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Abstract

We introduce spectral gradient descent, a way of improving iterative dimensionality reduction techniques.1 The method uses information

contained in the leading eigenvalues of a data affinity matrix to modify the steps taken during a gradient-based optimization procedure. We

show that the approach is able to speed up the optimization and to help dimensionality reduction methods find better local minima of their

objective functions. We also provide an interpretation of our approach in terms of the power method for finding the leading eigenvalues of a

symmetric matrix and verify the usefulness of the approach in some simple experiments.

q 2005 Elsevier Ltd. All rights reserved.
1. Introduction

Many problems in machine learning and data analysis

involve high-dimensional data that is distributed along some

low-dimensional manifold in the input space. Finding this

manifold and representing the data in a low-dimensional

coordinate system is an important step in many applications

since it can help to identify the true underlying causes of

variability in the data, provide more efficient and therefore

more manageable representations of the data, and help to

overcome the ‘curse of dimensionality’.

PCA is the standard linear method for this task, but

recently there has been a lot of research on nonlinear

dimensionality reduction (NLDR), driven by the aware-

ness that real world data is usually distributed along

nonlinear manifolds rather than along linear subspaces of

the input space. As a result of this increased interest in

NLDR a lot of methods have been proposed in the last

few years, and they are now increasingly being used in

applications.

Interestingly, the basic computational procedures used

by the different methods that have been proposed (such as

kernel PCA (Schölkopf, Smola, & Muller, 1998), stochastic

neighbor embedding (Hinton & Roweis), locally linear
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embedding (Roweis & Saul, 2000), unsupervised kernel

regression (Meinicke, Klanke, Memisevic, & Ritter, in

press), Laplacian eigenmaps (Belkin & Niyogi, 2003),

Gaussian process latent variable models (Lawrence, 2004),

and many others) are very similar to one another: First, a

matrix is constructed that encodes pair-wise similarities

between input data-points. Then, an analogous matrix is

defined for a set of low-dimensional data representatives.

Finally, some form of mismatch between these similarity

matrices is minimized. Since the low-dimensional similarity

matrix is ‘parameterized’ by the set of low-dimensional or

‘latent’ data representatives, this minimization can be

performed directly with respect to these latent space

elements.

Depending on the definition of the similarity matrices

and the mismatch, these methods can be categorized into

two classes: Iterative methods and spectral methods. The

first rely on iterative, gradient-based optimization, to find a

local minimum of their objective function, while the latter

can find their (globally optimal) solutions by an eigen-

decomposition of a (usually symmetric) matrix.

Besides their computational differences, these two kinds

of method have also very different practical drawbacks and

benefits. Further advantages of spectral methods, for

example, are their ability to discover very complicated

manifold structure and their independence of any par-

ameter initializations. An advantage of many iterative

methods on the other hand is that they are based on more

principled, often probabilistic, theoretical foundations. As

a result they can be more easily extended or combined with

other methods. Consequently, there are iterative methods

(i) that provide mappings from the high-dimensional input
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to the low-dimensional embedding space and back

(Meinicke et al., in press), (ii) that are based on data-

driven error criteria that allow for principled ways to

perform model selection (Meinicke et al., in press), (iii)

that provide ways to include side-information into the

learning process (Memisevic & Hinton, 2005b), and (iv)

that make it possible to associate more than a single latent

representative with each high-dimensional data-point

(Hinton & Roweis).

In practice, the exclusiveness of the benefits of the two

approaches often poses a dilemma. In some situations where

we would like to use a spectral method for its efficiency we

might actually have to resort to an iterative method, because

the problem setting might demand a suitably defined

mapping from latent to data-space for example. In other

situations we might prefer the objective function that is

optimized by an iterative method, but the data manifold we

are dealing with might turn out to be so complicated that the

only way to avoid poor local minima is to use a spectral

method.

In this paper we suggest a way of partially resolving

this dilemma by showing how to use spectral information

in iterative methods. We derive our approach from a

simple intuition from the area of spectral clustering. Our

idea is to aggregate the movements of latent space

elements during the gradient-based optimization of an

iterative method, such that latent representatives of nearby

points move in similar directions. The required infor-

mation about nearness is extracted beforehand from the

eigenvectors of a data similarity matrix. Experiments

show that our approach can significantly speed up

iterative methods and can reduce their dependence on

latent variable initializations thus allowing them to find

better local minima of their objective functions.

The remainder of this paper is structured as follows: In

Section 2 we review the problem of dimensionality

reduction and give an overview of different methods. In

Section 3 we describe our approach of using spectral

methods in the iterative optimization procedure of iterative

methods. The original approach relies on the extraction of

eigenvectors of some similarity matrix prior to the actual

gradient based optimization. We discuss a way to

circumvent altogether the need for an eigen-decomposition

in Section 4. In Section 5 we provide an interpretation of

this approach in terms of the power method for finding the

leading eigenvectors of a matrix. We present simple

experiments that support the usefulness of our method in

Section 6 and conclude in Section 7.
2. Dimensionality reduction

We can formalize the problem of dimensionality

reduction as follows: For a set of N real vectors y1,.,

yN of dimensionality d find a corresponding set of ‘latent’

vectors x1, ., xN of dimensionality q/d such that these
latent representatives preserve the similarity structure

inherent in the input data set as well as possible. For

convenience, we will frequently stack the data points

column-wise in a (d!N)-matrix Y and the latent space

elements in a corresponding (q!N)-matrix X. Practically

all nonlinear methods that have been proposed in the last

few years solve this task in a nonparametric fashion: They

first construct an (N!N)-matrix P that encodes pairwise

similarities between data-points and a corresponding

matrix Q(X) that encodes the similarities between the

low-dimensional data representatives. Since the latent

similarity matrix depends on the set X of latent elements,

dimensionality reduction can then be performed by

minimizing wrt. X a measure E(X) of the mismatch

between these two matrices.

Practically, the methods that have been proposed differ

only in the definition of P, Q(X) and E(X). The motivations

for the many ways to define the similarities and the

mismatch differ greatly across methods and range from

probabilistic considerations (Hinton & Roweis) to the desire

to fit principal subspaces in kernel feature spaces (Schölkopf

et al., 1998). Computationally, the approaches usually lead

to one of two possible optimization problems. If E(X) is

quadratic in the latent variables, then under suitable

constraints on X the solution can be found by an eigen-

decomposition, with the advantages discussed above. If not,

we have to resort to iterative optimization. Unfortunately,

since the different motivations yield methods with rather

different practical advantages, computational considerations

often have to stand back and the actual task at hand dictates

the choice of method.

To provide two examples of iterative methods, which we

will also use in the experiments, we briefly review the

methods stochastic neighbor embedding (SNE) (Hinton and

Roweis) and unsupervised kernel regression (UKR) (Mei-

nicke et al., in press). We then contrast these with the

computational procedures used in spectral methods, which

are closely related to the speed-up strategy that we discuss

in Section 2.1.
2.1. Stochastic neighbor embedding

SNE is a probabilistic approach to embedding that tries to

preserve stochastically defined neighborhood relations

between data-points. It defines each of the matrices P and

Q(X) as a set of transition probabilities (row-wise) and the

mismatch E(X) as the sum of Kullback–Leibler divergences

between corresponding probability distributions (that is

between corresponding rows of P and Q(X)). The transition

probabilities are defined by centering Gaussian kernel

functions with bandwidth h on the data-points and normal-

izing. Formally, we have

Pij :Z
exp K1

h
jjyiKyjjj

2
� �

P
k exp K1

h
jjyiKykjj

� �2
(1)
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as the transition probability from the ith to the jth data-point

and analogously for the latent space elements

QijðXÞ :Z
expðKjjxiKxjjj

2ÞP
k expðKjjxiKxkjjÞ

2
: (2)

Note that, since the latent space elements are free to

move during optimization, the bandwidth for the latent

space is arbitrary and set to 1.0 here. The mismatch is

defined as

EðXÞ Z
1

N

X
i

X
j

Pijlog
Pij

QijðXÞ

� �
; (3)

and can be minimized by using the gradient, given by

vEðXÞ

vxl

Z
2

N

X
i

ðPil CPli KQli KQilÞðxlKxiÞ: (4)
2.2. Unsupervised kernel regression

UKR is based on rather different considerations and tries

to minimize the point-wise reconstruction errors resulting

from mapping the latent data representatives into the data-

space. The mapping, usually referred to as ‘forward’

mapping, is defined as the Nadaraya–Watson regression

estimator (Härdle, 1990) with Gaussian kernels:

f ðxÞ Z
X

j

expðKjjxKxjjj
2ÞP

k expðKjjxKxkjj
2Þ

yj: (5)

Note again the arbitrariness of the latent space kernel

bandwidth, which we again set to 1.0 for convenience.

The sum of the reconstruction errors under this mapping

can now be shown (Meinicke et al., in press) to be equal to

EðXÞ Z
1

N
trðPQðXÞÞ; (6)

using the definitions

P Z YTY (7)

and

QðXÞ Z ðIKBðXÞÞðIKBðXÞÞT (8)

with

BijðXÞ Z
expðKjjxiKxjjj

2ÞP
k expðKjjxk Kxjjj

2Þ
: (9)

As with SNE, any gradient-based optimization method

can be used to minimize the loss defined in Eq. (6).

However, in practice an explicit regularization needs to be

enforced for the solution to be well-defined. One way to

realize this is to restrict the latent representatives to a finite

interval of the latent space. Another way is to replace the

regression estimator by a leave-one-out version. ((See

Meinicke et al., in press) for details.)
2.3. Spectral methods

If the mismatch E(X) is defined as a quadratic form in X,

that is, if it is of the form

EðXÞ Z trðXPXTÞ (10)

(where tr denotes the trace operator), then by the Rayleigh–

Ritz theorem (Horn & Johnson, 1986) minimizer of E(X)

under the constraints

1

N
XXT Z Iq and X1 Z 0 (11)

(with Iq the q!q identity matrix, 1 the N-vector of all ones,

and 0 the q-vector of all zeros) is the matrix X whose rows

contain the leading eigenvectors of P. As with iterative

methods, a lot of different objectives have been formulated

for spectral methods, leading to a lot of different error

measures-which obviously differ only in the definition of the

data-space similarity matrix P. Kernel PCA (Schölkopf

et al., 1998), e.g. is based on the eigen-decomposition of a

kernel matrix defined on the data points; Laplacian

eigenmaps (Belkin & Niyogi, 2003) set P to be a normalized

kernel matrix; etc.

The foremost advantage of spectral methods is that the

optimum is global. Furthermore, it is well-known from

practice that spectral methods are able to fit far more

complicated manifolds than iterative methods (see, e.g.

(Meinicke et al., in press)). Spectral methods are also widely

appreciated for their superior efficiency. Usually, perform-

ing a single eigen-decomposition is orders of magnitude

faster than running an iterative optimization procedure for

many iterations. This advantage, however, might vanish as

larger and larger datasets are considered, since the eigen-

decomposition generally needs O(N3) operations whereas it

is clear from the previous considerations that the number of

operations needed for a single iteration of an iterative

methods usually scales quadratically with dataset size.

Unfortunately, using a quadratic objective usually implies

that important features of iterative methods have to be

abandoned, as discussed previously.

In Section 3 we describe a way of gaining some of the

advantages of spectral methods without restricting the

objective function to be quadratic. The approach is based on

the idea of intertwining the two different kinds of method to

obtain a single optimization routine in which spectral

information is used to improve a gradient-based search.
3. Aggregating the movements

3.1. An intuition from spectral clustering

We derive our approach from a simple intuition

from spectral clustering. Spectral clustering methods

are similar to spectral NLDR methods: They also

construct a similarity matrix P from the data and compute
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its eigen-decomposition. In contrast to NLDR, they use the

resulting low-dimensional data representation as the input

for a subsequent standard clustering step. Usually standard

k-means clustering is applied in this step. As opposed to

using k-means on the raw input data, which finds groups of

‘convex blobs’ in the data, this approach has been shown to

group together points that are arranged in more structured

formations.

Although in general we may view spectral clustering as a

form of spectral NLDR followed by clustering, the

construction of the similarity matrix usually differs. In

both cases, the matrix is formed by centering (usually

Gaussian) kernels on the data points, followed by some form

of normalization. But for spectral clustering the normal-

izations that have been suggested are usually different from

that suggested for NLDR.

An approach that is commonly used in spectral clustering

is to set

M Z DK1
2KDK1

2 ; (12)

with Kij ZexpðKð1=hÞjjyiKyjjj
2
Þ and where D is diagonal

with entries Dii Z
P

j Kij (see Ng, Jordan, & Weiss, 2002).

A key observation that justifies the final (clustering) step

is that the entries of the leading eigenvectors of the

normalized similarity matrix reflect the clustering of the

input data. That is, the eigenvectors are approximately

piecewise constant, where each constant level corresponds

to a cluster in the original data. (See, e.g. Maila & Shi, 2001

or Weiss, 1999) for a more detailed account of this

observation). An illustration is given in Fig. 1 (three

upper-most plots): Plot (a) shows a two-dimensional dataset

that consists of three clusters taking the shape of circular

arcs. Plot (b) depicts the corresponding matrix M (Eq. (12)).

The data has been sorted beforehand, such that points that

belong to the same cluster are grouped together in the
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Fig. 1. (a) 2d-dataset; (b) normalized similarity matrix M; (c) Entries of the

three leading eigenvectors; (d) learning curves (see text).
display. Plot (c) shows the entries of the three leading

eigenvalues of M. The entries of the first eigenvalue are

approximately constant and could be discarded. The entries

of the second and third eigenvectors both reflect the

clustering of the data-points. Both take on values that are

approximately piecewise constant and are concentrated

around three distinct levels corresponding to the three

clusters.
3.2. Altering the gradient

The question that we address in this paper is this: Can we

use the clustering property of the eigenvectors to improve an

iterative dimensionality reduction method? The approach

we take is to use the entries of the eigenvectors to modify

the gradient of the objective function, such that the

movements of latent space elements resulting from

following this gradient better respect the similarity structure

of the input data. In particular, we will use the knowledge

about cluster-membership provided by the eigenvectors to

aggregate the movements of latent space elements. This

allows us to encourage latent representatives that are known

to belong together, in the sense that the data-points they

represent reside in the same cluster, to move in similar

directions.

Fig. 2 shows a simple illustration using two-dimensional

latent representations of a set of hypothetical data-points

consisting of three clusters. Latent elements whose

corresponding data-points belong to the same cluster are

depicted using the same symbol. The leftmost plot shows a

possible random initialization of the latent space elements.

Also indicated are the gradients with respect to the latent

space elements at the current time-step, symbolized by

arrows. As shown, the gradient directions do not necessarily

reflect the clustering of the original data. As a result, latent

representatives that should actually end up in nearby

locations, because their data-space correspondents belong

to the same cluster, may move in different directions during

the initial phase of the gradient-based optimization, which

will result in unnecessarily slow convergence.

In order to overcome this problem we first determine a

set of l aggregated directions (where l!N) as linear

combinations of the original ones, using the eigenvalue-

entries as coefficients. Note that as a consequence directions

belonging to similar data-points will have similar contri-

butions (center subplot). Then we build a linear combination

of these aggregated directions using each data-point’s

contribution as coefficients in order to obtain a new gradient
a1

a2

Fig. 2. Illustration of the aggregation strategy.
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that better complies with the clustering of the input data. An

update of the latent space elements based on this modified

gradient respects this clustering and makes elements that

belong together actually move together (rightmost subplot).

More formally, let gi denote the gradient of E with

respect to only the ith latent representative xi:

gi :Z
vE

vxi

(13)

That is, gi contains the partial derivatives of E w.r.t. the

entries of xi. Furthermore we define the ‘gradient matrix’ G

as the matrix containing the gi column-wise.

Consider the eigen-decomposition MdVDVT, with

VZ(v1,v2,.,vN) the matrix of (normalized) eigenvectors

arranged column-wise and corresponding eigenvalues l1

Rl2R.RlN (residing on the diagonal of D). We now

compute for each of the l leading eigenvectors vi, iZ1,.,l

an ‘aggregated gradient’ ai as a linear combination of the

original (point-wise) gradients g1,.,gN, where we use the

corresponding entries of vi as the coefficients. That is, with

vij denoting the jth entry of the ith eigenvector, we define

ai :Z
PN
jZ1

vijgj, or in matrix form:

A :Z ða1;.; alÞ Z GVl; (14)

where matrix Vl contains the l leading eigenvectors as

columns. Note, that this results in similar weights for

gradients corresponding to nearby data-points. The ai span a

‘gradient-subspace’ of possible movements in latent space.

Since the ai are aggregations of the original gradients with

similar coefficient for directions that belong together they

are likely to reflect possible grouping structure in the data

better than the original gradients.

We can now construct (for each iZ1,.,N) a new point-

wise gradient as a linear combination of these aggregated

directions, where we use the data-point’s original contri-

butions in the aggregation as coefficients. That is, we define

the reconstruction ĝi for the gradient w.r.t. the ith data-point

as ĝiZ
Pl

jZ1

vjiaj. The reconstruction Ĝ of the whole gradient

matrix can then be written as

Ĝ :Z ðĝ1;.; ĝNÞ Z AVT
l Z GVlV

T
l : (15)

3.3. Practical issues

It is obvious that the objective function that is

minimized by following the modified gradient Ĝ is not

the same as E(X) anymore. A local minimum that we

might reach using the aggregation strategy therefore does

not necessarily coincide with an optimal solution from

the original, unmodified method. In fact, there is no

reason to assume, that it would. This means that in

practice we should use the approach primarily to improve

the optimization process in its initial phase and decrease
its influence (or continue with the unmodified gradient)

as the optimization continues.

One way to decrease the influence of the aggregation

strategy immediately suggests itself: From Eq. (15) it is

clear, that for lZN we get ĜZG as implied by the

orthogonality of V, which shows that it is in fact necessary to

cut off the expansion for A and Ĝ after l!N terms. The

smaller the value for l that we choose the stronger the

influence of the clustering. This suggests gradually

increasing l during the course of optimization until, when

it reaches N, the function being optimized is the original

objective function itself.
3.4. Example

To find out if this aggregation strategy works, we tested it

on the ‘partitioned-circle’ dataset discussed above, using

SNE (Eqs. (3) and (4)) as the reference method to be

improved. The results are depicted in Fig. 1(d). Here and in

the other experiments, we used a simple gradient descent

line-search to allow for a fair comparison between the

different optimization approaches. We used M as defined in

Eq. (12) and obtained K by centering a Gaussian kernel on

each data-point. The plot shows the learning curves

obtained from using a constant value for l (we set lZ2,

after discarding the first eigenvalue—dashed line) vs.

adapting l (solid line). For the adaptation, we started with

lZ1 and increased it by one after each 1d-search.

The plot shows that the error is indeed going down faster

in the beginning of the optimization. The problem of

reaching a local minimum of the wrong objective function is

reflected in the plot. It results in a final error that is larger

than the error that we get from running SNE unmodified. A

significant improvement is obtained when using the

adaptive strategy. Here, the result is not only a speed-up,

but also a better local minimum (note the use of a

logarithmic scale on both axes; 200 iterations are depicted.)
4. A computational shortcut

It is possible to derive a computational shortcut that

allows us to completely drop the eigenvalue decomposition

as well as the necessity to choose l. Instead of cutting off the

expansion after l terms, we might keep the entire expansion,

but weight the contribution of each ai with a factor that

corresponds to the degree to which we believe that

the corresponding eigenvector tells us something about the

underlying clustering of the data. When we use the

eigenvalues li themselves as the weights, we obtain

the particularly convenient form

Ĝ Z GVDVT Z GM: (16)

That is, we can get the optimized gradient Ĝ from G

simply by post-multiplication with M.
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It is also possible to obtain an ‘annealing’-strategy

analogous to the scheme of gradually increasing l that we

used before. We can for example use a spectral transform-

ation in order to control the steepness of the spectrum of M.

By gradually decreasing the steepness we can make sure

that the influence of M gets gradually less biased towards the

leading eigenvalues.

A way to control the steepness of the spectrum would be

to replace D by (renormalized) powers of itself:

D)
Dn

trðDnÞ
;

where large n will enhance the steepness and a choice

0!n!1 will ‘flatten’ the spectrum. For M positive definite

and symmetric we can achieve this implicitly, i.e. without

actually needing to explicitly perform the eigen-decompo-

sition, by replacing

M)
Mn

trðMnÞ
; (17)

which simply follows from MnZVDnVT and tr(VDnVTZ
tr(Dn) for orthogonal V.

Note that the shortcut, possibly in conjunction with the

spectral transformation based annealing strategy, allows us

to use the spectral speedup strategy without ever needing to

explicitly compute an eigen-decomposition. This result is

rather convenient. The spectral guidance strategy in general

allows us to enjoy the advantages of spectral methods

without having to give up on important properties of

iterative methods. It does so by embedding a spectral

algorithm in the optimization routine of an iterative method.

The implicit approach makes it possible to do that without

ever making use of any form of spectral algorithm at all.
5. Interpretation as power method

As pointed out in (Memisevic & Hinton, 2005a), it is

possible to interpret the shortcut-approach as an implicit use

of the power method for finding eigenvectors (Golub & Van

Loan, 1991). According to this interpretation, the post-

multiplication of the gradient—in particular for large n—

may be viewed as a projection onto an approximation to the

leading eigenvector of the original similarity matrix. In

other words, we project (each latent component of) the

gradient onto the approximate solution of a spectral method.

The similarity matrices used for spectral clustering (e.g.

Eq. (12)) are, as pointed out above, generally not the same

as those used in dimensionality reduction. However, since

the procedures for the construction of these matrices are

very similar, it is reasonable to expect that the low-

dimensional coordinates obtained from the eigen-decompo-

sition of these matrices give reasonable representations for

the purpose of NLDR. The converse, i.e. the fact that

dimensionality reduction methods such as kernel PCA
might give reasonable clustering results if the low-

dimensional representations are clustered using for example

k-means, has actually been pointed out in the literature

before (see, e.g. Ng et al., 2002 and references therein).

Some support for the power-method view is given by the

fact that the approach works best for low-dimensional (in

particular qZ1) latent spaces. Since according to the power-

method interpretation we project each row of the gradient

onto (the same) solution of a spectral method, this result

might actually be expected under this view. For qO1 a

positive effect could then still be achieved by this

projection, since it might help ‘untangle’ the random

initialization to some degree and provide at least a starting

point from which a better global optimum may be found.

An interesting question in this context would be how

other ‘projection-matrices’ than the clustering matrix

defined in Eq. (12) would perform when used in the spectral

gradient approach. In particular the data-space similarity

matrix of an NLDR method might—according to the power-

method perspective—be suitable. We report on some

comparisons to the kernel PCA similarity matrix in Section

6, in which the results are clearly in favor of the clustering

matrix. These results however might be biased and could

depend on several free parameters in the problem setting,

such as problem size (number of data points), choice of

‘annealing’ strategy, choice of kernel bandwidths, etc. To

give a general answer to this question is therefore still an

open problem—and it is probably not even a well-posed

one.
5.1. Power method for multi-dimensional latent spaces

Given the power method interpretation, a more reason-

able strategy than projecting each latent component of the

gradient onto the approximate leading eigenvector of M

would be to project the components onto separate

eigenvectors. We could achieve this practically by

projecting out a leading eigenvector after (approximately)

extracting it, as would be done when explicitly computing

multiple leading eigenvectors using the power method. That

is, if we let gj denote the jth row of the gradient matrix G, a

possible strategy would be to iterate over the rows of G,

using the updates

gj )gjMn (18)

M)MKljg
jT gj; (19)

with

lj Z
gjMgjT

gjgjT
; (20)

where in Eq. (19) the current eigenvector projected out.

Note that applying such an approach from the beginning of

the optimization process would encourage each latent

component to specialize on a particular eigenvector, leading
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to an ordering of the latent components according to

eigenvalues. A well-known problem with the power method

arises in the presence of multiple eigenvalues. This is

particularly problematic when using the annealing strategy

where we approach the identity matrix by decreasing n with

increasing iteration count. (In fact, when n gets small, we are

actually not even using a power-method-like algorithm at all

anymore.) The simplest way to counter this problem would

be to simply stop the process of projecting out eigenvectors

as n gets too small.

As is the case for the spectral gradient approach in

general, we can afford more ‘sloppiness’ than in the context

of an actual eigenvalue problem. Since a suitable annealing

strategy will finally hand over all the responsibility to the

standard gradient-based optimization anyway, the worst that

can happen in the case of theoretical singularities, such as

multiple eigenvalues, is that we do not achieve an

improvement over the plain, unguided method. Regarding

the speed of convergence, the method can in the worst case

cause a slow-down rather than a speed-up during the initial

optimization phase. As for local minima, we do not expect

those found by the spectral gradient strategy to be worse in

general than those that the unguided optimization would

find based on some random initialization.
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Fig. 3. Top plot: learning curves (see text). Bottom plots: training data (in

gray) and UKR-manifolds (in black). The manifolds were produced by

projecting the latent data representatives back into the data-space using the

UKR ‘forward’ mapping.
6. Experiments

6.1. Noisy helix

We applied the spectral guidance including the shortcut

approach (Section 4) on the ‘noisy helix’ dataset (containing

300 points in 3d) shown in Fig. 3. In this experiment we

used unsupervised kernel regression with leave-one-out

regularization (Meinicke et al., in press) to find a one-

dimensional embedding. For the spectral guidance, we

computed M using Eq. (12) with K obtained from a

Gaussian kernel with bandwidth 1.0 centered on every data-

point.

We achieved the strongest improvement by using the

spectral transformation based annealing. We started with

nZ10 and decreased it by 1 after each iteration (after 10

iterations we simply continued with nZ1). The learning

curves are shown in the upper-most plot of Fig. 3. They

indicate that using the aggregation strategy here not only

leads to an acceleration, but also mitigates the initialization

problem. The final error achieved after 200 iterations using

the spectral approach is close to zero and thereby

significantly smaller than the one obtained from running

UKR unmodified (again note the use of a logarithmic scale

on both axes.)

A convenient property of the UKR method is that it

defines a mapping from latent to data-space (Eq. (5)), which

cannot be achieved using any (nonlinear) spectral method.

Such a mapping is crucial for purposes such as noise

reduction, since it allows us to define an orthogonal
projection onto the manifold based on the reconstruction

error in data-space (Meinicke et al., in press). For up to

three-dimensional data-spaces, we can also use the forward

mapping to ‘draw’ the learned manifold in data-space by

applying it to a set of densely sampled latent space elements

(or the latent representatives of the training data themselves)

in order to project these into the data-space. The two bottom

plots of Fig. 3 show the learned helix manifolds obtained in

this way. The superiority of the local minimum found by the

spectral guidance becomes obvious: The manifold obtained

from using standard UKR is partly disrupted and does not lie

within the noise-range of the input data. The reason is that

the poor local minimum found by the method does not

reflect the correct one-dimensional structure of the latent
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variables. The one obtained from applying the spectral

modification, on the other hand, smoothly approximates the

data.
0 20 40 60 80 100 120
0

0.5

1

1.5

2

Iterations

E
rr

or

pow kpca

Fig. 5. Learning curves for NZ200 points. Keys: ‘spec-clus’: Spectral

gradient descent, using spectral clustering matrix; ‘pow-clus’: Spectral

gradient descent, using spectral clustering matrix with simulated power

method; ‘spec-kpca’: Spectral gradient descent, using kernel PCA matrix;

‘pow-kpca’: Spectral gradient descent, using kernel PCA matrix with

simulated power method.
6.2. ‘S-curve’ data and relation to power method

We used the ‘s-curve’-dataset depicted in Fig. 4 to obtain

some empirical insight into the relation of the spectral

gradient approach to the power method, that we discussed in

Section 5. We computed a two-dimensional embedding

using SNE with hZ(1/2). We compared the previously used

matrix (Eq. (12)) to the kernel PCA similarity matrix,

defined by

Mkpca Z ðIN KeeTÞKðIN KeeTÞ (21)

where K is defined in Section 3.1 and e is the constant

N-vector with entries eiZNK1
2 .

We also compared the plain spectral gradient strategy

with the ‘simulated’ power method for multiple eigenvec-

tors (Section 5.1). As an annealing approach we set nZ20 in

the beginning and decreased by 1 after each iteration, until

we reached 0. To deal with the degeneracy of multiple

eigenvectors in the end of the annealing schedule, we simply

stop the eigenvector extraction when nZ0.

Figs. 5 and 6 show the learning curves for NZ200 and

NZ500 data-points, respectively. For the spectral clustering

matrix there is a significant speed-up at the beginning of the

optimization in both cases and an improvement with respect

to the local minimum that is found for NZ200. Interest-

ingly, when using the kernel PCA matrix, convergence is

slower at the beginning of the optimization as compared to

unguided SNE, but the method catches up later and also

results in an improved local optimum for NZ200.

Interestingly, the multiple-eigenvector approach is actually

able to significantly improve the local minimum in the NZ
200 case, but slightly degrades the performance for NZ500.

Overall, the performance is comparable to the plain spectral

gradient approach.
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Fig. 4. ‘Noisy s-curve’ data (NZ500).
7. Conclusions and future work

We showed how using information contained in the

eigenvectors of an affinity matrix can help improve iterative

dimensionality reduction methods. When we require

properties such as the presence of a ‘forward’ mapping,

that are not provided by spectral methods, our approach can

help to make iterative methods more efficient and can

improve the quality of the local minima that they find.

Further experimentation is required to assess the

usefulness of the approach in larger scale problems and to

determine the influence of experimental parameters, such as

dataset size, kernel bandwidths, etc. on the performance. A

more principled way to set such parameters than currently

available is of great importance for dimensionality

reduction methods in general and is especially important

for the applicability of the approach discussed in this paper.

Also, gradient descent line-search as an optimization

method is well-known for its very poor convergence rate

and is in general not recommended for use in actual real
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Fig. 6. Learning curves for NZ500 points. See caption of Fig. 5 for keys.
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world problems. Future work will examine ways to use the

spectral gradient approach in the context of other

optimization approaches, such as quasi-Newton or con-

jugate gradient methods.
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