Deep Learning as compute paradigm

Roland Memisevic

University of Montreal

January 28, 2015

Machine Learning

classic view: Learning allows us to harness data

Machine Learning

- classic view: Learning allows us to harness data
- better view: Learning allows us to harness hardware

Neural networks run on parallel operations

Von Neumann via Deep Learning

(Bahdanau et al. 2014), (Graves et al, 2014), (Weston et al, 2014), (Grefenstette et al. 2015), etc.

Neural networks run on parallel operations

Floating point multiplication

figure from: http://www.gamasutra.com/view/news/128521/Indepth_IEEE_754_Multiplication_And_Addition.php

Waste of circuitry?

Low-precision weights

 Courbariaux, Bengio, David (2015): Stochastically binarize (or ternarize) weights during propagation (forward and backward) of activations:

$$p(W_{ij} = 1) = \frac{W_{ij} + 1}{2}, p(W_{ij} = -1) = 1 - P(W_{ij} = 1)$$

Method	MNIST	CIFAR-10	SVHN
No regularizer	$1.30\pm0.04\%$	10.64%	2.44%
BinaryConnect (det.)	$1.29\pm0.08\%$	9.90%	2.30%
BinaryConnect (stoch.)	$1.18\pm0.04\%$	8.27%	2.15%
50% Dropout	$1.01\pm0.04\%$		
Maxout Networks 29	0.94%	11.68%	2.47%
Deep L2-SVM 30	0.87%		
Network in Network 31		10.41%	2.35%
DropConnect 21			1.94%
Deeply-Supervised Nets 32		9.78%	1.92%

 see also (Soudry et al, NIPS 2014), (Cheng et al, arXiv 2015), (Hwang & Sung, 2015)

Neural nets with few multiplications

Lin, Courbariaux, Memisevic, Bengio (2015):

Backprop updates:

$$\Delta W = [\eta \delta \circ h'(Wx + b)] x^{\mathrm{T}}$$

$$\Delta b = \eta \delta \circ h'(Wx + b)$$

$$\delta = [W^{\mathrm{T}}\delta] \circ h'(Wx + b)$$

- Eliminate multiplications in updates by quantizing activations to power of two
 - see also (Simard, Graf 1992)
 - Iow precision activations: (Kim, Smaragdis 2015), (Hwang, Sung 2014), (Vanhoucke et al 2011)

	Full precision	Binary connect	Binary connect + Quantized backprop	Ternary connect + Quantized backprop
MNIST	1.33%	1.23%	1.29%	1.15%
CIFAR10	15.64%	12.04%	12.08%	12.01%
SVHN	2.85%	2.47%	2.48%	2.42%

	Full precision	Ternary connect + Quantized backprop	ratio
without BN	1.7498×10^{9}	3.6988×10^{6}	0.002114
with BN	1.7554×10^{9}	9.2741 × 10 ⁶	0.005283

Transfer learning

- A sufficiently universal computational model can learn to solve many different problems.
- This allows us to pool tasks and overcome data scarcity, without unsupervised learning.
- Pre-trained modules are the software libraries of DL.
- (Girshick et al 2014), (Razavian et al 2014), (Luong et al 2015), etc.

An example:

Gatys, Ecker, Bethge (2015)

generic \leftrightarrow specific

according to the classic paradigm:

specific: faster, but tedious to program

 \leftrightarrow

generic: slower, but easy to program

according to the DL paradigm:

specific: more accurate, but more data needed

 \leftrightarrow

generic: less accurate, but less data needed

Where are humans along that scale?

3 + x = 7

- We solve equations like these using "dexterous manipulation" involving our motor cortex.
- See, eg., (Hofstadter, Sander 2013), (Lakoff, 1980), or the "embodied cognition" movement

Cognition via analogy making is useful: It enables data pooling

Twenty Billion Neurons

www.twentybn.com

Thank you Questions?