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Abstract—We propose a nonparametric approach to learning of principal surfaces based on an unsupervised formulation of the

Nadaraya-Watson kernel regression estimator. As compared with previous approaches to principal curves and surfaces, the new

method offers several advantages: First, it provides a practical solution to the model selection problem because all parameters can be

estimated by leave-one-out cross-validation without additional computational cost. In addition, our approach allows for a convenient

incorporation of nonlinear spectral methods for parameter initialization, beyond classical initializations based on linear PCA.

Furthermore, it shows a simple way to fit principal surfaces in general feature spaces, beyond the usual data space setup. The

experimental results illustrate these convenient features on simulated and real data.

Index Terms—Dimensionality reduction, principal curves, principal surfaces, density estimation, model selection, kernel methods.
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1 INTRODUCTION

THE close relation between supervised and unsupervised
learning of functions1 has been indicated by many

researchers within the field of machine learning. While, in
the supervised case, one is usually interested in the
relationships between two kinds of observable variables,
in the unsupervised case, one is interested in the relation-
ships between the observable data variables in a
d-dimensional space and some unobservable latent variables
in a q-dimensional space. In both cases, most existing
approaches are based on functions of the form

fðx;WÞ ¼ WbðxÞ; W 2 IRd�M ð1Þ

with bðxÞ 2 IRM being a vector of M basis functions and W

denoting a matrix of weights for linear combination of the

basis functions. In supervised learning, a large variety of

different realizations of (1) has been proposed and only a

few shall be mentioned here. In neural networks, multilayer-

perceptrons (MLP) and radial basis function (RBF) networks

are prominent examples which utilize functions of the above

form. Usually, these functions involve many additional free

parameters for the realization of the nonlinear basis

functions, which, in the RBF-case, specify the location,

shape, and size of the basis functions and, in the MLP-case,

may include several layers of nested functions, that is, the
basis functions themselves are linear combinations of
nonlinear functions. In contrast to the more complex neural
network basis functions, recent kernel-based approaches to
function learning are usually based on simple basis
functions with only a very small number of free parameters
(e.g., the kernel bandwidth) and incorporate all flexibility
into the weights. This strategy is also followed by most
unsupervised approaches to function learning and, depend-
ing on the choice of the latent variable domains and the
associated basis functions, a variety of unsupervised
methods, ranging from principal component analysis to
vector quantization, may all be realized by flexible linear
combinations of fixed basis functions [1]. In particular, most
approaches to Principal Curves and Surfaces [2] can be
stated in terms of fitting a specific instance of (1) with fixed
basis functions to multivariate data: Polygonal Lines [3]
arise from piecewise linear basis functions according to
degree one B-splines with the columns of W representing
the vertices of the polygonal curve. In a similar way,
Adaptive Principal Surfaces [4] can be specified using
products of one-dimensional degree one splines as basis
functions together with some constant function for compen-
sation of the bias. Regularized Principal Manifolds [5] can be
represented using general kernels and a constant term as
basis functions. Probabilistic Principal Surfaces [6] have
been proposed as an extension to the Generative Topo-
graphic Mapping [7] using a more general noise model but
the same manifold parametrization according to Gaussian
and constant basis functions. With some extensions to the
original formulations, Self-Organizing Maps [8], [9] can be
viewed as discrete approximations of principal manifolds
using piecewise constant basis functions according to
products of degree zero B-splines, in which case the columns
of W represent the supporting points of the discrete
approximation. This has been generalized in the Parame-
trized Self-Organizing Maps [10], where the piecewise
constant functions were replaced by a set of orthogonal
polynomials and where the supervised learning of map-
pings between different subsets of the observable data
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variables is viewed as the construction of a single data space
manifold indicating the close relation between supervised
and unsupervised learning of functions.

Although most approaches to principal surfaces are
actually based on some realization of (1), in practice, that
function model implies some inherent difficulties which
arise from the necessity to provide viable solutions to the
model selection problem. First, the model requires an a priori
specification of the M basis functions which should some-
how cover the latent space in a sufficient way. Using
localized basis functions, like Gaussians or splines, the
locations in latent space have to be specified. Often, a
regular square grid is imposed in order to restrict the range
of possible models to some tractable set of candidates. In
general, this choice cannot be expected to be optimal and,
for higher dimensionalities of the latent space, such an
approach becomes impractical. In addition, certain types of
basis functions also require the specification of an addi-
tional smoothness parameter, e.g., the bandwidth in the
Gaussian case. If the number of basis functions is not
restricted, i.e., it may even be higher than the number of
data points, then some regularizer for the corresponding
weights has to be introduced in order to make learning
feasible. In that case, a sensitive regularization parameter
has to be adjusted to control generalization.

For the Regularized Principal Manifolds, the model has
been restricted to a regular square grid for the experimental
results reported in [5]. The width of the Gaussian basis
functions was chosen in an ad hoc manner and the
regularization parameter was adjusted manually for the
reported results. For the Adaptive Principal Surfaces, an
iterative model refinement for successively adding new
basis functions has been proposed in [4]. The stopping
criterion for that scheme depends on a regularization
parameter, which has been fixed at a certain value.
Although the authors tried to motivate their particular
choice for that parameter as a general rule, for some of the
data sets considered in the paper, different values were
used to achieve the reported results. For the Probabilistic
Principal Surfaces [6], candidate models were restricted to a
regular square grid in the experiments. The width of the
Gaussian basis functions and a regularization parameter
were fixed in an ad hoc manner. Then, the authors just
compared several choices for a continuous noise model
parameter and two discrete complexity parameters for the
resulting projection error on hold-out data. With respect to
Self-Organizing Maps, only probabilistic formulations like
the Generative Topographic Maps [7] have actually faced
the model selection problem. In [11], a scheme for Bayesian
inference with regard to the regularization parameter and
the bandwidth of the Gaussian basis functions has been
proposed. For the experimental results on synthetic data,
the authors utilize a regular square grid with an ad hoc
choice of the number of basis functions and the number of
latent sample points.

In this paper, we introduce an approach to principal
surfaces based on an alternative class of functions together
with an associated learning scheme, which constitutes an
unsupervised version of classical kernel regression. The
resulting unsupervised kernel regression (UKR) approach aims
at overcoming the before-mentioned shortcomings of

previous approaches to principal surfaces. Thereby, the
focus of this paper is not on theoretically achievable
learning rates2 but on motivation and demonstration of
the practical advantages of the UKR approach.

In the following section, UKR is derived as the
unsupervised counterpart of the Nadaraya-Watson kernel
regression estimator. After that, a general UKR learning
scheme is proposed in terms of minimization of some cross-
validated reconstruction error. Next, by means of the kernel
trick [12], the concept of UKR is extended to general feature
spaces. In the subsequent section, examples on synthetic
and real-world data illustrate some of the convenient
features of the UKR approach in practice. In the discussion,
we focus on the relations to other approaches to nonlinear
dimensionality reduction, especially on the pros and cons
with regard to spectral embedding methods. In the last
section, we draw some final conclusions.

2 KERNEL REGRESSION ON LATENT VARIABLES

The basic idea of the UKR approach is to generalize the
Nadaraya-Watson kernel regression estimator [13], [14] to
the unsupervised case of function learning. In the super-
vised case with multivariate inputs and outputs, given a
sample fðx1;y1Þ; . . . ; ðxN;yNÞg from the joint distribution of
both variables, classical kernel regression is based on an
estimate of the conditional density pðy jxÞ ¼ pðx;yÞ=pðxÞ
using kernel density estimators [15] of the joint and
marginal densities, respectively. Then, the corresponding
conditional mean hyjxi yields an estimator of the regression
function fðxÞ. In order to derive an unsupervised counter-
part of a given method for supervised function learning, we
follow the Generalized Regression Framework [1], which
simply suggests to choose the same functional form of the
corresponding estimator, but to treat the missing input data
as parameters. These parameters xi 2 IRq serve as lower-
dimensional latent representations of the data points yi 2
IRd and, in general, some suitable constraints on these
parameters have to be introduced in order to make learning
possible. For reasons which will be indicated below, we
here assume the latent locations to be restricted to some
compact subset X � IRq. In the following, these latent points
are the columns of the parameter matrix X ¼ ½x1; . . . ;xN �,
while the actual data points are the column vectors of the
matrix Y ¼ ½y1; . . . ;yN � according to an iid sample from the
unknown data space distribution. With that choice, the
UKR function model takes the form

fðx;XÞ ¼
XN
i¼1

Kðx� xiÞPN
j¼1 Kðx� xjÞ

yi ¼ Ybðx;XÞ; ð2Þ

where the N-vector bðx;XÞ contains the kernel-based latent
basis functions, normalized according to a unit sum of its
components biðx;XÞ. The density kernelsKðvÞ are assumed
to have a continuous first derivative and may be chosen
from a wide range of possible functions (see, e.g., [15]).
Usually, the argument of a multivariate density kernel is
subject to a linear transformation by means of an invertible
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smoothing matrix H. In that way, the common notation
KðH�1=2uÞ implies a prior scaling of the data dimensions
and obviates the incorporation of any smoothing parameters
into the kernel. Here, we follow this convention, but we drop
the smoothing matrix because the scale of the latent points
themselves can be used to control the degree of smoothing.

In general, the objective of unsupervised function learn-
ing is to find a suitable realization of the mapping f : X !
IRd together with an associated latent representation [16].
Remarkably, in the UKR case, that objective can be stated as
the problem of finding a suitable latent mixture density

pðx;XÞ ¼ 1

N

XN
i¼1

Kðx� xiÞ; ð3Þ

which takes the form of a kernel density estimator, given
the latent points as “data.” For notational convenience, in
the following, the dependency on the parameters X shall be
omitted from references to p. With that latent density
model, the UKR-function can be completely specified
without any further parameters, except for some suitable
restriction of the latent domain X . Each basis function
response biðx;XÞ is then derived from the latent mixture
model as the posterior probability that x has been
generated by the ith mixture component. As compared
with function (1), the UKR-function (2) is also realized by
linear combinations of nonlinear latent basis functions.
However, the corresponding weight matrix is now replaced
by the data matrix and all flexibility is incorporated into the
N basis functions, which are realized by normalized kernels
with locations as free parameters. Thereby, each of the
N basis functions is associated with a data point such that
the response of the ith basis function determines the weight
of yi within a convex combination of data points.

In the following, we will show how the latent variable
domain X may be restricted in order to control the
complexity of the UKR-manifold

M ¼ fy 2 IRd j y ¼ fðx;XÞ; x 2 Xg; ð4Þ

which contains all possible images of the UKR-function.
According to the UKR function model (2), f can be viewed
as an estimator based on a weighted average of data points
with the kernel defining the effective size of a latent
neighborhood, which, in turn, determines the weights of the
data points. From this formulation, it is clear that, for a
sufficiently smooth UKR-manifold, q-dimensional points
which are close in latent space are associated with
d-dimensional points on the manifold which are close in
data space. Therefore, each point on the UKR-manifold has
to be the result of local averaging with respect to a
nonvanishing latent neighborhood in order to provide
generalization, i.e., a sufficient smoothness of the manifold.
On the other hand, a necessary condition for generalization
is that the UKR-manifold has to be restricted in terms of an
explicit or implicit upper bound on its spatial extension.
Otherwise, as with any other realization of principal curves
or surfaces, a nonlinear manifold may interpolate the data
to yield a trivial solution for any approximation criterion
based on minimization of some empirical risk or recon-
struction error.

For q ¼ 1, the spatial extension can be measured by the

curve-lengthZ
X
kYb0ðxÞkdx � kYk2

Z
X
kb0ðxÞkdx

� kYk2 max
x2X

kb0ðxÞk
Z
X
dx;

ð5Þ

where b0ðxÞ denotes the vector of all derivatives at x with

components

b0iðxÞ ¼
K0ðx� xiÞ
NpðxÞ �Kðx� xiÞp0ðxÞ

Np2ðxÞ : ð6Þ

Thus, for compact support X and continuously differenti-

able kernels, the length of the curve is upper bounded if the

density is lower bounded by some positive nonzero

constant within the latent domain. In a similar way, the

argument applies to manifolds with q > 1 (see Appendix A).

Recently, for principal curves within an empirical risk

minimization framework [3], it has been shown that an upper

bound on the curve length is also sufficient for generalization.

In [17], it has been shown that, alternatively, a bounded total

turn of the curve also provides a sufficient condition for

generalization. This formulation also includes the first

principal axis of a distribution as a special case. An extended

analysis which directly applies to general multidimensional

manifolds has been provided in [5].
The above considerations imply that an upper bound on

the spatial extension of the manifold can be realized by

defining the UKR-functions only on latent regions where

the density pðxÞ is sufficiently high. Then, the size of the

latent domain will always be bounded while, at the same

time, the magnitude of the derivatives of the basis functions

will be bounded. From (5) and (6), it follows that an upper

bound on the manifold’s spatial extension can be directly

controlled by a lower bound on the latent density, which

determines both the maximum possible magnitude of the

derivatives and the size of the latent domain. Therefore, in

order to control the complexity of the UKR-manifold, it

makes sense to define the latent domain X by means of a

density constraint

X � ¼ x 2 IRq j pðxÞ � �Kð0Þf g; 0 < � < 1: ð7Þ

As the manifold does not exist for regions of low density,

the above constraint can give rise to perforated or even

disconnected manifolds. Although, to our knowledge, such

manifolds have not been considered by previous ap-

proaches to principal surface learning so far, for a good

low-dimensional representation, it makes sense to define

the approximating manifold only in regions which are

actually supported by the data space distribution, i.e.,

where it can be estimated from the data.
In the following three sections, we propose a UKR

learning scheme for estimation of the latent points.

2.1 Data Space Reconstruction Error

After having defined the UKR function model, some

learning scheme for selecting a certain instance from the

set of possible functions has to be specified. Analogous to the
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supervised case where the regression functionminimizes the

mean square error (MSE), for the unsupervised case, we shall

now consider the error which occurs if the data points are

reconstructed from their latent representations. Given N

d-dimensional data points yi (the columns of Y) which are

reconstructed fromN q-dimensional latent variable vectors xi

(the columns of X), the reconstruction error of the data can

be defined in terms of the Frobenius-norm

RðXÞ ¼ 1

N

XN
i¼1

kyi � fðxi;XÞk2 ¼ 1

N
kY�YBðXÞk2F ; ð8Þ

where BðXÞ ¼ ½bðx1;XÞ; . . . ;bðxN ;XÞ� is the matrix of
latent basis function responses. Following the arguments
in [3], we restrict the set of candidate models according to
UKR-manifolds with a bounded spatial extension. Using
the density constraint (7), learning requires solving the
constrained optimization problem:

minimize RðXÞ subject to 8i xi 2 X�: ð9Þ

For the limiting case � ! 1, the kernel centers are forced to

coincide in order to reach the maximum possible overlap,

which, in turn, lets the UKR-manifold shrink toward the

sample mean of the data. Unfortunately, prior specification

of the parameter � would be difficult without any knowl-

edge on the optimal latent density. Considering � as a

hyperparameter, several values have to be compared for the

generalization of the resulting UKR-manifolds. As a

convenient alternative, in the following, we shall consider

a learning objective for implicit restriction of the latent

variable domain, which does not require a prespecified

density threshold.

2.2 Leave-One-Out Cross-Validation

With respect to the model selection problem, a striking and

very attractive feature of the UKR-approach is that it allows

us to perform leave-one-out cross-validation (CV) with

actually no additional computational cost. As an analogue

to the supervised CV-scheme for finding suitable kernel

bandwidths [15], the reconstruction error (8) may be

replaced by the cross-validated version

RcvðXÞ ¼ 1

N

XN
i¼1

kyi � f�iðxi;XÞk2 ¼ 1

N
kY�Y~BBðXÞk2F ;

ð10Þ

where f�i denotes the above linear combination of the data

in (2) with the ith data point excluded. This leave-one-out

UKR CV-error can simply be realized by a slightly

modified matrix of basis function activations ~BBðXÞ, where

all kernel functions Kð0Þ have been replaced by zeros. To

see the regularizing impact of the leave-one-out scheme,

the CV-error can be written as a modification of the

original objective function (8) with penalty functions Si

scaling the terms of the original error sum

RcvðXÞ ¼ 1

N

XN
i¼1

SiðXÞkyi � fðxi;XÞk2 ð11Þ

with penalty factors

SiðXÞ ¼ 1þ Kð0ÞP
j 6¼i Kðxi � xjÞ

( )2

/ pðxiÞ
p�iðxiÞ

� �2

: ð12Þ

From this formulation, it is clear that the penalty is realized

by an increasing weight Sið�Þ according to an increasing

ratio between the latent density and its leave-one-out

version p�i. In that way, the kernel functions are forced to

overlap in order to prevent the latent points from occupying

regions of vanishing density. In the following, we will

outline an overall optimization scheme for achieving good

local minima of that objective function.

2.3 Parameter Optimization

For minimization of the UKR CV-error (10), it is important

to find a sufficiently deep local minimum of the highly

nonconvex objective function. As with other approaches to

principal surfaces, shallow local minima can be associated

with arbitrarily bad manifolds which completely miss the

latent structure of the data. Because general methods for

global optimization, like simulated annealing, become

impractical for large parameter spaces, a good initial guess

for the parameters is crucial for the success of any method

for learning of principal surfaces.

If the optimal surface is not too far from a linear

manifold, then principal component analysis (PCA) can

provide a sufficiently good initialization of the parameters.

However, with UKR, it is straightforward to exploit any

algorithm for multidimensional scaling (MDS) to yield a

suitable initialization of the latent points, which are the only

free parameters of the model. In particular, recent spectral

embedding methods [18], [19], [20] which attempt to

recover the coordinates of the data with respect to some

implicit nonlinear manifold model should be well-suited for

an initial guess of the UKR-parameters. Given a set of latent

coordinates for the data, all that is needed to specify a

suitable initial UKR-function is an adequate scaling of these

coordinates. The scaling corresponds to the selection of the

kernel bandwidth in the case of normalized latent coordi-

nates with a fixed scale (e.g., unit variance). Optimal scale

factors are crucial for adjusting the complexity of the initial

UKR model and can be achieved by minimization of the

UKR CV-error.
In practice, we might have to choose an optimal

initialization from a set of candidates. If we are using a
nonlinear spectral method like LLE [18] to find an
initialization, for example, the set of candidates will result
from the fact that spectral embedding methods depend on a
natural neighborhood parameter that will have to be
adjusted prior to using UKR. In addition, it can be valuable
to include a PCA solution in the candidate set since, for
example, in case of very noisy data, the nonlinear spectral
method might fail.

In order to select the optimal initialization, we can
compare the CV-errors for several candidates and choose
the one with the lowest error. If a particular nonlinear
manifold model provides the best candidate solution, we
assume that this solution is close enough to the optimal
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manifold and, therefore, starting with the corresponding
scaled coordinates, we directly minimize the CV-error. If,
however, a coarse PCA-based solution is selected among all
candidate solutions, we apply a homotopy method [21] for
gradually increasing the model complexity during optimi-
zation in order to prevent bad local minima. This can be
achieved by stepwise relaxation of the density constraint (7)
via decreasing � until, finally, the unconstrained CV-error is
minimized.

In the following, we summarize the overall optimization
scheme for learning of the UKR model:

1. Initial candidates. Provide a set of L normalized
candidate solutions

C ¼ f�XXj 2 IRq�N j�XXj
�XX

T
j ¼ Iq; j ¼ 1; . . . ; Lg:

2. Scale optimization. Find optimal scale factors sj ¼
½sðjÞ1 ; . . . ; sðjÞq �T according to

sj ¼ argmin
s

RcvðdiagðsÞ�XXjÞ

and set Xj ¼ diagðsjÞ�XXj.
3. Candidate selection. As an initial guess, select best

matrix X̂X ¼ Xk according to

k ¼ argmin
j

RcvðXjÞ:

4. Homotopy method. If X̂X corresponds to the scaled
PCA solution, then, for a sequence of n decreasing
density thresholds � ¼ �1; . . . ; �n, solve

X̂X ¼ arg min
xi2X �

RcvðXÞ:

5. CV-error minimization. Starting either with Step 3 or
Step 4 solution, compute

X̂X ¼ argmin
X

RcvðXÞ:

6. Density threshold. Select final density threshold
according to

� ¼ min
i

pðx̂xi; X̂XÞ=Kð0Þ:

For gradient-based optimization in Steps 4 and 5, the
required matrix gradient together with some considerations
concerning computational complexity of function and
gradient evaluation can be found in Appendix B.

With regard to the last step of the above scheme, we like
to stress that the choice of a suitable density threshold �
should usually be driven by application specific constraints.
In applications where no additional data have to be
projected after training, there is actually no need to specify
that parameter at all. In other applications, a close
inspection of the latent density after training may, for
example, suggest to adjust � according to the 90 percent
contour of the density in order to reduce the influence of
outliers on the boundaries of the final UKR-manifold.
Therefore, the above choice should only provide a default

value which just ensures that all reconstructions of the
training data are part of the manifold.

3 FEATURE SPACE UKR

As another convenient feature of the UKR approach, the
corresponding function model (2) also suggests general-
izing unsupervised learning of nonlinear functions beyond
conventional finite-dimensional data spaces to general
Hilbert spaces, implied by the associated inner product of
a given Mercer or positive definite kernel. In order to apply
the kernel trick [12] to UKR learning, we first have to write
our algorithm in a form solely based on inner products of
the data. The reconstruction error (8) can therefore be
written as

RðXÞ ¼ 1

N
kY�YBðXÞk2F ¼ 1

N
kY �BBk2F

¼ 1

N
trð �BBTYTY �BBÞ ¼ 1

N
trð �BBTG �BBÞ;

ð13Þ

where �BB � I�BðXÞ and G � YTY is the Gram matrix of
the data with entries gij ¼ hyi;yji. Replacing the inner
product h�; �i with a kernel function kð�; �Þ yields an implicit
mapping ��ð�Þ from data space into some feature space F
with the property h��ðyiÞ;��ðyjÞi ¼ kðyi;yjÞ. Note that the
kernels applicable here belong to a different class of
functions than the kernels used for the UKR basis functions,
which have been derived from kernel density estimators.3

UKR as a translation invariant algorithm works not only
with the commonly used positive definite or Mercer
kernels, but also with the larger class of conditionally positive
definite kernels [12].

Computation of the feature space error only requires
computing the Gram matrix of the transformed data matrix,
i.e., the matrix of all inner products between feature vectors,
and, therefore, only the corresponding kernel matrix KðYÞ
with elements kij ¼ kðyi;yjÞ is required. Consequently, the
partial derivatives may solely be computed in terms of
inner products, i.e., by using the kernel matrix:

@RðXÞ
@xij

¼ 1

N

@

@xij
trð�BBT

KðYÞ�BBÞ ¼ � 2

N
tr �BB

T
KðYÞ @B

@xij

� �
;

ð14Þ

where the matrix @B=@xij contains all partial derivatives
@brðxs;XÞ=@xij of the basis functions. By using the above
formalism, UKR-functions may be fitted in feature spaces in
the same way as in usual data spaces. For complexity
control of the feature space variant, the previous cross-
validation scheme based on (10) applies in the same way as
in the corresponding data space formulation. For very high-
dimensional data spaces IRd, it may also make sense to
consider the feature space formulation (using the standard
dot product as a kernel) in order to reduce computational
cost. For that purpose, one can precalculate the Gram
matrix of the data in order to avoid direct evaluation of the
UKR-function Ybð�;XÞ, which scales linearly with d.
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A minor drawback of the feature space variant remains:
Because the UKR-function in a kernel feature space takes
the form

fðx;XÞ ¼
X
j

�ðyjÞbjðx;XÞ; ð15Þ

in general, the points of the UKR-manifold in feature space
cannot be given explicitly. Although several methods that
can map feature space vectors back to data space have
recently been proposed (see [22] and [23], for example), in
the general case where an exact preimage does not exist,
these methods can only yield an approximation.

Fortunately, in applications where only dot products
between (15) and other feature space elements are needed,
an explicit computation of the mapping is not necessary.
Here, one may compute a linear combination of dot
products, instead of a dot product with a linear combination:

�ðyÞ; fðx;XÞh i ¼
X
j

kðy;yjÞbjðx;XÞ: ð16Þ

This can, for instance, be utilized to visualize the classifica-
tion boundary of a kernel-based support vector machine. In
that case, the additional kernel parameters may be selected
in a supervised manner. But also, in a completely
unsupervised setting, feature space UKR may be useful
and, in the following, we propose a special kernel for
realization of an alternative metrics.

If the Euclidean norm does not provide an adequate
distance metrics for the data at hand, it can be beneficial to
measure L1-distances instead. UKR is explicitly based on the
Euclidean norm, but, by means of the kernel trick, one can
nonetheless effectively work with distances based on the
L1-norm. Defining a kernel function

kðy;y0Þ ¼ 1

2
kyk1 þ ky0k1 � ky� y0k1ð Þ ð17Þ

yields a positive definite kernel matrix KðYÞ ¼ kðyi;yjÞ
� �

and, thus, implies existence of a mapping �ðyÞ into some
feature space F (see Appendix C for a derivation). The

Euclidean distance between two feature space images can

be expressed by

k�ðyÞ � �ðy0Þk22 ¼ �ðyÞ � �ðy0Þ;�ðyÞ � �ðy0Þh i
¼ kðy;yÞ � 2kðy;y0Þ þ kðy0;y0Þ
¼ ky� y0k1:

ð18Þ

In that way, the derivation of the above L1-kernel corre-

sponds to the definition of kernels on the basis of loss

functions [24].

4 EXPERIMENTS

We applied UKR on synthetic and real-world data sets in

order to illustrate theproposed learning schemeof Section 2.3

on practical examples. As indicated in Section 2.3, the

proposed UKR optimization scheme can easily incorporate

spectral embedding methods for initialization of the UKR

parameters. For the exemplary results presented here, we

utilized the Locally Linear Embedding (LLE) algorithm [18].

In addition, we used an efficient shortcut for finding optimal

scalings that are necessary to turn the normalized eigenvec-

tor solutions into good UKRmodel initializations: We found

that, for this purpose, good initial scalings can be obtained

from kernel bandwidth selection methods for density

estimation. In our experiments, we utilized likelihood

cross-validation (LCV, see e.g., [25]) to select suitable

bandwidths, i.e., to adjust the initial scale of the latent

coordinates. Subsequent optimization of the scale of the

latent variables with the objective to minimize the CV-error

(10) was performed by a direct search algorithm [26], which

may easily be replaced by more sophisticated methods for

unconstrained nonlinear optimization.

4.1 “Noisy Spiral” Data

To demonstrate the complete UKR learning scheme on a

nontrivial toy example, we fitted an UKR curve to a sample

(N ¼ 300) of the “noisy spiral” distribution depicted in Fig. 1.

The data was created by adding Gaussian noise of standard
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Fig. 1. Fitting UKR curves to a “noisy spiral” sample: Below each plot, the size of the LLE neighborhood (K) is given, as well as the CV-error after
initialization. The plot in the lower right corner shows the manifold retrieved by PCA initialization. The black curve depicts the UKR manifold, whereas
the sample data is shown as dark gray dots. The initial solution (as given by LLE or PCA) is plotted in light gray. Here, we just connected the data
points in the order LLE/PCA places them in latent space, which corresponds to an infinite scale of the latent variable. Note that the visually best
solutions (K ¼ 8; 10) correspond to the smallest CV-errors.



deviation � ¼ 0:05 in both dimensions to a sample of a spiral

with two whorls, its radius ranging from 0:2 to 1:2.
For initialization (cf., Step 1 in Section 2.3), we applied

the LLE algorithm based on K nearest neighbors. In this

experiment, we varied K from four to 14 neighbors, giving

rise to 11 different candidate sets of latent coordinates. As a

12th candidate, we used a PCA solution. For each

candidate, the optimal scaling was determined as described

above, according to Step 2 of our optimization scheme.
Fig. 1 shows the resulting initializations and their

corresponding CV-errors (10). For each of the 12 cases, we

have visualized the initial UKR-manifold by evaluating the

UKR function (2) on 1,000 regularly spaced points between

the smallest and the largest latent coordinate.
As described in Step 3 of Section 2.3, we selected the

candidate model with the lowest CV-error, which, in this

case, was the scaled LLE solution of neighborhood size

K ¼ 10. For the fine tuning (Step 5) of the UKR model, we

further minimized the CV-error (10), this time varying not

only the scale, but the whole set of latent parameters. For

this task, we used the RPROP algorithm [27].
Fig. 2 shows how the UKR model is affected by the final

gradient-based optimization. Note that the CV-error as well

as the visualized manifold practically remains almost

unchanged between 500 and 1,000 RPROP steps.
From the UKR curves in Fig. 2, the reader might argue

that the method already tends to over-fitting in this

example. This is actually not the case, as can be seen from

estimation of the expected reconstruction error for the

different stages of the optimization. For that purpose, we

projected 3,000 test data points sampled from the same

“noisy spiral” distribution onto the UKR manifold in the

different stages. For these projections, we initialized the

minimization problem

x̂x ¼ argmin
x

ky� fðx;XÞk subject to pðxÞ � �Kð0Þ ð19Þ

with the “nearest reconstruction” among the training data.

That is, we chose that xi among the 300 latent locations as an

initial value which yields the nearest point on the manifold

with respect to the given test point. The optimization itself

was carried out by the RPROP algorithm in combination

with a barrier function to realize the constraint. The density

threshold �, used to restrict the latent domain, was selected

by the heuristics described by Step 6 in Section 2.3. Table 1

shows the resulting errors for the different stages and clearly

shows that both training (CV) and test error are decreasing
for the more complex curves.

4.2 Handwritten Digits

We applied UKR to the problem of learning suitable
manifold representations for handwritten digit data. In this
experiment, we used the USPS digits data set (see, e.g., [12]),
which contains a total of 7,291 grayscale images of size 16x16
divided into 10 classes. For visualization purposes, we fitted
a 2D manifold to the USPS subset representing the digit “2,”
which left us at 731 data vectors with 256 dimensions.

To demonstrate UKR’s flexibility with respect to the
choice of the latent kernel functions and to show how a
finite support kernel can improve computational efficiency,
we performed this experiment with both the Gaussian
kernel and the Quartic kernel. The latter corresponds (up to
some constant scaling) to the square of the multivariate
Epanechnikov kernel [15], which, due to squaring, becomes
differentiable:

KQðxr � xsÞ / ½1� kxr � xsk2�2þ: ð20Þ

The resulting sparse structure of BðXÞ can lead to a
significant performance gain with respect to evaluation of
the error function and its gradient and is therefore
particularly useful in combination with large data sets
(see Appendix B).

For fitting the model, we followed the parameter
optimization scheme described in Section 2.3. That is, we
first calculated the PCA solution and several LLE solutions
for a broad range of neighborhood sizes (K ¼ 2; 3; . . . ; 21).
Next, as in our “noisy spiral” experiment, we optimized the
scale of these initialization candidates by first performing
LCV-based bandwidth selection and then applying a direct
search method for fine tuning.

As before, in order to select the best candidate among
our set of scaled LLE and PCA solutions, we calculated the
CV-error (10) for each candidate. Fig. 3 shows these errors
for both the Quartic and the Gaussian kernels. Note that
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Fig. 2. Gradient-based optimization of the UKR curve on “noisy spiral” sample: The shape of the UKR manifold and the corresponding CV-error is

depicted after initialization based on the best scaled LLE solution (K=10) as well as after 200, 500, and 1,000 RPROP steps.

TABLE 1
Mean Error for Projecting 3,000 Test Points

onto the “Noisy Spiral” UKR Manifold



both error curves are close and that the corresponding UKR
models share the LLE solution with K ¼ 12 nearest
neighbors as the best initialization candidate (of course,
each uses its own scale).

As a last training step, we performed 500 RPROP steps
minimizing the CV-error (10). At this stage, the error
dropped from 83.53 to 50.90 for the Gaussian-based UKR
model and from 83.62 to 51.52 for the model using the
Quartic kernel in latent space.

Figs. 4a and 4b shows the resulting latent coordinates

and the corresponding density. To create Figs. 4c and 4d,

we sampled the latent space on a regular grid and

evaluated the regression function (2) as well as the latent

density on every node. We displayed the grayscale images

corresponding to the UKR function value and additionally

scaled their intensity by the latent density at the specific

grid coordinates.
Note that it is possible to assign meaning to the axes in

the sampled manifold plots: From left to right, the digits

loose their lower left bow and look more and more like a

“Z.” From top to bottom, the digits get thinner and flatter.
While fitting UKR models with both the Gaussian and

the Quartic kernel led to similar results with respect to

CV-errors and visualization, the difference in terms of

CPU time is remarkable. We measured the time needed to

perform 500 RPROP steps on a Linux PC with a Pentium

IV processor running at 1.8 GHz and 1 GB RAM. Since the

number of dimensions (256) is nearly half as big as the

number of data (731), we performed this test using both

normal data space UKR and feature space UKR with the

trivial dot product kernel (cf., Appendix B). The resulting

CPU times (averaged across two very close test runs) can

be found in Table 2.
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Fig. 3. CV-errors for the different LLE and PCA solutions.

Fig. 4. Latent coordinates, densities, and sampled manifolds of both the Gaussian and Quartic kernel based UKR model. (a) Latent coordinates and
density (Gaussian kernel). (b) Latent coordinates and density (Quartic kernel). (c) Sampled manifold (Gaussian kernel). (d) Sampled manifold
(Quartic kernel).



4.3 ”Oil Flow” Data

For our third experiment, we used the “oil flow” data set
[7], which has also been used in [5]. The data set consists of
12-dimensional (labeled) observations, each taking on one
of three possible labels that indicate different geometric
configurations inside an oil pipeline. It is subdivided into a
training set, a validation set, and a test set containing
1; 000 examples each.

Since the data set is fairly clustered (see Fig. 5a), LLE
performs poorly. For LLE to return reasonable results, one
has to make sure that the neighborhood graph associated
with respect to a neighborhood value K is connected. For
the “oil flow” data set, this is the case for K � 46. Within
neighborhoods of that size, the real local properties of the
data are mostly hidden, so one would hardly expect to
retrieve a good mapping. As a result, all LLE solutions that
we tested (we used K ¼ 46; 51; 56 . . . 101) led to substan-
tially larger CV-errors (10) than a PCA solution.

We therefore chose the PCA solution as an initialization.
According to Step 4 of the optimization scheme (Section 2.3),
we used a homotopy-based approach for optimization in

order to avoid poor local minima. Starting from the PCA

solution scaled down to a total variance of 0.01, we carried

out seven homotopy steps corresponding to density

constraints with � ¼ 0:5; 0:25; 0:1; 0:05; 0:025; 0:01; 0:005. For

each homotopy step, we performed 100 RPROP steps in

combination with a barrier function to realize the con-

straints. After the homotopy steps, we further performed

300 RPROP steps minimizing the unconstrained CV-error

(10). Note that the model selection problem is again tackled

solely by minimization of the UKR CV-error. Although the

�-values may affect which local minimum is found, they

have no (at least no conceptual) influence on the model

complexity.
In this experiment, we again used both the Gaussian

kernel and the Quartic kernel in latent space, but here we

present only the results of our Gaussian-based UKR model

since it led to slightly better results in terms of the final

CV-error. Note that the gain in efficiency we get by using

the Quartic kernel is not that big for the homotopy-based

training anyway. This is due to the fact that, in early

homotopy steps, the density constraint prevents a high

sparseness of the matrix of basis functions BðXÞ.
To demonstrate UKR’s ability to work with a different

metrics, we fitted another manifold to the training set: In

addition to the above data space UKR, we now performed

feature space UKR using the L1-kernel (17) proposed in

Section 3. In this case, we replaced PCA by Kernel PCA

(KPCA) for initialization.
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TABLE 2
CPU Time for 500 RPROP Steps on the Digit “2” Data Set

Fig. 5. Latent coordinates of “oil flow” data set retrieved by (K)PCA and (feature space) UKR. (c) and (f) show the resulting latent densities and the

class borders based on kernel density classifiers, as well as the test data projections. (a) PCA ðL2Þ. (b) UKR ðL2Þ. (c) Class borders and test data

projections ðL2Þ. (d) KPCA ðL1Þ. (e) UKR ðL1Þ. (f) Class borders and test data projections ðL1Þ.



In a follow-up experiment, we exploited the manifold
structure by mapping the “oil flow” test set onto the trained
manifolds. Here, we followed the strategy already de-
scribed in our “noisy spiral” experiment. That is, we
constrained the latent domain according to our density
threshold heuristics and again performed the test set
projections by the RPROP algorithm in combination with
a barrier function.

As an objective measure for the preservation of structure
that the different methods give rise to, we then considered
classification performance in the latent space, now using the
labels of the data. For this end, we used a kernel density
classifier (KDC), as suggested by UKR’s built in latent space
density model. For each test case projection, we measured
the class specific densities and assigned the test case to the
class with the highest density. Table 3 shows the resulting
error rates in comparison with the rates obtained by
applying the kernel density classifier on the PCA and the
KPCA solution. For these solutions, we determined suitable
kernel bandwidths using LCV. For comparison, we also
included the rates obtained by using nearest neighbor (NN)
classification in the 2D latent space.

Figs. 5a, 5b, 5d, and 5e show the PCA (respectively,
Kernel PCA) as well as the UKR solutions for the latent
variables. The data points are depicted by different symbols
corresponding to their class membership. Note that UKR
separates the classes much better than (K)PCA and that the
different metrics have an effect on which classes are
contiguous. Figs. 5c and 5f show the total density, the class
borders, and the density threshold contour pðxÞ ¼ �Kð0Þ as
well as the test data projections depicted by their
corresponding class symbols.

5 DISCUSSION

Considering recent spectral embedding methods for nonlinear
dimensionality reduction [18], [19], [20], one may raise the
question whether algorithms for learning of principal
surfaces are actually necessary in order to derive a suitable
low-dimensional representation for high-dimensional data.
As compared with classical methods for nonlinear dimen-
sionality reduction, which rely on local minimization of
highly nonconvex objective functions (see, e.g., [28]),
spectral methods provide a favorable scheme for global
optimization, based on computation of some N-dimensional
eigenvectors. Unfortunately, for nonlinear dimensionality
reduction, these methods require the specification of some
essential complexity parameter, which usually adjusts the
effective size of a data space neighborhood. Although the
resulting representations are rather sensitive with respect to
this complexity parameter, no common rule is known how
to adjust this parameter. Consequently, all available

implementations lack an automatic neighborhood selection
procedure and, therefore, the user is restricted to the
unsatisfactory practice of adjusting this parameter “by eye.”
Another shortcoming of the above spectral methods
concerns the projection of new data which is impossible
due to the lack of an explicit manifold model which would
make it possible to measure the distance of data points with
respect to the low-dimensional surface. For the same
reason, it is not possible to sample the manifold, i.e., to
compute the data space images of latent points.

Although Kernel PCA [29] has not been proposed for
learning of descriptive low-dimensional representations [5],
in comparisonwith the above spectral methods for nonlinear
dimensionality reduction, a linear manifold in feature space
provides an explicit manifold representation in this case.
Therefore, the projection indices, i.e., the latent coordinates
of new data points, can be computed with ease, but, again, it
is not generally possible to sample the manifold due to the
lack of an exact mapping from latent space to data space.
This shortcoming is also faced with feature space UKR and
has been discussed in Section 3. Although the feature space
distancewith respect to the linearmanifold can bemeasured,
it is not clear whether it can be used for model selection with
regard to the kernel parameters. To our knowledge, in
practice, no unsupervised model selection has been per-
formed for Kernel PCA so far. The close relations between
the above spectral methods and Kernel PCA have recently
been indicated in [30].

Summarizing, we argue that spectral methods for
nonlinear dimensionality reduction do not provide a
general alternative to learning of principal surfaces. Due
to the lack of an explicit data space representation of the
manifold, as compared with principal surfaces, the
application scope of these methods is restricted. In
addition, these methods do not provide solutions to the
inherent model selection problem which requires to adjust
the complexity of the underlying mapping to latent space.
However, regarding the inherent parameter initialization
problem of principal surfaces, as shown in Section 4,
spectral embedding methods in combination with UKR can
provide a valuable alternative to classical initializations
based on linear PCA.

6 CONCLUSION

Unsupervised Kernel Regression (UKR) has been proposed
as an alternative approach to learning of principal surfaces
which remedies some of the inherent difficulties of previous
approaches within that field. As compared with previous
approaches to principal surfaces, UKR offers a practical way
to cope with the model selection problem, since it allows for
leave-one-out cross-validation without any additional com-
putational cost. Thereby, the UKR parametrization obviates
the necessity of an a priori specification of a set of basis
functions which has to cover the latent space in a suitable
way. Therefore, higher-dimensional latent spaces can easily
be realized, provided there are enough data. Although
previous approaches to principal surfaces always assumed
very simple topologies of the manifold, the variability of
UKR consequently meets the requirements of a good
approximation of a general data space distribution.

Regarding optimization issues, it is straightforward to
initialize UKR parameters by means of nonlinear spectral
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TABLE 3
Comparison of Classification Performance
(Error Rate) on the “Oil Flow” Test Data



methods. The incorporation of an initial set of latent
coordinates is easily possible because the latent points
themselves are the only parameters of the UKR model. In
this way, UKR can even be used to select the best initial set
of latent coordinates among several candidate sets which
may arise from different choices for the hyperparameter of
the utilized spectral method.

Finally, UKR offers a new perspective on principal
surfaces to cope with non-Euclidean data spaces. By means
of the kernel trick, principal surfaces may now be fitted in
general feature spaces according to a given kernel for
computing the corresponding inner product. In that way,
UKR allows us to utilize string, tree, or even specialized
engineering kernels for nonlinear projection of text docu-
ments, genomic sequences, and other data which are
difficult to represent within traditional vector spaces.

APPENDIX A

SPATIAL EXTENSION OF UKR-MANIFOLD

To generalize our argument from Section 2 to the case q > 1,
we have to show that the manifold’s area or volume is
bounded. For this end, recall that an infinitesimal volume
element dx1dx2 . . . dxq at a point x in latent space transforms
into a hyperparallelepiped at fðx;XÞ in data space, spanned
by the vectors J1dx1;J2dx2 . . .Jqdxq. Here, Ji denotes the ith
column of the Jacobian of fðx;XÞ. Since the volume of a
hyperparallelepiped is less or equal to the volume of a
hyperrectangle of corresponding side lengths, and since the
norm of each Ji is less or equal to the largest singular value
(and thus, the matrix norm) of the complete Jacobian Jf , the
volume of our infinitesimal hyperparallelepiped is bounded
by kJfkq2dx1dx2 . . . dxq.

We can use this inequality to estimate the complete
manifold’s volume V by integration over the latent domain:

V �
Z
X
kJf ðx;XÞkq2dx1dx2 . . . dxq

� kYkq2
Z
X
kJbðx;XÞkq2dx1dx2 . . . dxq:

ð21Þ

The components of Jbðx;XÞ, the Jacobian of bðx;XÞ, are
given by

ðJbÞij ¼
rjKðx� xiÞ

NpðxÞ �Kðx� xiÞrjpðxÞ
Np2ðxÞ ð22Þ

and are finite for continuously differentiable kernels and
nonvanishing density. Thus, the matrix norm kJbð�Þk2 �
kJbð�ÞkF is bounded. For compact support X , this implies
that themanifold’s volume (or area for q ¼ 2) is bounded too.

APPENDIX B

UKR GRADIENT

With the matrix B of basis function activations according to
the elements

brs ¼
Kðxr � xsÞPN
t¼1 Kðxt � xsÞ

; ð23Þ

the partial derivatives of the UKR reconstruction error (8)
with respect to the latent variable parameters have the
general form

@RðXÞ
@xij

¼ 1

N

X
r;s

@trð½B� I�TYTY½B� I�Þ
@brs

� @brs
@xij

¼ 2

N

X
r;s

mrs
@brs
@xij

ð24Þ

with elements mrs of matrix M � YTY½B� I�, where the
Gram matrix YTY may be replaced by a general kernel

matrix KðYÞ (see Section 3).
In order to give a more specific form of the partial

derivatives (24), one has to make a choice concerning the
kernel functions in latent space (which have been derived
from a specific kernel density estimator). An important
class of kernels, which will be considered in the following,
arises from functions of the squared Euclidean norm:

Kðxr � xsÞ ¼ fðkxr � xsk22Þ ð25Þ
with partial derivatives given by

@Kðxr � xsÞ
@xij

¼ 2f 0ðkxr � xsk22Þðxir � xisÞð�rj � �sjÞ: ð26Þ

Defining matrix P with elements

prs ¼
�2f 0ðkxr � xsk22ÞPN

t¼1 Kðxt � xsÞ
; ð27Þ

the partial derivatives of the basis function responses can be
written

@brs
@xij

¼ prs½�rjxis � �rjxir � �sjxis þ �sjxir�

� brs �sj
X
t

ptsðxit � xisÞ � pjsðxij � xisÞ
" #

:

ð28Þ

Insertion of the partial derivatives into (24) and rearranging
the terms yields

@RðXÞ
@xij

¼ 2

N

X
r

ðxir � xijÞðqjr þ qrjÞ; ð29Þ

where we used the elements

qjr ¼ pjrmjr � pjr
X
s

msrbsr ð30Þ

of an N �N-matrix Q. Using the Schur product A ¼ B 	C
with aij ¼ bijcij and 1 as a vector of N ones, (29) and (30)
can be written in matrix form as

Q ¼ P 	 ½M� 11T ðM 	BÞ�; ð31Þ

rXR ¼ 2

N
X QþQT � diagð1T ½QþQT �Þ
� �

: ð32Þ

In this paper, we consider Gaussian and Quartic kernels

given by

KGðxr � xsÞ / expð� 1

2
kxr � xsk22Þ; ð33Þ

KQðxr � xsÞ / ½1� kxr � xsk22�
2
þ; ð34Þ
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which imply specific realizations of the P-matrix:

pgaussrs ¼ KGðxr � xsÞP
t KGðxt � xsÞ

; ð35Þ

pquartrs ¼ 4 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
KQðxr � xsÞ

pP
t KQðxt � xsÞ

: ð36Þ

Note that, for Gaussian Kernels, P equals the matrix of basis
function responses B.

As already mentioned in Section 2.2, the CV-error (10)
can be calculated by a slight modification of the matrix of
basis functions. This also applies to computing the gradient,
where all occurences of both Kð0Þ and f 0ð0Þ have to be
replaced by zeros.

Most of the computational effort to perform a single
gradient evaluation goes into calculating the matrix
M ¼ YTY½B� I� or, in case of feature space UKR,
M ¼ KðYÞ½B� I�. When using a latent kernel of infinite
support (e.g., the Gaussian kernel), this operation has
complexity OðdN2Þ for using the d�N data matrix or
OðN3Þ in case of feature space UKR. For 2d > N , it is
therefore cheaper to perform feature space UKR with the
precalculated kernel (feature) matrix KðYÞ ¼ YTY.

If a latent kernel of finite support is utilized (e.g., the
Quartic kernel), the resulting matrices B and P are sparse.
This can be directly exploited to speed up the calculation of
M by using sparse BLAS routines. Because the matrix M
only appears within Schur products together with sparse
matrices (31), as a second speed-up possibility M does not
even have to be computed completely. For a d�N data
matrix, computing the necessary elements of M is only of
complexity OðdNnzÞ where Nnz is the number of nonzero
elements in B.

Since feature space UKR does not involve an intermedi-
ate multiplication with the data matrix Y, it profits even
more from B0s sparseness. Here, the computational com-
plexity is Oð

P
iðni

nzÞ
2Þ, where ni

nz is the number of nonzero
elements in the ith column of B. For this reason, fitting of
Quartic-based UKR models can be accelerated by using
trivial dot product feature space UKR already for values of
d substantially smaller than N

2 .

APPENDIX C

POSITIVE DEFINITENESS OF L1-KERNEL

In Section 3, we introduced a kernel function that maps
input space L1-distances to L2-distances in feature space.

To show that the kernel we used is indeed positive
definite (pd) and, thus, a mapping �ð�Þ exists, we rely on
theorems stated in [12]. First, it is known that k2ðy;y0Þ ¼
�ky� y0k�2 is conditionally positive definite (cpd) for all
values 0 � � � 2. Now, considering the special case of
1D data and � ¼ 1, one gets k1ðy; y0Þ ¼ �jy� y0j as a cpd
kernel. A sum of cpd kernels is again cpd, so k1ðy;y0Þ ¼
�ky� y0k1 ¼

P
i �jyi � yi

0j is cpd. Finally, one can con-
struct a pd kernel kð�; �Þ from a cpd kernel ~kkð�; �Þ in the
following way:

kðy;y0Þ ¼ 1

2
~kkðy;y0Þ � ~kkðy;y0Þ � ~kkðy0;y

0Þ þ ~kkðy0;y0Þ
� �

:

ð37Þ

Setting y0 ¼ 0 and ~kk ¼ k1 immediately yields that kðy;y0Þ ¼
1
2 ðkyk1 þ ky0k1 � ky� y0k1Þ is positive definite. As men-
tioned before, UKR also works with cpd kernels, so the last
step was not really necessary.
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