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What next?

Le Hammer
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Deep learning of vision?

I Geometry, stereo, structure-from-motion, motion
understanding, activity analysis, tracking, optic flow,
modeling object relations, scene understanding,
articulation, odometry, analogy, ...

I Need to represent relations.
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Some things are hard to infer from still images

(Ayvaci, Soatto 2012)
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Random dot stereograms
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Learn relations by concatenating images?

z

[
x ;y

]xi yj

wjk

zk

I Problem: This would make unit xi conditionally
independent of unit yj given z.
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Learn relations by concatenating images?

z

[
x ;y

]xi yj

zk

I Solution: Allow xi and yj to be in one clique.
I This will require “transistor neurons” that can do more than

weighted summation.
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wTx ?

I Mel, 1994
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Families of manifolds

y
x

I If y is a transformed version of x , then y will be on a
conditional manifold.

I Idea: Learn a model for y , but let parameters be a
function of x .
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Bi-linear models

yj

xi

x y

z
zk

I With wjk (x) =
∑

i wi jkxi we have

zk =
∑

j

wjkyj =
∑

j

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj
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Bi-linear models

yj

xi

x y

z
zk

I Similar for y :

yj =
∑

k

wjkzk =
∑

k

(∑
i

wijkxi
)
zk =

∑
ik

wijkxizk
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Learning by predicting y from x

yj

xi

x y

z

zk

I Predictive cost: ∑
j

(
yj −

∑
ik

wijkxizk )
2

I (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005),
(Olshausen; 2007), (Memisevic, Hinton; 2007)
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Example: Gated Boltzmann machine

yj

xi

x y

z

zk

E(x ,y , z) =
∑

ijk wijk xiyjzk

p(y , z|x) = 1
Z (x) exp

(
E(x ,y , z)

)
Z (x) =

∑
y,z exp

(
E(x ,y , z)

)
p(zk |x ,y) = sigmoid(

∑
ij Wijk xiyj)

p(yj |x , z) = sigmoid(
∑

ik Wijk xizk )

I An RBM that is defined at test-time (Memisevic, Hinton;
2007)
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Example: Gated autoencoder

xi
zzk

yj y

ŷj ŷ

x

I Encoder and decoder weights become a function of x .
I Training with back-prop (Memisevic, 2008)

Roland Memisevic Representing relations April 16, 2014



Factored Gated Autoencoder

x

y

z

x

ŷ

I Projecting onto filters first allows us to use fewer products.
(Memisevic, Hinton 2010), (Taylor et al 2009)

I This is equivalent to factorizing the three-way parameter
tensor.
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Toy examples

I There is no structure in these images.
I Only in how they change.
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Learned filters wx
if
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Learned filters wy
jf
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Rotation filters
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Rotation filters
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Filters learned from split-screen shifts
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Natural video filters
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Natural video filters
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More theory

(I) Orthogonal transformations decompose into 2-D
rotations:

UTLU =

R1
. . .

Rk

 Ri =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]

I (Eigen-decomposition L = UDUT has complex
eigenvalues of length 1.)

(II) Commuting transformations share an eigen-basis:
I They differ only with respect to the rotation-angle they

apply in their eigenspace.
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(I)+(II)

x

y = Lx

UT

U
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To detect the rotation angle, compute a 2-d inner
product
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Transformations are transformation-invariant

Re

θ

Im
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Transformations are transformation-invariant

Re

Im

θ
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Transformations are transformation-invariant

Re

Im

θ
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Use videos not images at test-time
aperture feature similarities image similarities

0

0
1

1 2

2

I (Memisevic, Exarchakis 2013)
I Cf. (Cadieu, Olshausen 2011), (Zou et al 2012)
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Deep learning for stereo

left image right image predicted disparity
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Deep learning for stereo (Konda et al 2013)
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Inferred depth map

I Top: inferred depth map, bottom: thresholded to remove
uncertain regions
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Hollywood 3D (Hadfield, et al. 2013)

I filters:

x left :

xright:
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Precision rates by action class

Action SAE-
MD

SAE-
MD(Av)

SAE-
MD(Ct)

SAE-M SAE-D ISA 3D-Ha 4D-Ha 3.5D-Ha

NoAction 12.10 12.77 13.10 15.73 12.15 12.27 12.1 12.9 13.7
Run 52.56 50.44 51.45 45.38 56.07 24.91 19.0 22.4 27.0
Punch 41.09 38.01 32.68 33.86 36.17 31.17 10.4 4.8 5.7
Kick 9.41 7.94 6.86 6.63 11.84 9.96 9.3 4.3 4.8
Shoot 30.26 35.51 30.49 30.52 40.72 32.48 27.9 17.2 16.6
Eat 5.85 7.03 6.78 7.29 9.03 6.89 5.0 5.3 5.6
Drive 52.65 59.62 51.35 61.61 45.19 54.47 24.8 69.3 69.6
UsePhone 22.79 23.92 19.01 23.60 23.36 17.67 6.8 8.0 7.6
Kiss 15.03 16.40 16.12 17.86 17.06 14.94 8.4 10.0 10.2
Hug 6.64 7.02 7.61 7.38 9.27 9.48 4.3 4.4 12.1
StandUp 37.35 34.23 37.01 29.16 15.01 26.71 10.1 7.6 9.0
SitDown 6.51 6.95 7.53 7.40 9.06 5.13 5.3 4.2 5.6
Swim 16.58 29.48 17.60 29.45 26.70 16.09 11.3 5.5 7.5
Dance 43.15 36.26 44.59 29.64 25.12 53.72 10.1 10.5 7.5
mean AP 25.14 26.11 24.45 24.61 24.05 22.55 12.6 13.3 14.1
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Analogy making

A : A′ :: B : ?

1. Infer transformation:
z(xsource,ysource)

2. Apply transformation:
y(z,xtarget)
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Analogy making
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Analogy making for expression transfer

I (Susskind, et al., 2011)
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NORB analogies
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Using analogies for training (Michalski, 2013)

I infer transform, predict future, then backprop-through-time

I problem: transformation assumed to be constant
I solution: add a layer (or more)
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Higher-order predictions (Michalski, 2013)

I the first additional layer will learn accelerations
I learn long-term correlations without explicit memory units
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Predictive training
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Predictive training
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Predictive training
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Predictive training
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Predictive training
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Predictive training
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Bouncing balls
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Music as 2nd order difference equation
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Classification as analogy making

zk

z

y

x

xi

yj

I Class-label maps input into an interpretation.
I Alternatively: Hiddens transform input into label
I Closed form for p(y |x) (Memisevic, et al.; 2010), (Nair,

2008), (Larochelle et al, 2008)
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Conclusions

I Vision (and cognition) make heavy use of relations.
I Making relations first-class objects may allow us to solve

many tasks with a single model and with a single learning
rule.

I Inductive bias for building deep learning models (eg: get
more mileage out of local learning rules)
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Thank you!

Questions?
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