
MEMISEVIC et al.: LEARNING TO RELATE IMAGES 1

Learning to relate images
Roland Memisevic

Abstract—A fundamental operation in many vision tasks, including motion understanding, stereopsis, visual odometry, or invariant
recognition, is establishing correspondences between images or between images and data from other modalities. Recently, there has
been an increasing interest in learning to infer correspondences from data using relational, spatio-temporal, and bi-linear variants of
deep learning methods. These methods use multiplicative interactions between pixels or between features to represent correlation
patterns across multiple images. In this paper we review the recent work on relational feature learning, and we provide an analysis
of the role that multiplicative interactions play in learning to encode relations. We also discuss how square-pooling and complex cell
models can be viewed as a way to represent multiplicative interactions and thereby as a way to encode relations.

Index Terms—Learning Image Relations, Spatio-temporal Features, Mapping Units, Energy Models, Complex Cells.

✦

1 INTRODUCTION

Correspondence is arguably the most ubiquitous compu-
tational primitive in vision: Motion estimation, action
recognition and tracking amount to establishing corre-
spondences between frames; geometric inference and
stereo vision between multiple views of a scene; invari-
ant recognition between images and invariant templates
in memory; visual odometry between images and esti-
mates of motion; etc. In these and many other tasks, the
relationship between images not the content of a single
image carries the relevant information. Representing
structures within a single image, such as contours, can
be also considered as an instance of a correspondence
problem, namely between areas, or pixels, within an
image. The fact that correspondence is such a common
operation across vision suggests that the task of represent-
ing relations may have to be kept in mind when trying
to build autonomous vision systems and when trying to
understand biological vision.
A lot of progress has been made recently in building

models that learn to solve tasks like object recogni-
tion from independent, static images. One of the rea-
sons for the recent progress is the use of local features,
which help deal with occlusions and small invariances.
A central finding is that the right choice of features
not the choice of high-level classifier or computational
pipeline are what typically makes a system work well.
Interestingly, some of the best performing recognition
models are highly biologically consistent, in that they
are based on features that are learned unsupervised from
data. Besides being biological plausible, feature learning
comes with various benefits, such as helping overcome
tedious engineering, helping adapt to new domains and
allowing for some degree of end-to-end learning in place
of constructing, and then combining, a large number of
modules to solve a task. The fact that tasks like object

• R. Memisevic is with Department of Computer Science and Operations
Research, University of Montreal. E-mail: memisevr@iro.umontreal.ca

recognition can be solved using biologically consistent,
learning based methods raises the question whether
understanding relations can be amenable to learning in
the same way. If so, this may open up the road to learn-
ing based and/or biologically consistent approaches to
a much larger variety of problems than static object
recognition, and perhaps also beyond vision.
In this paper, we review a variety of recent methods

that address correspondence tasks by learning local fea-
tures. We discuss how these methods are fundamentally
based on multiplicative interactions between pixels or
between filter responses. The idea of using multiplicative
interactions in vision was introduced about 30 years ago
under the terms “mapping units” [1] and “dynamic map-
pings” [2]. An illustration of mapping units is shown
in Figure 1: The three variables shown in the figure
interact multiplicatively, and as a result, each variable
(say, zk) can be thought of as dynamically modulating
the connections between other variables in the model (xi

and yj). Likewise, the value of any variable (for example,
yj) can be thought of as depending on the product of
the other variables (xi, zk) [1]. This is in contrast to
common feature learning models like ICA, Restricted
Boltzmann Machines, auto-encoder networks and many
others, all of which are based on bi-partite networks, that
do not involve any three-way multiplicative interactions.
In these models, independent hidden variables interact
with independent observable variables, such that the
value of any variable depends on a weighted sum not
product of the other variables. Closely related to mod-
els of mapping units are energy models (for example,
[3]), which may be thought of as a way to “emulate”
multiplicative interactions by computing squares.
We shall show how both mapping units and energy

models can be viewed as ways to learn and detect
rotations in a set of shared invariant subspaces of a set of
commuting matrices. Our analysis may help understand
why action recognition methods seem to profit from
using squaring non-linearities and it predicts that the use
of squaring non-linearities or multiplicative interactions

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 2

zk

xi

yj

Fig. 1. A mapping unit [1]. The triangle symbolizes
multiplicative interactions between the three variables zk,
xi and yj . The value of any one of the three variables is a
function of the product of the others.

will be essential in any tasks that involve representing
relations.

2 MULTIVIEW FEATURE LEARNING

2.1 Feature learning

We briefly review standard feature learning models in
this section and we discuss relational feature learning in
Section 2.2. We discuss extensions of relational models
and how they relate to complex cells and to energy
models in Section 3.
Practically all standard feature learning models can be

represented by a graphical model like the one shown in
Figure 2 (top). The model is a bi-partite network that
connects a set of unobserved, latent variables zk with a
set of observable variables (for example, pixels) yj . The
weights wjk , which connect pixel yj with hidden unit zk,
are learned from a set of training images {yα}α=1,...,N .
The vector of latent variables z = (zk)k=1...K in Figure
2 (top) is considered to be unobserved, so one has to
infer it, separately for each training case, along with
the model parameters for training. The graphical model
shown in the figure represents how the dependencies
between components yi and zk are parameterized, but
it does not define a model or learning algorithm. A
wide variety of models and learning algorithms can
be parameterized as in the figure, including principal
components analysis (PCA), mixture models, k-means
clustering, or restricted Boltzmann machines [4]. Each
of these can in principle be used as a feature learning
method (see, for example, [5] for a recent quantitative
comparison of several models in a recognition task).
For the hidden variables to extract useful structure

from the images, their capacity needs to be constrained.
The simplest form of constraining it is to let the di-
mensionality K of the hidden variables be smaller than
the dimensionality J of the images. Learning in this
case amounts to performing dimensionality reduction.
It has become increasingly obvious recently that it is
more useful in most applications to use an over-complete
representation, that is, K > J , and to constrain the
capacity of the latent variables instead by forcing the
hidden unit activities to be sparse. In Figure 2, and in

yj

z

wjk

zk

y

zk

yj

wkj

ajk

y

ŷ

ŷj

Fig. 2. Top: Feature learning graphical model. Bottom:
Auto-encoder network.

what follows, we use K < J to symbolize the fact
that z is capacity-constrained, but it should be kept in
mind that capacity can be (and often is) constrained in
other ways. The most common operations performed by
a trained model are: Inference (or “Analysis”): Given
image y, compute z; and Generation (or “Synthesis”):
Invent a latent vector z, then compute y.
A simple way to train this type of model, given train-

ing images, is by minimizing the squared reconstruction
error combined with a sparsity term for the hidden
variables (for example, [6]):

∑

α

∑

j

(yαj −
∑

k

wjkz
α
k)

2 + λ
∑

k

|zαk | (1)

Optimization is with respect to both W =
(wjk)j=1...J,k=1...K and all zα. It is common to alternate
between optimizing W and optimizing all zα. After
training, inference then amounts to minimizing the
same expression wrt. z for test images (with W fixed).
To avoid iterative optimization during inference, one

can eliminate z from Eq. 1 by defining it implicitly
as a function of y. A common choice of function is
z = sigmoid (Ay) where A is a matrix and sigmoid(a) =
(1+ exp(−a))−1 is a squashing non-linearity which con-
fines the values of z to reside in a fixed interval. This

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 3

model is the well-known auto-encoder (for example, [7])
and it is depicted in Figure 2 (bottom). Learning amounts
to minimizing reconstruction error with respect to both
A and W , with gradients that are usually computed
using back-prop. In practice, it is common to define the
auto-encoder in a symmetric fashion by setting A = WT

in order to reduce the number of parameters and for
consistency with other feature learning models.
In practice, it is common to encourage sparse hidden

activities by adding an appropriate sparsity penalty
during training. Alternatively, it has been shown that
a similar effect can be achieved by training the auto-
encoder to de-noise corrupted versions of its inputs [7].
To this end, one feeds in noisy inputs during training
(for example, by adding Gaussian noise to the input, or
by randomly setting individual dimensions of the input
to zero) and minimizes reconstruction error with respect
to the original (not noisy) data. This turns the auto-
encoder into a “de-noising auto-encoder” which shows
properties similar to common sparse coding methods,
but inference, like in a standard auto-encoder, is a simple
feed-forward mapping [7]. In the rest of the paper, we
shall use the term auto-encoder to refer to de-noising
auto-encoders, in other words, we shall always assume
that inputs are corrupted for training.
A technique similar to the auto-encoder is the Re-

stricted Boltzmann machine (RBM) [4], [8]: RBMs define
the joint probability distribution

p(y, z) =
1

Z
exp

(

− E(y, z)
)

, (2)

with E(y, z) = −
∑

jk

wjkyjzk (3)

and Z =
∑

y,z

exp
(

− E(y, z)
)

(4)

From the joint one can derive

p(zk|y) = sigmoid
(

∑

j

wjkyj
)

(5)

p(yj |z) = sigmoid
(

∑

k

wjkzk
)

(6)

This shows that inference, again, amounts to a linear
mapping plus non-linearity. Learning amounts to max-
imizing the average log-probability 1

N

∑

α log p(yα) of
the training data. Since the derivatives with respect to
the parameters are not tractable (due to the normalizing
constant Z in Eq. 2), it is common to use approximate
Gibbs sampling in order to approximate them. This leads
to a Hebbian-like learning rule known as contrastive
divergence training [8]. As with auto-encoders, it is com-
mon to enforce sparsity of the hiddens during training
(for example, [9]).
Another common feature learning method is indepen-

dent components analysis (ICA) (for example, [10]). One
way to train an ICA-model that is complete (that is,
where the dimensionality of z is the same as that of y)
is by encouraging latent responses to be sparse, while

preventing weights from becoming degenerate [10]:

min
W

‖WTy‖1 (7)

s.t. WTW = I (8)

The constraint can be inconvenient in practice, where
it is commonly enforced by repeated orthogonalization
using an eigen decomposition.
For most feature learning models, inference and gen-

eration are variations of the two linear functions:

zk =
∑

j

wjkyj (9)

yj =
∑

k

wjkzk (10)

The set of model parameters W·k for any k are typically
referred to as “features” or “filters” (although a more
appropriate term would be “basis functions”; we shall
use these interchangeably). Practically all methods yield
Gabor-like features when trained on natural images. An
advantage of non-linear models, such as RBMs and auto-
encoders, is that stacking them makes it possible to learn
feature hierarchies (deep learning) [11].
In practice, it is common to add bias terms, such that

inference and generation (Eqs. 9 and 10) are affine not
linear functions, for example, yj =

∑

k wjkzk + bj for
some parameter bj . We shall refrain from adding bias
terms to avoid clutter, noting that, alternatively, one may
think of y and z as being in “homogeneous” coordinates,
containing an extra, constant 1-dimension.
Feature learning is typically performed on small im-

ages patches of size between around 5 × 5 and 50 × 50
pixels. One reason for this is that training and inference
can be computationally demanding. More important,
local features make it possible to deal with images of
different size, and to deal with occlusions and local
object variations. Given a trained model, two common
ways to perform invariant recognition on test images are:
“Bag-Of-Features”: Crop patches around interest

points (such as SIFT or Harris corners), compute latent
representation z for each patch, collapse (add up) all
representations to obtain a single vector zImage, classify
zImage using a standard classifier. There are several varia-
tions of this scheme, including using an extra clustering-
step before collapsing features, or using a histogram-
similarity in place of Euclidean distance for the collapsed
representation.
“Convolutional”: Crop patches from the image along

a regular grid; compute z for each patch; concatenate
all descriptors into a very large vector zImage; classify
zImage using a standard classifier. One can also use
combinations of the two schemes (see, for example [5]).
Local features yield highly competitive performance in

object recognition tasks [5]. In the next section we dis-
cuss recent approaches to extending feature learning to
encode relations between, as opposed to content within,
images.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 4

zk

wijk

(a) (b) (c)

Fig. 3. (a) The diagonal of L := xyT contains evidence for the identity transformation. (b) The secondary diagonals
contain evidence for shifts. (c) A hidden unit that pools over one of the diagonals can detect transformations. Such a
hidden unit would need to compute a sum over products of pixels.

2.2 Learning relations

We now consider the task of learning relations between
two images x and y as illustrated1 in Figure 4, and
we discuss the role of multiplicative interactions when
learning relations.

2.2.1 The need for multiplicative interactions
A naive approach to modeling relations between two
images would be to perform standard feature learning
on the concatenation of the images. Obviously, a hidden
unit in such a model would receive as input the sum
of two projections, one from each image. To detect a
particular transformation, the two receptive fields would
need to be defined, such that one receptive field is the
other modified by the transformation that the hidden
unit is supposed to detect. The net input that the hidden
unit receives would then tend to be high for image pairs
showing the transformation. Unfortunately, however, the
net input would be equally dependent on the images
themselves not just the transformation: If both images
change but not the transformation between them, the
hidden activity would also change. Another way to see
this is by noting that hidden variables act like logical
“OR”-gates, which can only accumulate the information
from their receptive fields [13].
It is straightforward to build a content-independent

detector, however, if we allow for multiplicative interac-
tions between the variables. In particular, consider the
outer product L := xyT between two one-dimensional,
binary images, as shown in Figure 3. Every component
Lij of this matrix constitutes evidence for exactly one
type of transformation (translation, in the example). The
components Lij act like AND-gates, that can detect
coincidences. Since a component Lij is equal to 1 only
when both corresponding pixels are equal to 1, a hidden
unit that pools over multiple components (Figure 3 (c)) is
much less likely to receive spurious activity that depends
on the image content rather than on the transformation.
Note that pooling over the components of L amounts
to computing the correlation of the output image with a
transformed version of the input image. The same would
be true for real-valued images.
When a variable, z, depends linearly on the product of

two other variables, that is, z = a(xy), then both x and

1. Face images are taken from the data-base described in [12]

?

yx

z

Fig. 4. Learning to encode relations: We consider the task
of learning latent variables z that encode the relationship
between images x and y, independently of their content.

y can be thought of as gating the connection between
the other variable and z, because z = (ax)y = (ay)x (cf.
Figure 1). In other words, commutativity allows us to
think of x as modulating the parameter a that connects
z and y (and vice versa).

Based on this observation, a variety of feature learn-
ing models that encode transformations have been sug-
gested (see, for example, [14], [15], [16]). The idea is
to let the pixels in one image gate the parameters of a
feature learning model applied to another image. This is
equivalent to letting hidden variables encode the product
of pixel xi in one image and pixel yj in the other
image. If every pixel in the first image is allowed to
independently gate every parameter in the model of
the other image, then the total number of parameters
is (number of hidden variables) × (number of input-
pixels) × (number of output pixels). It is common to
think of the parameters as populating a 3-way-tensor W
with components wijk .

Figure 5 shows two illustrations of this type of model
(adapted from [16]). The left sub-figure shows a feature
learning model whose parameters are modulated by
another image. Each input pixel of that other image can
be thought of as blending in a slice wi·· of the parameter
tensor. This turns the model into a kind of predictive or
conditional feature learning model [14], [16].

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 5

yj

xi

x y

z

zk

yjxi

zk

z

x y

Fig. 5. Relating images using multiplicative interactions.
Two views of the same model. Left: Input-modulated
feature learning, Right: Mixture of warps.

Figure 5 (right) shows an alternative visualization of
the same type of model, where each hidden variable
can blend in a slice w··k of the parameter tensor. Each
slice, in turn, is a matrix connecting an “input” pixel
from image x to an “output”-pixel from image y. We
can think of this matrix as performing linear regression
in the space of stacked gray-value intensities. A linear
transformation in “pixel-space” is commonly known as
a “warp”. Although linear in pixel-space, a warp can be
a highly non-linear transformation in image coordinates.
Note also that a warp has a very large number of param-
eters in comparison to an affine image transformation.
The model in Figure 5 (right) may be thought of as
defining a mixture of warps.
In both cases, hidden variables take on the roles of

dynamic mapping units [1], [2] which encode the rela-
tionship not the content of the images. Each unit in the
model can gate connections between other variables in
the model. We shall refer to this type of model as “gated
feature learning”, “cross-correlation”, or “multiview fea-
ture learning” model in the following.
Like in a standard feature learning model one needs to

include biases in practice. The set of model parameters
thus consists of the three-way parameters wijk , as well
as of single-node parameters wi, wj and wk. One could
also include “higher-order-biases” [16] like wik , which
connect two groups of variables, but it is not common
to do so. Like before, we shall drop all bias terms in what
follows in order to avoid clutter. Both simple biases and
higher-order biases can be implemented by introducing
appropriate constant-1 dimensions to the images or the
hidden variables.

2.3 Inference

The graphical model for gated feature learning is tri-
partite. That of a standard feature learning model is bi-
partite. As a result, inference can be performed in almost
the same way as in a standard feature learning model,
whenever two out of three groups of variables have been
observed, as we show now.

Consider the task of inferring z, given x and y. Recall
that for a standard feature learning model we have:
zk =

∑

j wjkyj (up to component-wise non-linearities
like the sigmoid). Formally, we may think of the gated
feature learning model as turning the weights into a
linear function of x:

wjk(x) =
∑

i

wijkxi (11)

so that the inference equation becomes

zk =
∑

j

wjk(x)yj =
∑

j

(

∑

i

wijkxi

)

yj =
∑

ij

wijkxiyj

(12)
which amounts to computing, for each hidden zk, a
quadratic form in x and y. The quadratic form is defined
by the weight tensor w··k. Thus, we can think of inference
in a gated feature learning model either as computing
a (quadratic) function of two images, or as standard
inference for a single image, y, where parameters are
linearly dependent on another image, x. We shall refer
to the latter as “predictive coding”, because we can think
of the model as predicting y from x via z. The fact
that inference may be interpreted in multiple ways is
common in models with bi-linear dependencies [17].
Note that Eq. 12 is symmetric in x and y. We could

therefore, in principle, switch their roles in Eqs. 11 and
12 and define the linear parameters (Eq. 11) as a function
of y rather than x. During training, however, it has been
common to drop this symmetry and to declare one of the
two images as the gating “input” and the other as the
“output”, as we shall show.
The meaning of the hidden variables differs from

that in standard feature learning models despite the
similarity of inference: In standard feature learning, z
constitutes a representation of the input image, in gated
feature learning z represents the transformation that takes
x to y.
Inferring y, given x and z yields the analogous ex-

pression:

yj =
∑

k

wjk(x)zk =
∑

k

(

∑

i

wijkxi

)

zk =
∑

ik

wijkxizk

(13)
which again amounts to computing a quadratic form.
The meaning of y is now “x transformed according
to the known transformation z”. Likewise, we could
compute x given z and y using an analogous equation,
but, again, this would not be common if the model was
trained asymmetrically (cf., Section 2.4.1).
It is important to note that for any given transforma-

tion z, y is a linear function of x, so it can be written

y = L(z)x (14)

From Eq. 13 it follows that the entries of matrix L(z) are
given by

Lij(z) =
∑

k

wijkzk (15)

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 6

When x and y are images, the linear function is a warp.
So the hidden variables can be thought of as composing
a warp from “basis warps” w··k, in exactly the same
way that feature learning models can be thought of as
composing an image from basis images (features) w·k

(cf., Eq 10). And whereas inferring a component zk in a
standard feature learning model amounts to computing
the inner product between image y and feature w·k, for
gated feature learning it amounts to computing the inner
product between xyT and the basis warp w··k (cf., Eqs. 9
and 12).
Besides computing hidden unit activities or generating

fantasy data, a third common operation in many feature
learning models is to compute a confidence value for
new input data, which quantifies how well that data
can be represented by the model. For this number to
be useful, it has to be “calibrated”, which is typically
achieved by using a probabilistic model. In contrast to
standard feature learning, training a probabilistic gated
feature learning model can be slightly more complicated,
because of the dependencies between x and y condi-
tioned on z. We shall discuss this issue in more detail in
Section 2.4.2.

2.4 Learning
2.4.1 Predictive training
The training data for a multiview feature learning model
consists of pairs of data-points (xα,yα). Training is
similar to standard feature learning, but there are some
important differences. In particular, recall that the gated
model may be viewed as a feature learning model whose
input is the vectorized outer product xyT. Standard
learning criteria, such as squared reconstruction error are
obviously not appropriate for the outer product.
It is, however, possible to use squared error for train-

ing, albeit not on the products. To this end, consider the
perspective from predictive coding, where the parame-
ters of a feature learning model on y are modulated by
an input image x. This suggests deriving the learning
criterion from the task of predicting y from x [15],
[14], [16]. We shall first discuss this learning approach
from the “inference-free” perspective (Eq. 1), and we
shall subsequently discuss how using the linear inference
equations (cf., Section 2.1) can simplify learning in direct
analogy to standard feature learning.
The modulation of parameters in Eq. 11 is case-

dependent, that is, each input example leads to a different
model for y. Learning can therefore be viewed as feature
learning with case-dependent weights. In analogy to
Eq. 1, we can write the reconstruction error that data-
case (xα,yα) contributes as

∑

j

(

yαj −
∑

ik

wijkx
α
i z

α
k)

2 (16)

By using Eq. 11 and by adding a sparsity penalty for z,
we can write the cost over the whole data-set also as

∑

α

∑

j

(

yαj −
∑

k

wjk(x
α)zαk)

2 + λ
∑

k

|zαk | (17)

xi
zk

yj y

ŷj ŷ

x
z

Fig. 6. A gated auto-encoder is an auto-encoder that
learns to represent an image, y, using parameters that
are modulated by another image, x. This makes it possi-
ble to learn relationships between x and y with gradient-
based learning and back-prop.

which highlights the similarity with Eq. 1. Differentiating
Eq. 16 with respect to wijk is the same as in a standard
feature learning model. In particular, the model is still
linear wrt. the parameters. Predictive learning is there-
fore possible with gradient-based optimization similar to
standard feature learning (cf. Section 2.1).
However, in analogy to standard feature learning, it

can be useful to use a feed-forward inference function
to simplify inference and learning. A simple way to
eliminate the hidden variables is by using an encoder-
network as defined in Eq. 12 (possibly followed by a
sigmoid nonlinearity) and by using a set of decoder
parameters aijk to compute reconstructions as defined
in Eq. 13. Like in standard feature learning one may tie
decoder and encoder parameters by setting aijk = wijk .
This type of model is known as gated autoencoder [18],

[19], and it is depicted in Figure 6. Learning is similar to
learning a standard auto-encoder. This becomes obvious
by plugging Eq. 12 into Eq. 16 and by noting that x is
fixed in each training example. It is also possible to add
multiple layers and to apply non-linearities to the hidden
layers (in which case, of course, the derivatives will no
longer be linear wrt. the parameters). Conditioning on
x always ensures that the model is a directed acyclic
graph, so one can use standard back-prop to compute
derivatives.
As a second example of a gated feature learning

model, we obtain the gated Boltzmann machine (GBM) by
changing the energy function into the three-way energy
[16]:

E(x,y, z) = −
∑

ijk

wijkxiyjzk (18)

Exponentiating and normalizing yields the conditional
probability over image y given x:

p(y, z|x) =
1

Z(x)
exp

(

− E(x,y, z)
)

, (19)

Z(x) =
∑

y,z

exp
(

− E(x,y, z)
)

(20)

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 7

Note that the normalization is over y and z only, which
ensures that we obtain a conditional model of the output
image y. While it is possible to define a joint model
over both images, this makes training more difficult (cf.,
Section 2.4.2).
Like in a standard RBM, maximum likelihood and

contrastive divergence training involve sampling z and
y. In the gated Boltzmann machine, samples are drawn
from the conditional distributions p(y|z,x) and p(z|y,x).
Training the gated Boltzmann machine is like training
a standard RBM, if we again utilize the fact that every
input training pair defines a standard RBM whose pa-
rameters are defined as a (case-dependent) function of
the input. For both the GBM and the gated autoencoder,
one can include weight-decay terms and penalty terms
to encourage hidden variable responses to be sparse.

2.4.2 Relational training

Modeling the joint distribution over two images, rather
than the conditional distribution of one image given the
other, can make it possible to perform image matching,
by allowing us to quantify how compatible any two
images are under to the trained model [20].
Formally, modeling the joint amounts simply to chang-

ing the normalization constant of the GBM to Z =
∑

x,y,z exp
(

− E(x,y, z)
)

(cf. Eq. 20). Learning is more
complicated as a result, however, because the view of
input-dependent parameters no longer holds. Susskind
et al. [20] show that it is possible to use a “three-
way” version of contrastive divergence learning, where
each iteration involves sampling x from p(x|h,y) and
sampling y from p(y|h,x).
Another potential advantage of learning a symmetric

model is that it allows us to model higher-order features
for a single image, in other words, features that encode
products of pixel intensities within the image. See, for
example, [21] who train second-order features by using
a joint version of a GBM with x = y. In contrast to [20],
they use hybrid Monte Carlo for learning.
Alternatively, a gated auto-encoder can be turned into

a symmetric model by defining the cost as the sum of
two symmetric reconstruction costs:
∑

j

(

yαj −
∑

ik

wijkx
α
i z

α
k)

2+
∑

i

(

xα
i −

∑

jk

wijky
α
j z

α
k)

2 (21)

This makes it possible to learn higher-order features
in a non-probabilistic way using gradient descent [19].
For further approaches to learning higher-order within-
image features see [22] and [23].

2.5 Toy example: Motion extraction and analogy
making

An example of a gated Boltzmann machine applied to a
motion inference task is shown in Figure 7. We trained
a GBM on binary image pairs containing random dots,
such that the output image y is a translated copy of the
input image x. Some example image pairs are shown in

the two left-most columns of Figure 7 (a). The center
column of Figure 7 (a) visualizes the corresponding
inferred transformations as vector fields. To generate
the vector-field, we first infer the linear warp from
an image pair using Eqs. 12 and 15. Subsequently, we
find for each input-pixel the output-pixel to which it is
most strongly connected according to the inferred linear
transformation, and we draw an arrow pointing from the
input pixel to the output pixel. The plot shows that up to
unpredictable edge effects, the model can correctly infer
the translations inherent in the image pairs after being
trained on shifts.
The two right-most columns in Figure 7 show how the

inferred transformation can be applied to new images
not seen during training by analogy. To this end, we apply
the inferred linear transformation to the input test image
using Eq. 13.
Figure 7 (b) shows a variation of this task, where the

transformations are “split-screen” translations, that is,
translations which are independent in the top half vs.
the bottom half of the image. This example demonstrates
how the model is able to decompose transformations
into independent constituting transformations. This abil-
ity of the model is crucial for encoding natural videos,
which contain a multitude of transformations as a result
of a combination of many local transformations. We shall
discuss the learning of natural video data in more details
below.

2.6 A brief history of gating

Shortly after mapping units were introduced in 1981,
energy models [3] received a lot of attention. Energy
models apply squaring non-linearities to features and have
therefore also been referred to as “square-pooling” mod-
els. Energy models have also been common as models
of complex cells [10].
Since the square of a multiview (for example, binoc-

ular) feature can be shown to implicitly encode cross-
products between simple (monocular) features, energy
models are closely related to multiplicative feature learn-
ing models. In fact, energy models can be used to
implement mapping units and vice versa. We discuss
this relationship in detail in Sections 3 and 4. Early work
on energy models suggested these as a way to encode
motion by relating time frames in a video [3], and to
perform stereo vision by relating images from different
viewpoints [24], [25], [26]. An approach to learning-
based disparity estimation was introduced later by [27].
In the early work on energy models, hard-wired Gabor

features were used as the linear receptive fields instead
of features that are learned from data [26], [25], [28]. The
focus on Gabor features has somewhat biased the analy-
sis of energy models to focus on the Fourier-spectrum as
the main object of interest (see, for example, [28], [26]).
As we shall discuss in Section 3, Fourier-components
arise just as the special case of one transformation class,
namely translation, and many important properties of
these models apply also to other transformation classes.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 8

(a) (b)

Fig. 7. Inferring transformations from test data. (a) Coherent motion across the whole image. (b) “Factorial motion”
that is independent in different image regions. In both plots, the meaning of the five columns is as follows (left-to-right):
Random test images x, random test images y, inferred flow-field, new test-image x̂, inferred output ŷ.

Energy models based on Gabor features have also
been applied to a single image. In this case they encode
features independently of the Fourier-phase of the input
and as a result, their responses are invariant to small
translations as well as to contrast variations of the input
(see, for example, [10]).
Shortly after energy and cross-correlation models

emerged, there has been some interest in learning in-
variances with higher-order neural networks, which are
neural networks trained on polynomial basis expansions
of their inputs [29]. Higher-order neural networks can
be composed of computational units that compute sums
of products. These units are sometimes referred to as
“Sigma-Pi-units” [30] (where “Pi” stands for product
and “Sigma” for sum). At the same time, multiplicative
interactions have been explored also as an approach
to building distributed representations of symbolic data
(for example, [31], [32]).
In 1995, Kohonen introduced the “Adaptive Subspace

Self-Organizing Map” (ASSOM) [33], which computes
sums over squared filter responses to represent data.
Like the energy model, the ASSOM is based on the idea
that the sum of squared responses is invariant to various
properties of its inputs. In contrast to the early energy
models, the ASSOM is trained from data. Inspired by the
ASSOM, “Independent Subspace Analysis” (ISA) was
introduced by [23], who place the idea in the context
of more conventional feature learning models. Shortly
thereafter, extensions of this work showed how the
grouping of squared filter responses can be used to learn
topographic feature maps [34], [35].
In a parallel line of work, bi-linear models have been

proposed at approximately the same time as an approach

to learning in the presence of multiplicative interactions
[17]. The early work on bi-linear models used these
as global models trained on whole images rather than
using local receptive fields. In contrast to more recent
approaches to learning with multiplicative interactions,
training involved filling a two-dimensional grid with
data that shows two types of variability (referred to as
“style” and “content”). The purpose of bi-linear models
is then to untangle the two degrees of freedom in the
data. More recent work does not make this distinction,
and the purpose of multiplicative hidden variables is
merely to capture the multiple ways in which two im-
ages can be related. The work by [15], [14] or [16], for
example, shows how multiplicative interactions make it
possible to model the multitude of relationships between
frames in natural videos, or between artificially trans-
formed images [16]. An earlier multiplicative interaction
model, that is also related to bi-linear models, is the
“routing-circuit” [36].

Multiplicative interactions have also been used to
model structure within static images, which can be
thought of as modeling higher-order relations, and, in
particular, pair-wise products, between pixel intensities
(for example, [22], [23], [37], [38], [39], [40]).

3 FACTORIZATION AND ENERGY MODELS

In the following, we discuss the close relationship be-
tween gated feature learning models and energy models.
To this end, we first describe how parameter factoriza-
tion makes it possible to pre-process input images and
thereby reduce the number of parameters.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 9

3.1 Factorizing the gating parameters

The number of gating parameters is roughly cubic in
the number of pixels, if we assume that the number
of constituting transformations is about the same as the
number of pixels. It can easily be more for highly over-
complete hiddens. One way to reduce that number is by
factorizing the parameter tensor W into three matrices,
such that each component wijk is given by a “three-way
inner product” [41]:

wijk =

F
∑

f=1

wx
ifw

y
jfw

z
kf (22)

Here, F is a number of hidden “factors”, which, like the
number K of hidden units, has to be chosen by hand
or by cross-validation. The matrices wx, wy and wz are
I × F , J × F and K × F , respectively.
An illustration of this factorization is given in Figure

8 (top). It is interesting to note that, under this factor-
ization, the activity of output-variable yj , by using the
distributive law, can be written:

yj =
∑

ik

wijkxizk =
∑

ik

(
∑

f

wx
ifw

y
jfw

z
kf)xizk

=
∑

f

w
y
jf (

∑

i

wx
ifxi)(

∑

k

wz
kf zk)

(23)

Similarly, for zk we have

zk =
∑

ij

wijkxiyj =
∑

ij

(
∑

f

wx
ifw

y
jfw

z
kf)xiyj

=
∑

f

wz
kf (

∑

i

wx
ifxi)(

∑

j

w
y
jfyj)

(24)

One can obtain a similar expression for the energy in
a gated Boltzmann machine. Eq. 24 shows that factor-
ization can be viewed as filter matching: For inference,
each group of variables x, y and z are projected onto
linear basis functions which are subsequently multiplied,
as illustrated in Figure 8 (bottom).
It is important to note that the way factorization

reduces parameters is not necessarily by projecting data
into a lower-dimensional space before computing the
multiplicative interactions – a claim that can be found
frequently in the literature. In fact, frequently, F is cho-
sen to be larger than I and/or J . The way that factoriza-
tion reduces the number of parameters is by restricting
the three-way connectivity: That is, with factorization, the
number of pair-wise products is equal to the number of
factors rather than equal to the number of pixels squared.
Learning then amounts to finding basis functions that
can deal with this restriction optimally.
All gated feature learning models can be subjected

to this factorization. Training is similar to training an
unfactored model, which can be seen by using the chain
rule and differentiating Eq. 22. An example of a factored
gated auto-encoder is described in [19]. Virtually all
factored models that were introduced use the restriction
of single multiplicative interactions (Eq. 22). An open

w
y
jf

wx
if

wz
kf

wijk

x y

xi yj

z

zk

Fig. 8. Top: Factorizing the parameter tensor. Bottom:
Interpreting factorization as filter matching.

research question is to what degree a less restrictive
connectivity – equivalently, using a non-diagonal core-
tensor in the factorization – would be advantageous.
Factored models have empirically been shown to

learn filter-pairs that optimally represent transformation
classes, such as Fourier-components for translations and
a polar variant of Fourier-components for rotations [41].
In contrast to the dictionaries learned with standard
feature learning methods, the filters always come in
pairs. These may be referred to as “predictionary” as
they are often learned using predictive training (cf.,
Section 2.4).
Figures 9 and 10 show examples of predictionaries

learned from translations, affine transformations, split-
screen translations, which are independent translations
in the top and bottom half of the image, and natural
video. For training the filters in the top rows and on
the bottom right, we used data-sets described in [41]
and [19] and the model described in [19]. The filters
resemble receptive fields found in various cells in visual
cortex [42]. To obtain split-screen filters (bottom left)
we generated a data-set of split-screen translations and
trained the model described in [41]. In Section 4, we
provide an analysis that sheds some light onto why the
filters take on this form.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 10

Fig. 9. Input filters learned from various types of transformation. Top-left: Translation, Top-right: Rotation, Bottom-
left: split-screen translation, Bottom-right: Natural videos. See figure 10 on the next page for corresponding output
filters.

In practice, it is common to utilize a set of tricks
to improve stability and efficiency of learning. It is
common, for example, to normalize output filter matrices
wx and wy during learning, such that all filters wx

·f and
w

y
·f grow slowly and maintain roughly the same length

as learning progresses. This is typically achieved by
re-normalizing filters after each parameter update (see,
for example, [20], [39]). It is also common to connect
hidden units locally to the factors, rather than using full
connectivity. A slightly more complicated approach is
to let all hidden units populate a virtual “grid” in a
low-dimensional space (for example, 2-D) and to connect
hidden units to factors, such that neighboring hidden
units are connected to the same or to overlapping sets
of factors. This typically leads to topographic organiza-
tion of filters, an example of which is the set of shift
filters shown in Figures 9 and 10. This approach is also
common for learning energy models on still images (for
example, [34], [35]). Finally, it is common to train the
models using image patches that are DC centered and
contrast normalized, and usually also whitened. For a
quantitative comparisons of several variations of gated
feature learning models see [43].

3.2 Energy models

Energy models [3], [24] are an alternative approach to
modeling image motion and disparities, and they have
been deployed monocularly, too. A main application of
energy models has been the detection of small trans-
lational motion in image pairs. This makes them suit-
able as biologically plausible mechanisms of both local
motion estimation and binocular disparity estimation.
Energy models detect motion by projecting two images
onto two phase-shifted Gabor functions each (for a total
of four basis function responses). The two responses
across the images are added and squared. The sum of
these two squared, spatio-temporal responses then yields
the response of the energy model.

The rationale behind the energy model is that, since
each within-image Gabor filter pair can be thought of as
a localized spatio-temporal Fourier component, the sum
of the squared components yields an estimate of spectral
energy, which is not dependent of the phase – and thus
to some degree not dependent on the content – of the
input images. The two filters within each image need to
be sine/cosine pairs, which is commonly referred to as
being “in quadrature”.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 11

Fig. 10. Output filters learned from various types of transformation. Top-left: Translation, Top-right: Rotation, Bottom-
left: split-screen translation, Bottom-right: Natural videos. See figure 9 on the previous page for corresponding input
filters.

A detector of local shift can be built by using a set of
energy models tuned to different frequencies. To turn a
set of energy models into an estimate of local translation,
one can, for example, read off the shift from the model
with the strongest response [25], [26], or use pooling to
get a more stable estimate [28].

In their early approach to learning energy models from
training data, Hyvarinen and Hoyer [23] suggest extend-
ing a standard feature learning model by introducing
an elementwise squaring operation and adding a linear
pooling layer. For learning, they suggest adapting ICA
by forcing latent variable responses (which are now
sums of squared basis function responses) to be sparse,
while keeping the filters orthogonal to avoid degenerate
solutions. This approach is known as “Independent Sub-
space Analysis” (ISA) [23]. ISA was introduced initially
to model single images not pairs, but it is possible to
apply it to the concatenation of multiple images, like the
early versions of the energy model ([3], [24]). In contrast
to the early models, it is common to use ISA models that
pool over more than two filters, and pooling weights can
be learned along with the filters, instead of being fixed
to one. Figure 11 shows an illustration of ISA applied

to an image pair. As the figure shows, the model can
be viewed as a two-layer network, with a hidden layer
that uses an elementwise squaring nonlinearity. The first
hidden layer of an energy model model is closely to the
latent “factors” of a factored GBM as we shall show.
Both ISA and factored gated Boltzmann machines were
recently shown independently to yield state-of-the-art
performance in various motion recognition tasks [44],
[45].

3.3 Relationship between gated feature learning and
energy models

Learning energy models, such as ISA, on the concatena-
tion of two inputs x and y is closely related to learning
gated feature learning models. Let wx

·f (wy
·f) denote the

set of weights connecting part x (y) of the concatenated
input with factor f (cf. Figure 11). The activity of hidden

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 12

zk

z

wz
kf

x y

xi yj

w
y
jfwx

if

(·)2

Fig. 11. Illustration of Independent Subspace Analysis
(ISA) applied to an image pair (x,y).

unit zk in the energy model is given by

zk =
∑

f

wz
kf

(

wx
·f

T
x+ w

y
·f

T
y
)2

=
∑

f

wz
kf

(

2(wx
·f

T
x)(wy

·f

T
y) + (wx

·f
T
x)2 + (wy

·f

T
y)2

)

(25)

Up to the quadratic terms in Eq. 25, hidden unit activities
are the same as in a gated feature learning model (cf.,
Eq. 24). As we shall discuss in detail below, the quadratic
terms do not have a significant effect on the meaning of
the hidden units. The hidden units in an energy model
may therefore be interpreted as a way to implement
mapping units which encode relations. See also [28], for
a discussion of this relationship in the context of the
traditional energy models.

4 RELATIONAL CODES AND SIMULTANEOUS
EIGENSPACES

We now show that hidden variables learn to detect
subspace-rotations when they are trained on trans-
formed image pairs. In Section 2.3 (Eq. 14) we showed
that transformation codes z represent linear transforma-
tions, L, that is y = Lx. We shall restrict our attention
in the following to transformations that are orthogonal,
that is, LTL = LLT = I , where I is the identity matrix. In
other words, L−1 = LT. Note that practically all relevant
spatial transformations, like translation, rotation or local
shifts, can be expressed approximately as an orthogonal
warp, because orthogonal transformations subsume, in
particular, all permutations (“shuffling pixels”).
An important fact about orthogonal matrices is that

the eigen-decomposition L = UDUT is complex, where
eigenvalues (diagonal of D) have absolute value 1 [46].

Multiplying by a complex number with absolute value
1 amounts to performing a rotation in the complex
plane, as illustrated in Figure 12 (left). Each eigenspace
associated with L is also referred to as invariant subspace
of L (as the application of L will keep the eigenvectors
within the subspace).
Applying an orthogonal warp is thus equivalent to (i)

projecting the image onto filter pairs (the real and imagi-
nary parts of each eigenvector), (ii) performing a rotation
within each invariant subspace, and (iii) projecting back
into the image-space. In other words, we can decompose
an orthogonal transformation into a set of independent,
2-dimensional rotations. The most well-known examples
are translations: A 1D-translation matrix contains ones
along one of its secondary diagonals, and it is zero
elsewhere.2 The eigenvectors of this matrix are Fourier-
components [47], and the rotation in each invariant
subspace amounts to a phase-shift of the corresponding
Fourier-feature. This leaves the norm of the projections
onto the Fourier-components (the power spectrum of
the signal) constant, which is a well known property of
translation.
It is interesting to note that the imaginary and real

parts of the eigenvectors of a translation matrix corre-
spond to sine and cosine features, respectively, reflecting
the fact that Fourier components naturally come in pairs.
These are commonly referred to as quadrature pairs in
the literature. In the special case of Gabor features, the
importance of quadrature pairs is that they allow us to
detect translations independently of the local content
of the images [26], [28]. However, the property that
eigenvectors come in pairs is not specific to translations.
It is shared by all transformations that can be represented
by an orthogonal matrix, so that they can be composed
from 2-dimensional rotations. Bethge et al. [48] use the
term “generalized quadrature pair” to refer to the eigen-
features of these transformations.

4.1 Commuting warps share eigenspaces

An observation that is central to our analysis is that
eigenspaces can be shared among transformations. When
eigenspaces are shared, then the only way in which
two transformations differ, is in the angles of rotation
within the eigenspaces. That way, shared eigenspaces
allow us to represent multiple transformations with a single
set of features. An example of a shared eigenspace is the
Fourier-basis, which is shared among translations. This
well-known observation follows from the fact that the
set of all circulant matrices (which are 1-D translation-
matrices) of the same size have the Fourier-basis as
eigen-basis [47]. However, eigenspaces can be shared
between other transformations. An obvious generaliza-
tion is local translation, which may be considered the
constituting transformations of natural videos. Another,
less obvious generalization is spatial rotation. Formally,

2. To be exactly orthogonal it has to contain an additional one in
another place, so that it performs a rotation with wrap-around.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 13

vRT{x,y}
φx

φy

vIT{x,y}

vθ
R

T
x

vR
Ty

vθ
I

T
x

vI
Ty

φy

φx + θ

Fig. 12. Left: Inference in a gated feature learning model is equivalent to extracting rotation angles from two-
dimensional invariant subspaces. Right: By absorbing eigenvalues into the eigenvectors, a mapping unit can learn
to detect rotations by a particular angle (its preferred angle): the inner product between the projections of the two
images x and y in the figure will be maximal when φy = φx + θ, that is, when the rotation that the detector applies to
x has the effect of aligning x with y.

two matrices A,B share eigenvectors if they commute,
that is if AB = BA holds [46].3 As an example, consider
translations: translating an image by a pixels to the left
and then by b pixels upwards yields the same result as
first translating it upwards and then to the left, showing
that translations commute.
The importance of commuting transformations for our

analysis is that, since these transformations share an
eigen-basis, they differ only wrt. the angle of rotation
in the joint eigenspace. As a result, we may extract
a particular transformation from a given image pair
(x,y) by recovering the angles of rotation between the
projections of x and y onto the eigenspaces. To this end,
consider the real and complex parts vR and vI of some
eigen-feature v. That is, v = vR + ivI, where i =

√
−1.

The real and imaginary coordinates of the projection of x
onto the invariant subspace associated with v are given
by vT

Rx and vT
I x, respectively. For the output image, they

are vT
Ry and vT

I y.
Let φx and φy denote the angles of the projections of

x and y with the real axis in the complex plane. If we
normalize the projections to have unit norm, then the
cosine of the angle between the projections, φy−φx, may
be written

cos(φy − φx) = cosφy cosφx + sinφy sinφx

by trigonometric identity. This is equivalent to comput-
ing the inner product between two normalized projec-
tions (cf. Figure 12 (left)). In other words, to estimate the
(cosine of) the angle of rotation between the projections
of x and y, we need to sum over the product of two filter
responses.

3. This can be seen by considering any two matrices A and B with
AB = BA and with λ, v an eigenvalue/eigenvector pair of B with
multiplicity one. It holds that BAv = ABv = λAv. Therefore, Av is
also an eigenvector of B with the same eigenvalue.

Note, however, that normalizing each projection to
1 amounts to dividing by the sum of squared filter
responses, an operation that is highly unstable if a
projection is close to zero. This will be the case, whenever
one of the images is almost orthogonal to the invariant
subspace. This, in turn, means that the rotation angle
cannot be recovered from the given image, because the
image is too close to the axis of rotation. One may
view this as a subspace-generalization of the well-known
aperture problem beyond translation, to the set of orthog-
onal transformations. Normalization would ignore this
problem and provide the illusion of a recovered angle
even when the aperture problem makes the detection
of the transformation component impossible. In the next
section we discuss how gated feature learning overcomes
this problem, by allowing us to treat the problem as a
rotation detection task instead.

4.2 Representing transformations by detecting sub-
space rotations

For each eigenvector, v, and rotation angle, θ, define the
complex filter

vθ = exp(iθ)v

which represents a projection and simultaneous rotation
by θ. This amounts to absorbing the rotation, as given
by some eigenvalue, into the eigenvector itself, allowing
us to define a subspace rotation-detector with preferred
angle θ as follows:

rθ = (vT
Ry)(v

θ
R

T
x) + (vT

I y)(v
θ
I

T
x) (26)

Like before, if projections would be normalized to length
1, we would have

rθ = cosφy cos(φx+θ)+sinφy sin(φx+θ) = cos(φy−φx−θ),

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 14

which would be maximal whenever φy − φx = θ, thus
when the observed angle of rotation, φy −φx, is equal to
the preferred angle of rotation, θ. An illustration of such
a rotation detector is given in Figure 12 (right).
Although normalizing projections is not a good idea

due to the subspace aperture problem, normalization
turns out not to be necessary, if the task is defined as a
detection task. In particular, note that if features and data
are contrast normalized, then the subspace inner product
(Eq. 26) will yield a strong response if the following two
conditions are met:

• the angle between the projections of x and y

matches the detector’s preferred angle, θ,
• the projections of the images onto the invariant sub-
space are large enough (in other words, the images
are sufficiently well-aligned with the subspace).

The second condition implies that the output of the
detector defined in Eq. 26 factors in not only the presence
of a transformation but also its ability to discern it.
In other words, when the detector fires, we know its
preferred transformation is present. When it does not
fire, then either the transformation is not present, or it is
present but invisible to the detector because the images
are not well-aligned with its invariant subspace.
However, when a transformation that is present is

invisible to a detector, then a different detector defined
over a different invariant subspace may still be able to
observe the transformation. Thus, a population of detec-
tors can yield a robust representation of transformations.
As an an example, consider two images x and y related
through vertical translation. The invariant subspaces of
translations are spanned by Fourier components. Vertical
translation, in particular, is represented by phase-shifts
of horizontal Fourier components. Now consider a ro-
tation detector defined in a horizontal Fourier compo-
nent of a particular frequency. If the images happen to
lack this horizontal frequency, then the detector will be
silent, even if its transformation is present. Since vertical
translation, however, is detectable not only in one but in
many subspaces (such as in the other horizontal Fourier
components of different frequencies), detectors defined
over those subspaces may still be able to detect the
transformation. In fact, if we assume that detectors for
all subspaces (horizontal frequencies) are present, then
the only way that no detector fires, would be if the
transformation is not present.
One way to combine the information from multiple

detectors into a single representation of a transformation
is by pooling, because a sum (or weighted sum) over
multiple detectors will be able to represent the event
that any of the detectors fires. That way, a weighted
sum over rotation detectors can yield a representation
of transformations that is not dependent of the content
of the images (such as the frequency content in the case
of translation).
Formally, if we stack imaginary and real eigenvector

pairs for the input and output images, v and vθ, column-
wise in matrices V and U , respectively, we may define

the representation t of a transformation, given two im-
ages x and y, as:

t = WTP
(

UTx
)

·
(

V Ty
)

(27)

where W is an appropriate “across-subspace” pooling
matrix, and P is a band-diagonal “within-subspace”
pooling matrix that defines the two-dimensional inner
product in Equation 26.4

Note that Eq. 27 takes exactly the same form as
inference in a factored gated feature learning model (cf.,
Eq. 24), if we absorb the within-subspace pooling matrix
P into W .
This shows that we may interpret mapping units in

a gated feature learning model as a way to encode
transformations by representing rotation angles in invariant
subspaces.

4.3 Learning as simultaneous diagonalization

The interpretation of mapping units as encodings of
rotations relies on several assumptions:

• Images x and y are contrast-normalized.
• The columns of both U and V come in pairs, each of
which spans a two-dimensional invariant subspace
of a transformation class. (Formally, the pairs rep-
resent the real and imaginary components of some
complex eigen-vector of the transformation class.).

• Corresponding filter pairs in U and V are related
through rotations only. In other words, for each filter
pair vf in V there exists θ such that the correspond-
ing filter pair in U can be written vθ

f = exp(iθ)vf .
While it would be possible in principle to define filter

pairs with these properties by hand in order to represent
a given transformation class, model parameters can be
learned from image pairs as we discussed in Sections 2
and 3. In particular, if we interpret the inference equa-
tions in a factored model (Eqs. 24, 27) as constraints
under which we learn to represent the training image
pairs, then it becomes clear that learning may be viewed
as a way to find appropriate sets of filter pairs that are
able to detect the rotations.
Learning a factored gated feature learning model,

thus, has the effect of performing an approximate si-
multaneous diagonalization of a set of transformations. As
we showed in Section 3, training on translations, for
example, yields Fourier features, which indeed repre-
sent the invariant subspaces of translation. In addition
to finding representations of the invariant subspaces,
learning involves finding an appropriate across-subspace
pooling matrix W .
In [49] it is shown empirically that, when a data-set

contains more than one transformation class, learning
can involve partitioning the set of observed transfor-
mations into commutative subsets and simultaneously
diagonalizing each subset.

4. To this end, P has to contain exactly 2 ones along each row and
has to be zero elsewhere.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 15

It is important to note that, although complex arith-
metic provides a convenient notational framework in the
analysis, complex numbers are not typically used in any
actual implementations. Learning yields filters which,
implicitly, span the two-dimensional invariant subspaces
of a transformation class. However, these subspaces do
not need to be predefined as the real/imaginary compo-
nents of a complex vector, nor do filter pairs need to be
exactly in quadrature, as long as the learning can adapt
them to represent two-dimensional rotations. As an anal-
ogy, consider training a linear auto-encoder to perform
PCA: While the auto-encoder features will span the same
subspace as the eigen-vectors of the data covariance
matrix, they will typically not be exactly the same (in
particular, the features will typically not be orthogonal).
By making use of Eq. 27 rather than the more common
Eq. 24 to define mapping unit activations (and thereby
keeping within-subspace pooling and across-subspace
pooling separate), it is nevertheless possible to visualize
the learned “real” and “imaginary” components of the
learned filters [49].
It is interesting to note that diagonalizing a single

transformation would amount to performing a kind of
canonical correlations analysis (CCA), so training a mul-
tiview feature learning model may be thought of as per-
forming multiple (possibly nonlinear) canonical correla-
tion analyzes with tied features. Note that learning such
a “mixture” of related CCA models, rather than a single
CCA model, is crucial in practical applications, because
typically any image can potentially be transformed by
many different transformations from the given class and
not just by a single instance from that class. Similarly,
modeling within-image structure by setting x = y (cf.,
Section 2.4.2) is like learning a PCA mixture with tied
weights.

4.4 Relation to energy models

By concatenating images x and y, as well as filters v and
vθ , we may approximate the subspace rotation detector
(Eq. 26) with the response of an energy detector:

rθ =
(

(vR
Ty) + (vθ

R

T
x)

)2
+
(

(vI
Ty) + (vθ

I

T
x)

)2

= 2
(

(vR
Ty)(vθ

R

T
x) + (vI

Ty)(vθ
I

T
x)

)

+ (vR
Ty)2 + (vθ

R

T
x)2 + (vI

Ty)2 + (vθ
I

T
x)2

(28)

Eq. 28 is equivalent to Eq. 26 up to the four quadratic
terms, which represent the squared norms of the projec-
tions of x and y onto the invariant subspace. Thus, like
the norm of the projections, they contribute information
about the discernibility of transformations. By adding
the square terms, the detector will have a different
tuning behavior than the inner product detector defined
in Eq. 26. However, the energy detector still attains its
peak response exactly when both images reside within
its invariant subspace and when their projections are
rotated by the detector’s preferred angle θ, so it is
tuned to the same transformation as the inner product

detector. This shows that energy models applied to the
concatenation of two images are well-suited to modeling
transformations, too. The inner product detector (Eq. 26)
is commonly referred to as cross-correlation model in the
literature (for example, [28]).

4.5 Representing videos

Both energy models and cross-correlation models can
be applied to sequences of more than two images. In
a gated feature learning model, Eq. 26 may be modified
to contain pair-wise products across all time steps, or all
those that are deemed relevant (for example, products
between adjacent frames).
In the energy model, Eq. 28 may be modified to com-

pute the square of the concatenation of more than two
images. In particular, consider the concatenation (“vec-
torization”)X of a sequence of T frames xt, t = 1, . . . , T ,
projected onto the concatenation of T corresponding
feature vectors vt

R and vt
I , t = 1, . . . , T . The sum of

squares of the projections onto these filters will yield an
energy response of the form

r =
(

∑

t

vt
R

T
xt

)2
+
(

∑

t

vt
I

T
xt

)2

= Ω +
∑

st

[

(

vs
R
T
xs

)(

vt
R

T
xt

)

+
(

vs
I
T
xs

)(

vt
I

T
xt

)

] (29)

where we use Ω to denote all square terms, which like
before represent subspace norms. Equation 29 shows
that the energy response will implicitly contain the sum
over all pair-wise products between projected frames, or
equivalently, the sum over inner products between all
pairs of two-dimensional projections of the data. Thus,
for r to take on a meaningful value, all angles implicit
in these inner products have to be consistent, in other
words, they have to be multiples of the first angle.
A limitation of the energy detector for modeling video

data is therefore that it can only detect the repeated
application of a single transformation.

4.5.1 Example: Implementing an energy model via a
cross-correlation model

The close relation between energy models and gated
feature learning models makes it possible to implement
one via the other. Figure 13 shows example filters from
an energy model trained on concatenated frames from
videos showing moving random dots.5 We trained a
gated auto-encoder with F = 256 factors and K = 128
mapping units, where x = y is given by the concate-
nation of 10 frames. Filters are constrained, such that
wx

if = w
y
if . Each 10-frame input shows random dots

moving at a constant speed. Speed and direction vary
across movies.
Since the gated auto-encoder, a cross-correlation

model, multiplies two sets of filter responses which are

5. Data and code are available at http://learning.cs.toronto.edu/
∼rfm/relational

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 16

the same, it effectively computes a square, and thus
implements an energy model. In the absence of any
within-image structure, all filters learn to represent only
across-image correlations. Thus, as predicted by Eq. 25
the energy model, in turn, effectively implements a cross-
correlation model.
Figure 13 depicts, separately, the 10 sets of 256 filters

corresponding to the 10 time-frames. It shows that the
model learns spatio-temporal Fourier features which are
selective for speed, frequency and orientation.

5 DISCUSSION

While energy and cross-correlation models have been
well-known for almost twenty years, they have only
recently begun to be applied sucessfully in many vi-
sion tasks, such as motion understanding and action
recognition, where they now achieve state-of-the-art per-
formance. We shall discuss some selected applications
in the next section. Most of the applications make use
of multi-layer or deep learning extensions of multiview
feature learning. We shall discuss the relationship be-
tween gating and deep learning in detail in Section 5.2,
and we shall point to some open research problems in
Section 5.3.

5.1 A tour of recent applications

Action recognition is a prototypical example of a feature
learning application that requires the ability to extract
inter-frame representations to extract motion from videos.
The state-of-the-art approaches to action recognition are
based on multiview feature learning, either by making
use of gating connections [45] or of energy models [44].
To yield state-of-the-art performance both types of model
utilize multiple layers of features, so they combine the
use of deep architectures with multiplicative gating. An
empirical investigation of the usefulness of multiple
layers is presented in [44].
Learning invariant features from images: It is interest-
ing to note that invariant object recognition itself can be
viewed as a correspondence problem, where the goal is
to match an input observation to an invariant template
in memory. An approach to invariant recognition based
on a variation of a multiview feature learning model
is proposed in [50]. The model can be considered as
an approach to invariant recognition through modeling
mappings that take images to class labels. The input
to this model is an image, the output is an orthogonal
encoding of a class label, and prediction amounts to
marginalizing over the set of possible mappings. The
model transforms an input into a canonical pose, so
that it can be matched with a template, which itself
represents the object in some canonical pose. As shown
in [50], “swirly features” similar to the rotation features
in Figures 9 and 10 emerge when learning to perform
rotationally invariant recognition. The model was shown
to achieve state-of-the-art performance in a variety of
invariant recognition tasks.

Learning invariant features from videos: Common ob-
ject recognition systems differ from the way humans
learn about objects in that they are trained on static
views instead of movies, which show objects move
around or change their pose. A model that computes
squares or cross-products can automatically learn to
associate object identity with 3-D structure or other
object properties, simply by being trained on multiple,
concatenated frames. A recent application of this idea is
the learning invariant features from videos [51]. In that
work, a deep auto-encoder is combined with an energy
model, which makes it possible to learn image features
whose subspace energies stay constant across frames
(see also [52] for a similar, probabilistic formulation
of the same idea). A multi-layer version of the model
was shown to yield state-of-the-art results in object
recognition by using subspace energies as features. A
similar approach to learning invariances was proposed
in [49]. In contrast to [51], the work in [49] uses phase-
differences rather than subspace energies to represent
objects.
Tracking and pose estimation: While in this paper we
focus on the use of gating units to learn about image
relations, there has been some recent work on applying
multiplicative interactions in other tasks and in other
domains. Examples include [53], [54] who use multi-
plicative interactions to gate hidden state-transitions for
tracking. The model by [54] is based on using three-way
interactions to model the relationship between image
regions [55]. Factored gating units have been applied
also to the task of learning human pose dynamics from
MOCAP data [56], and an extension of that work has
been applied to tracking [57].
There exist several further recent applications of mul-

tiplicative interactions in a variety of domains. An ex-
ample is the work by [58] who use gating connections
to model occlusion with applications in de-noising. An-
other example is the work by [59] who use factored
gating connections to let input data modulate the hidden
state transitions in a recurrent neural network. They
report strong improvements in character-level language
modeling, both over conventional recurrent networks
and over other state-of-the-art models on these tasks.
A general explanation of these recent successes of mul-

tiplicative interactions, which goes beyond our analysis
on image relations, may be that they provide a simple
way to increase model capacity: When a very large
amount of training data is available relative to the size
of the models that may be trained within a reasonable
amount of time, multiplication and unconventional non-
linearities can provide a computationally and memory-
efficient way to increase the expressiveness of models.

5.2 Multiview features and deep learning

A gated feature learning module is inherently a multi-
layer architecture, because it uses pooling over multi-
plicative combinations (or squares) of features. Building

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 17

Frame: 1 2 3 4 5

6 7 8 9 10

Fig. 13. Implementing a cross-correlation model via an energy model via a cross-correlation model. Sequence of
filters learned from the concatenation of 10 frames of moving random dots.

deep models by stacking multiple layers of this type
of module has shown to further benefit applications,
similar to the learning of image features, as we discussed
in Section 5.1. There are several subtle but important
differences in the role of deep learning for learning mul-
tiview representations, however, and we shall discuss
these in the following.

Our analysis in Section 4 raises the question to what
degree our ability to learn about transformations is
hampered by deviating from exactly commuting trans-
formations and exactly orthogonal matrices. Existing
experiments (for example in [16], [41]) suggest that there
is some robustness wrt. deviations from exact orthogo-
nality, but there has been no quantitative analysis. It is
conceivable that one could pre-process input examples,
such that they can be related through approximately
orthogonal matrices to make them amenable to gating or
energy models. This would obviously require additional
processing layers. In that way, deep learning can play
an enabling role for building certain relational feature
learning models. What the exact requirements of extra
layers should be in order to improve the learnability
of transformations is an important research question.
It seems conceivable that high-dimensional and sparse
representations as well as topographic filter organization
may play an important role, as as they may make it eas-
ier to express relations in terms of sets of local translations.

A direct implication for learning of (non-linear) visual
feature hierarchies can be derived for spatial (for exam-
ple, geometric) transformations of images: The fact that
commutativity and orthogonality of the set of learned
transformations must be preserved throughout the hier-
archy imposes strong constraints on the learning of that
hierarchy. One condition which seems to be well-suited
(if not necessary) to preserving this structure is retinotopy.

In a feature hierarchy that is composed of retinotopic
maps, a local shift in the image, for example, will map
to a corresponding local shift in a higher layer feature
map. While retinotopic organization of features is well-
known to hold in visual cortex, it has been much less
common to explicitily enforce it in deep learning. Yet it
may play a crucial role in keeping spatial relations intact.
A further implication of our analysis for the learning

of deep architectures is that it suggests unconventional
non-linearities, such as squaring or rectification, to be
useful for building models and for extending their ap-
plicability beyond still images. From a biological point
of view, multiplicative interactions may also be viewed
as a conceptually simple approximation to more com-
plex dendritic computations [60] than the common neuron
abstraction used in practically all deep learning models.
The use of more elaborate models of dendritic compu-
tation in deep learning is a wide-open field, although
uncommon non-linearities, such as rectification, have
begun to get an increasing amount of attention recently
(for example, [61]).

5.3 Directions for further research

The current standard approach to solving correspon-
dence tasks in vision is by matching similar image
regions and by using robust statistics to deal with the
typically large number of false positives [62]. Multiview
feature learning differs from this type of approach in
that it learns dense correspondences, albeit only in small
image regions. The advantage of learning is that noise
and false matches are dealt with automatically, since
hidden units jointly clean up and make sense of im-
perfect correspondences in the data. The disadvantage
is that, for computational reasons, learning has to be
restricted to very small image regions. An interesting

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 18

research question is whether there is a bridge between
multiview feature learning and solving sparse, global
correspondence tasks in vision. Two ways in which
multiview feature learning may be brought to use in
such tasks are the following: (1) It may be possible to
improve sparse matching by using similarity metrics
derived from gated feature learning. This could help im-
prove matching accuracy, and it could make it possible
to deal with geometrical and other nuisance transforms
through learning rather than hand-coding [63]. (2) It may
be possible to increase the efficiency of gated feature
learning on the scale of larger images by combining
local receptive fields (factors) with mapping units that
pool across factors defined at widely different image
locations. To further reduce the connectivity one could
use prior knowledge about likely transformations.
Using multiplicative interactions can also be related to

analogy making [41]. It can be argued that analogy mak-
ing is at the heart of many cognitive capabilities [64]. An
interesting question is, in what way an analogy-making
module may be a useful building block to solve tasks
that are too difficult for the common deep architectures,
which are composed of bi-partite feature learning mod-
ules. Since gated feature learning and energy models can
be trained with standard, even Hebbian-like, learning
(cf., Section 2.2), analogy-making does not require any
uncommon or unusual machinery besides multiplicative
interactions.
Squaring can be approximated using other non-

linearities (for example, [13]). A possible research ques-
tion is, what type of approximations of computing
squares or cross-products may be advantageous compu-
tationally and/or more plausible biologically. Of course,
squares could be approximated using a feed-forward
network with sigmoid hidden unit activations [65]. How-
ever, the abundance of matching and correspondence
tasks in vision does seem to provide an inductive bias
in favor of genuine multiplicative interactions and/or
squaring non-linearities.

Acknowledgements: This work was supported in part
by the German Federal Ministry of Education and Re-
search (BMBF) in the project 01GQ0841 (BFNT Frank-
furt). We also thank the reviewers for several useful
suggestions.

REFERENCES

[1] G. F. Hinton, “A parallel computation that assigns canonical
object-based frames of reference,” in Proceedings of the 7th inter-
national joint conference on Artificial intelligence - Volume 2, San
Francisco, CA, USA, 1981, pp. 683–685.

[2] C. von der Malsburg, “The correlation theory of brain function,”
Max-Planck-Institut für Biophysikalische Chemie, Postfach 2841,
3400 Göttingen, FRG, Internal Report, 81-2, 1981, reprinted in
E. Domany, J. L. van Hemmen, and K. Schulten, editors, Models
of Neural Networks II, chapter 2, pages 95–119. Springer-Verlag,
Berlin, 1994.

[3] E. Adelson and J. Bergen, “Spatiotemporal energy models for the
perception of motion,” J. Opt. Soc. Am. A, vol. 2, no. 2, pp. 284–299,
1985.

[4] P. Smolensky, “Parallel distributed processing: explorations in
the microstructure of cognition, vol. 1,” D. E. Rumelhart, J. L.
McClelland, and C. PDP Research Group, Eds. Cambridge, MA,
USA: MIT Press, 1986, ch. Information processing in dynamical
systems: foundations of harmony theory, pp. 194–281.

[5] A. Coates, H. Lee, and A. Y. Ng, “An analysis of single-layer net-
works in unsupervised feature learning,” in Artificial Intelligence
and Statistics, 2011.

[6] B. Olshausen and D. Field, “Emergence of simple-cell receptive
field properties by learning a sparse code for natural images.”
Nature, vol. 381, no. 6583, pp. 607–609, June 1996.

[7] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extract-
ing and composing robust features with denoising autoencoders,”
ser. ICML ’08. New York, NY, USA: ACM, 2008.

[8] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural Computation, vol. 14, no. 8, pp. 1771–
1800, 2002.

[9] G. Hinton, “A Practical Guide to Training Restricted Boltzmann
Machines,” Tech. Rep., 2010.

[10] A. Hyvarinen, J. Hurri, , and P. O. Hoyer, Natural Image Statistics:
A Probabilistic Approach to Early Computational Vision. Springer
Verlag, 2009.

[11] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algo-
rithm for deep belief nets,” Neural Comput., vol. 18, pp. 1527–1554,
July 2006.

[12] N. Troje and H. Bülthoff, “Face recognition under varying poses:
The role of texture and shape,” Vision Research, vol. 36, no. 12, pp.
1761–1771, 6 1996.

[13] C. Zetzsche and U. Nuding, “Nonlinear and higher-order ap-
proaches to the encoding of natural scenes.” Network (Bristol,
England), vol. 16, no. 2-3, pp. 191–221, 2005.

[14] B. Olshausen, C. Cadieu, J. Culpepper, and D. Warland, “Bilinear
models of natural images,” in SPIE Proceedings: Human Vision
Electronic Imaging XII, San Jose, 2007.

[15] D. Grimes and R. Rao, “Bilinear sparse coding for invariant
vision,” Neural Computation, vol. 17, no. 1, pp. 47–73, 2005.

[16] R. Memisevic and G. Hinton, “Unsupervised learning of image
transformations,” in Proceedings of IEEE Conference on Computer
Vision and Pattern Recognition, 2007.

[17] J. Tenenbaum and W. Freeman, “Separating style and content with
bilinear models,” Neural Computation, vol. 12, no. 6, pp. 1247–1283,
2000.

[18] R. Memisevic, “Non-linear latent factor models for revealing
structure in high-dimensional data,” dissertation, University of
Toronto, 2008.

[19] ——, “Gradient-based learning of higher-order image features.”
in Proceedings of the International Conference on Computer Vision
(ICCV), 2011.

[20] J. Susskind, R. Memisevic, G. Hinton, and M. Pollefeys, “Model-
ing the joint density of two images under a variety of transfor-
mations,” in Proceedings of IEEE Conference on Computer Vision and
Pattern Recognition, 2011.

[21] M. Ranzato, A. Krizhevsky, and G. E. Hinton, “Factored 3-Way
Restricted Boltzmann Machines For Modeling Natural Images,”
in Proc. Thirteenth International Conference on Artificial Intelligence
and Statistics (AISTATS), 2010.

[22] Y. Karklin and M. S. Lewicki, “Is early vision optimized for
extracting higher-order dependencies?” in Advances in Neural
Information Processing Systems 18. MIT Press, 2006.

[23] A. Hyvärinen and P. Hoyer, “Emergence of phase- and shift-
invariant features by decomposition of natural images into in-
dependent feature subspaces,” Neural Comput., vol. 12, pp. 1705–
1720, July 2000.

[24] I. Ohzawa, G. C. Deangelis, and R. D. Freeman, “Stereoscopic
Depth Discrimination in the Visual Cortex: Neurons Ideally
Suited as Disparity Detectors,” Science (New York, N.Y.), vol. 249,
no. 4972, pp. 1037–1041, Aug. 1990.

[25] T. Sanger, “Stereo disparity computation using Gabor filters,” Bio-
logical Cybernetics, vol. 59, pp. 405–418, 1988, 10.1007/BF00336114.

[26] N. Qian, “Computing stereo disparity and motion with known
binocular cell properties,” Neural Comput., vol. 6, pp. 390–404,
May 1994.

[27] S. Becker and G. E. Hinton, “A self-organizing neural network
that discovers surfaces in random-dot stereograms.” Nature, vol.
355, pp. 161–163, 1992.

MEMISEVIC et al.: LEARNING TO RELATE IMAGES 19

[28] D. Fleet, H. Wagner, and D. Heeger, “Neural encoding of binoc-
ular disparity: Energy models, position shifts and phase shifts,”
Vision Research, vol. 36, no. 12, pp. 1839–1857, June 1996.

[29] C. L. Giles and T. Maxwell, “Learning, invariance, and general-
ization in high-order neural networks,” Appl. Opt., vol. 26, no. 23,
pp. 4972–4978, December 1987.

[30] D. E. Rumelhart, G. E. Hinton, and J. L. Mcclelland, “A gen-
eral framework for parallel distributed processing,” in Parallel
distributed processing: explorations in the microstructure of cognition.
MIT Press, 1986, vol. 1, ch. 2, pp. 45–76.

[31] P. Smolensky, “Tensor product variable binding and the represen-
tation of symbolic structures in connectionist systems,” Artificial
Intelligence, vol. 46, pp. 159–216, 1990.

[32] T. Plate, “Holographic reduced representations: Convolution alge-
bra for compositional distributed representations,” in International
Joint Conference On Artificial Intelligence. Morgan Kaufmann, 1991,
pp. 30–35.

[33] T. Kohonen, “The Adaptive-Subspace SOM (ASSOM) and its use
for the implementation of invariant feature detection,” in Proc.
ICANN’95, Int. Conf. on Artificial Neural Networks, vol. I. EC2,
1995, pp. 3–10.

[34] A. Hyvrinen, P. O. Hoyer, and M. Inki, “Topographic ica as
a model of natural image statistics.” in Biologically Motivated
Computer Vision, ser. Lecture Notes in Computer Science, S.-W.
Lee, H. H. Blthoff, and T. Poggio, Eds., vol. 1811. Springer, 2000,
pp. 535–544.

[35] M. Welling, G. E. Hinton, and S. Osindero, “Learning Sparse
Topographic Representations with Products of Student-t Distri-
butions,” in NIPS 2002, 2002.

[36] B. Olshausen, “Neural routing circuits for forming invariant rep-
resentations of visual objects,” Ph.D. dissertation, Computation
and Neural Systems, 1994.

[37] M. J. Wainwright and E. P. Simoncelli, “Scale Mixtures of Gaus-
sians and the Statistics of Natural Images,” in Adv. Neural Infor-
mation Processing Systems (NIPS*99), vol. 12. Cambridge, MA:
MIT Press, 2000, pp. 855–861.

[38] P. Hoyer and A. Hyvärinen, “A multi-layer sparse coding network
learns contour coding from natural images,” Vision Research,
vol. 42, pp. 1593–1605, 2002.

[39] M. Ranzato and G. E. Hinton, “Modeling Pixel Means and Co-
variances Using Factorized Third-Order Boltzmann Machines,” in
Computer Vision and Pattern Recognition, 2010, pp. 2551–2558.

[40] A. Courville, J. Bergstra, and Y. Bengio, “A spike and slab re-
stricted boltzmann machine,” in Artificial Intelligence and Statistics,
2011.

[41] R. Memisevic and G. E. Hinton, “Learning to represent spa-
tial transformations with factored higher-order Boltzmann ma-
chines,” Neural Computation, vol. 22, no. 6, pp. 1473–92, 2010.

[42] J. L. Gallant, J. Braun, and D. C. V. Essen, “Selectivity for polar,
hyperbolic, and cartesian gratings in macaque visual cortex,”
Science, vol. 259, pp. 1001–4, 1993.

[43] F. Bauer, “Motion analysis using local multiplicative interactions,”
Master’s thesis, Institut fuer Informatik, 2012.

[44] Q. Le, W. Zou, S. Yeung, and A. Ng, “Learning hierarchical
spatio-temporal features for action recognition with independent
subspace analysis,” in Proc. CVPR, 2011. IEEE, 2011.

[45] G. Taylor, R. Fergus, Y. LeCun, and C. Bregler, “Convolutional
learning of spatio-temporal features,” in Proc. European Conference
on Computer Vision (ECCV’10), 2010.

[46] R. A. Horn and C. R. Johnson, Matrix Analysis. Cambridge
University Press, 1990.

[47] R. M. Gray, “Toeplitz and circulant matrices: a review,” Commun.
Inf. Theory, vol. 2, pp. 155–239, August 2005.

[48] M. Bethge, S. Gerwinn, and J. Macke, “Unsupervised learning of
a steerable basis for invariant image representations,” in Human
Vision and Electronic Imaging XII, B. E. Rogowitz, Ed. Bellingham,
WA, USA: SPIE, February 2007, pp. 1–12.

[49] R. Memisevic, “On multi-view feature learning,” in Proc. of the
2012 International Conference on Machine Learning, Edinburgh, Scot-
land, June 2012.

[50] R. Memisevic, C. Zach, G. Hinton, and M. Pollefeys, “Gated
softmax classification,” in Advances in Neural Information Processing
Systems 22. MIT Press, 2010.

[51] W. Y. Zou, S. Zhu, A. Y. Ng, and K. Yu, “Deep learning of
invariant features via tracked video sequences.” in Advances in
Neural Information Processing Systems 25. MIT Press, 2012.

[52] C. F. Cadieu and B. A. Olshausen, “Learning Intermediate-Level
Representations of Form and Motion from Natural Movies,”
Neural Computation, vol. 24, no. 4, pp. 827–866, Dec. 2011.

[53] D. A. Ross, S. Osindero, and R. S. Zemel, “Combining discrim-
inative features to infer complex trajectories,” in Proceedings of
the 23rd international conference on Machine learning, ser. ICML ’06.
New York, NY, USA: ACM, 2006, pp. 761–768.

[54] M. Denil, L. Bazzani, H. Larochelle, and N. de Freitas, “Learning
where to attend with deep architectures for image tracking,”
Neural Computation, vol. 24, no. 8, pp. 2151–2184, Aug. 2012.
[Online]. Available: http://dx.doi.org/10.1162/NECO a 00312

[55] H. Larochelle and G. Hinton, “Learning to combine foveal
glimpses with a third-order boltzmann machine,” in Advances in
Neural Information Processing Systems 23, 2010, pp. 1243–1251.

[56] G. Taylor and G. Hinton, “Factored conditional restricted Boltz-
mann machines for modeling motion style,” in Proceedings of the
26th International Conference on Machine Learning, L. Bottou and
M. Littman, Eds. Montreal: Omnipress, June 2009, pp. 1025–
1032.

[57] G. Taylor, L. Sigal, D. Fleet, and G. Hinton, “Dynamic binary
latent variable models for 3D pose tracking,” in Proc. Conference
on Computer Vision and Pattern Recognition (CVPR’2010), 2010.

[58] Y. Tang, R. Salakhutdinov, and G. Hinton, “Robust boltzmann
machines for recognition and denoising,” in IEEE Conference on
Computer Vision and Pattern Recognition, 2012, Providence, Rhode
Island, USA, 2012.

[59] I. Sutskever, J. Martens, and G. Hinton, “Generating text with
recurrent neural networks,” in Proceedings of the 28th International
Conference on Machine Learning (ICML-11), ser. ICML ’11, L. Getoor
and T. Scheffer, Eds. New York, NY, USA: ACM, June 2011, pp.
1017–1024.

[60] K. A. Archie and B. W. Mel, “A model for intradendritic compu-
tation of binocular disparity,” Nature Neuroscience, vol. 3, no. 1,
pp. 54–63, Jan. 2000.

[61] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Advances in
Neural Information Processing Systems 25. MIT Press, 2012.

[62] R. I. Hartley and A. Zisserman, Multiple View Geometry in
Computer Vision, 2nd ed. Cambridge University Press, ISBN:
0521540518, 2004.

[63] K. Mikolajczyk and C. Schmid, “A performance evaluation of
local descriptors,” IEEE Transactions on Pattern Analysis & Machine
Intelligence, vol. 27, no. 10, pp. 1615–1630, 2005.

[64] D. R. Hofstadter, “The copycat project: An experiment in non-
determinism and creative analogies,” Massachusetts Institute of
Technology, vol. 755, 1984.

[65] K. Funahashi, “On the approximate realization of continuous
mappings by neural networks,” Neural Netw., vol. 2, pp. 183–192,
May 1989.

Roland Memisevic received the PhD in Com-
puter Science from the University of Toronto,
Canada, in 2008. Subsequently, he held posi-
tions as a research scientist at PNYLab LLC
in Princeton and as a post-doctoral fellow at
the University of Toronto and at ETH Zurich,
Switzerland. From 2011 to 2012 he was on
faculty at the Department of Computer Science
at the University of Frankfurt, Germany. In 2012
he joined the Department of Computer Science
and Operations Research at the University of

Montreal, Canada, as an assistant professor of computer science.
His research interests are in machine learning and computer vision,

in particular unsupervised learning and feature learning. His scientific
contributions include relational and higher-order feature learning mod-
els, approaches to learning motion and transformation patterns from
data, and approaches to learning invariant recognition. He presented
his work at conferences such as NIPS, ICCV, ICML, CVPR, AAAI, and
in journals such as PAMI, Neural Networks and Neural Computation. He
served as a program committee member or reviewer for most of these
and other conferences and journals in machine learning and computer
vision.

