and it is independent of the training criterion.

We also show how multiple class-specific autoen-
coders can be turned into a generative classifier that
yields competitive performance in difficult bench-
mark tasks. Class-specific dynamical systems may
offer an appealing alternative perspective onto clas-
sification than the commonly used linear (eg. logistic
regression-) layer atop a deep neural network. If a

class is represented not just by a weight vector, but
by a dynamic sub-network such as an autoencoder, it
is easy to model highly complex intra-class variability
using a comparably small amount of computational
resources.

Fig. 9. Example images and filters learned by the
CSAE model. (a): Examples of RECTANGLESimg
data; (b)-(c): learned horizontal vs vertical filters. (d):
MNISTrotimg (factored model); (e): RECTANGLES
(factored model).

APPENDIX
A numerically stable computation of log (cosh(ug))
may be derived as follows:

log (cosh(ug)) = log (eXP(Uk) +26xp(—uk)>

= log (exp(uy) + exp(—uy)) — log 2
 log (exp(ur) (1 + exp(~2ux)))

= log(exp(uy)) + log(1 + exp(—2ux))
= uy, + softplus(—2uy)

(51)
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