Representing relations

Roland Memisevic

University of Montreal, LISA lab

April 16, 2014

Roland Memisevic

Representing relations

What next?

Le Hammer

Roland Memisevic

Representing relations

Deep learning of vision?

Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optic flow, modeling object relations, scene understanding, articulation, odometry, analogy, ...

Deep learning of vision?

- Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optic flow, modeling object relations, scene understanding, articulation, odometry, analogy, ...
- Need to represent relations.

Some things are hard to infer from still images

(Ayvaci, Soatto 2012)

Roland Memisevic

Representing relations

Random dot stereograms

Learn relations by concatenating images?

Problem: This would make unit x_i conditionally independent of unit y_i given z.

Roland Memisevic

Representing relations

Learn relations by concatenating images?

- Solution: Allow x_i and y_i to be in one clique.
- This will require "transistor neurons" that can do more than weighted summation.

Roland Memisevic

Representing relations

w^T**x** ?

▶ Mel, 1994

Roland Memisevic

Representing relations

Families of manifolds

- If y is a transformed version of x, then y will be on a conditional manifold.
- Idea: Learn a model for y, but let parameters be a function of x.

Bi-linear models

• With
$$w_{jk}(\mathbf{x}) = \sum_{i} w_{ijk} x_i$$
 we have
 $z_k = \sum_{j} w_{jk} y_j = \sum_{j} \left(\sum_{i} w_{ijk} x_i \right) y_j = \sum_{ij} w_{ijk} x_i y_j$

Bi-linear models

Similar for y:

$$y_j = \sum_k w_{jk} z_k = \sum_k \big(\sum_i w_{ijk} x_i\big) z_k = \sum_{ik} w_{ijk} x_i z_k$$

Learning by predicting *y* from *x*

Predictive cost:

$$\sum_{j} (y_j - \sum_{ik} w_{ijk} x_i z_k)^2$$

 (Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Roland Memisevic

Representing relations

Example: Gated Boltzmann machine

 An RBM that is defined at test-time (Memisevic, Hinton; 2007)

Roland Memisevic

Representing relations

Example: Gated autoencoder

- Encoder and decoder weights become a function of x.
- Training with back-prop (Memisevic, 2008)

Factored Gated Autoencoder

- Projecting onto filters *first* allows us to use fewer products. (Memisevic, Hinton 2010), (Taylor et al 2009)
- This is equivalent to *factorizing* the three-way parameter tensor.

Roland Memisevic

Representing relations

Toy examples

- There is no structure in these images.
- Only in *how they change*.

Roland Memisevic

Representing relations

Learned filters w_{if}^{χ}

Roland Memisevic

Learned filters w_{jf}^{y}

Roland Memisevic

Rotation filters

Rotation filters

Filters learned from split-screen shifts

Natural video filters

Natural video filters

More theory

(I) Orthogonal transformations decompose into 2-D rotations:

$$U^{\mathrm{T}}LU = \begin{bmatrix} R_1 & & \\ & \ddots & \\ & & R_k \end{bmatrix} \qquad R_i = \begin{bmatrix} \cos(\theta_i) & -\sin(\theta_i) \\ \sin(\theta_i) & \cos(\theta_i) \end{bmatrix}$$

 (Eigen-decomposition L = UDU^T has complex eigenvalues of length 1.)

(II) Commuting transformations share an eigen-basis:

They differ only with respect to the rotation-angle they apply in their eigenspace. (I)+(II)

Roland Memisevic

Representing relations

Transformations are transformation-invariant

Roland Memisevic

Transformations are transformation-invariant

Roland Memisevic

Transformations are transformation-invariant

Use videos not images at test-time

- (Memisevic, Exarchakis 2013)
- Cf. (Cadieu, Olshausen 2011), (Zou et al 2012)

Roland Memisevic

Representing relations

Deep learning for stereo

Deep learning for stereo (Konda et al 2013)

Inferred depth map

 Top: inferred depth map, bottom: thresholded to remove uncertain regions

Roland Memisevic

Representing relations

Hollywood 3D (Hadfield, et al. 2013)

Roland Memisevic

Representing relations

Precision rates by action class

Action	SAE- MD	SAE- MD(Av)	SAE- MD(Ct)	SAE-M	SAE-D	ISA	3D-Ha	4D-Ha	3.5D-Ha
NoAction	12.10	12.77	13.10	15.73	12.15	12.27	12.1	12.9	13.7
Run	52.56	50.44	51.45	45.38	56.07	24.91	19.0	22.4	27.0
Punch	41.09	38.01	32.68	33.86	36.17	31.17	10.4	4.8	5.7
Kick	9.41	7.94	6.86	6.63	11.84	9.96	9.3	4.3	4.8
Shoot	30.26	35.51	30.49	30.52	40.72	32.48	27.9	17.2	16.6
Eat	5.85	7.03	6.78	7.29	9.03	6.89	5.0	5.3	5.6
Drive	52.65	59.62	51.35	61.61	45.19	54.47	24.8	69.3	69.6
UsePhone	22.79	23.92	19.01	23.60	23.36	17.67	6.8	8.0	7.6
Kiss	15.03	16.40	16.12	17.86	17.06	14.94	8.4	10.0	10.2
Hug	6.64	7.02	7.61	7.38	9.27	9.48	4.3	4.4	12.1
StandUp	37.35	34.23	37.01	29.16	15.01	26.71	10.1	7.6	9.0
SitDown	6.51	6.95	7.53	7.40	9.06	5.13	5.3	4.2	5.6
Swim	16.58	29.48	17.60	29.45	26.70	16.09	11.3	5.5	7.5
Dance	43.15	36.26	44.59	29.64	25.12	53.72	10.1	10.5	7.5
mean AP	25.14	26.11	24.45	24.61	24.05	22.55	12.6	13.3	14.1

Analogy making

A: A' :: B: ?

1. Infer transformation:

$$\boldsymbol{z}(\boldsymbol{x}_{\text{source}}, \boldsymbol{y}_{\text{source}})$$

2. Apply transformation:

$$y(z, x_{ ext{target}})$$

Analogy making

Analogy making for expression transfer

(Susskind, et al., 2011)

Roland Memisevic

Representing relations

NORB analogies

and have 3 2ha 3 -1.1 + he min p 14

Using analogies for training (Michalski, 2013)

infer transform, predict future, then backprop-through-time

Roland Memisevic

Representing relations

Using analogies for training (Michalski, 2013)

- infer transform, predict future, then backprop-through-time
- problem: transformation assumed to be constant

Using analogies for training (Michalski, 2013)

- infer transform, predict future, then backprop-through-time
- problem: transformation assumed to be constant
- solution: add a layer (or more)

Higher-order predictions (Michalski, 2013)

- the first additional layer will learn accelerations
- learn long-term correlations without explicit memory units

Roland Memisevic

Representing relations

**	×	×	X	×								
			X	X	*	*	*	*	*	\$	S.	\$4
			the state	X	**		***	*	*	赫	跡	辦
			X	×	×	*	×	S.	Se .	4	No.	at the
			×	×	*		*	÷	×	×	×	×
¥.	Ł	ł	1	\$								
			1	4	*	٠	٠	٠	٠	٠	٠	٠
			1	1	#	H	٠	٠	٠	٠	٠	٠
			1	ø	4		٠	٠	٠	٠	٠	٠
			1	1	ø	M	.8	-14	*	*	*	+

0	0	9	9	-								
			-	-	0	I	4	¥	¥	*	٠	٠
			-	-	R	Z	a.	4	200	Q.	2	\mathcal{D}
			9	0	0	9	3	8	0	0	0	9
			9	-	0	0	0	0	0	0	0	9
=	=}	+	+	+								
			+	+	+	*	*	*	4	4	4	٠
			+	+	+	*	*	*	1	锁	动	动
			+	+	+	-+	-+	-	-	-	-	
			+	+	H.	-7-	w}	-	-7	-7-	-7	-7

际	渐	The second	the	李								
			dir.	-	*	٠	٠	٠	٠	٠	٠	٠
			4	*	×	S.	¥	*	4	÷	×	*
			the second	歌	歌	-	-	-	۲	۲	٠	٠
			the second	*	*	*	٠	٠	٠	٠	٠	٠
9	1	1)	0								
			9	0	0	0	9	•	٠	٠	٠	٠
			0	0	3	3	*	÷	٠	w	٠	٠
			0	0	0	0	-	9	2	9	9	3
			9	3	0	9		0	9	7	M	9

4	4	1	\$	ø								
			1	4	*	۲	٠	٠	٠	٠	٠	٠
			*	4	H	ile.	٠	٠	٠	u	٠	٠
				#	#		٠	٠	٠	٠	٠	٠
			1				8		٠	٠	٠	٠
-	7	3	3	9								
			3	-	3	3	0	0	0	0	٥	٥
			9	9	9	9	P	120	1	a.	¢	1
)		9	4	۲	٠	٠	٠	٠	٠
			3	0	0	1	-	-	-	-	0	0

Roland Memisevic

Representing relations

Bouncing balls

÷	.:	٠.	••	•.•
•:	•:	:.	•:	:
•	••	••	:•	••
•••	•••	:.	•••	•
••	•:	••	••	•••

Roland Memisevic

Music as 2nd order difference equation

Roland Memisevic

Representing relations

Classification as analogy making

- Class-label maps input into an *interpretation*.
- Alternatively: Hiddens transform input into label
- Closed form for p(y|x) (Memisevic, et al.; 2010), (Nair, 2008), (Larochelle et al, 2008)

Roland Memisevic

Representing relations

Conclusions

- Vision (and cognition) make heavy use of relations.
- Making relations first-class objects may allow us to solve many tasks with a single model and with a single learning rule.
- Inductive bias for building deep learning models (eg: get more mileage out of local learning rules)

Thank you! Questions?