
Deep Learning:
Architectures, algorithms, applications

Roland Memisevic

University of Montreal

August 23, 2015

Roland Memisevic Deep Learning August 23, 2015

Outline

Part I:
1. Intro, motivation
2. Machine learning 101
3. Neural nets, backprop, RNNs
4. Applications

Part II:
1. Structured prediction
2. Unsupervised learning
3. Attention→ Reasoning→ “Neural programs”
4. Architecture exploration
5. Towards hardware-friendlier DL
6. Software

Roland Memisevic Deep Learning August 23, 2015

Rosenblatt’s perceptron (1957)

pictures from http://www.rutherfordjournal.org/article040101.html

Roland Memisevic Deep Learning August 23, 2015

Rosenblatt’s perceptron (1957)

w1

wD

x1

xD

y
y(
∑

i wixi) =
y(wTx)

I ”the embryo of an electronic computer that [the
Navy] expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence”

(in NYT according to wikipedia)

Roland Memisevic Deep Learning August 23, 2015

Rosenblatt’s perceptron (1957)

w1

wD

x1

xD

y
y(
∑

i wixi) =
y(wTx)

I ”the embryo of an electronic computer that [the
Navy] expects will be able to walk, talk, see, write,
reproduce itself and be conscious of its existence”

(in NYT according to wikipedia)

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

Wx y

I ML allows us to harness training data
(
xn, tn

)
n=1...N

I ML allows us to harness parallelization

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

Wx y

I ML allows us to harness training data
(
xn, tn

)
n=1...N

I ML allows us to harness parallelization

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

Wx y

I ML allows us to harness training data
(
xn, tn

)
n=1...N

I ML allows us to harness parallelization

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

w

x1

x2

wTx = 0

wTx < 0

wTx > 0

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

w

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

w

Roland Memisevic Deep Learning August 23, 2015

Machine Learning

w

Roland Memisevic Deep Learning August 23, 2015

The XOR problem

x1

x2

Roland Memisevic Deep Learning August 23, 2015

The XOR problem and multi-stage processing

x1

x2

Roland Memisevic Deep Learning August 23, 2015

The XOR problem and multi-stage processing

x1

x2

x1 · x2

Roland Memisevic Deep Learning August 23, 2015

Multi-stage processing

x y

h1 h2 h3

W 01 W 12 W 23 W out

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

A common computer vision pipeline before 2012
1. Find interest points.

2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.

3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

f1

fn

A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.

4. Combine the descriptors into a representation of the
image.

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

f M
1

f M
nf 1

n

f 1
1

A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

high-rise

?

cathedral

f2

f1

I This creates a representation that even a linear
classifier can deal with.

bottom line: non-linear pipelines are useful
(aka “the representation matters”)

Roland Memisevic Deep Learning August 23, 2015

“It’s the features, stupid!”

high-rise

?

cathedral

f2

f1

I This creates a representation that even a linear
classifier can deal with.

bottom line: non-linear pipelines are useful
(aka “the representation matters”)

Roland Memisevic Deep Learning August 23, 2015

What do good low-level features look like?

I Local features that are
often found to work well
are based on oriented
structure (such as Gabor
features)

I These were discovered
again and again (also in
other areas) and are
closely related to the
Short Time Fourier
Transform.

Roland Memisevic Deep Learning August 23, 2015

Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Roland Memisevic Deep Learning August 23, 2015

Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Most common networks interleave matrix multiplies with
element-wise non-linearities:

y(x) = W outh(W 23h(W 12h(W 01x)))

Usually there are constant “bias”-terms as well.

Roland Memisevic Deep Learning August 23, 2015

Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Common non-linearities:
sigmoid: h(a) = 1

1+exp(a)
ReLU: h(a) = a · [a > 0] tanh: h(a) = ea−e−a

ea+e−a

Roland Memisevic Deep Learning August 23, 2015

Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

For classification tasks, turn class outputs into probabilities
using the “softargmax” function:

p(Ck |x) =
exp(yk(x))∑

j exp(yj(x))

Roland Memisevic Deep Learning August 23, 2015

Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

For training, use a (large) training set
(
xn, tn

)
n=1...N and

minimize a suitable cost-function.
The minimization is usually done using stochastic gradient
descent (SGD).

Roland Memisevic Deep Learning August 23, 2015

The most common choices of cost function

I Regression (predict real values):

cost =
1
2

N∑
n=1

‖y(xn)− tn‖2

I Classification (predict discrete labels):

cost = −
N∑

n=1

K∑
k=1

tnk log p(Ck |xn)

where tnk = 1 iff training case n belongs to class k .

Roland Memisevic Deep Learning August 23, 2015

Stochastic gradient descent (SGD)

θ(0)

θ(τ)

θ(τ+1)= θ(τ) − η∂cost(xn,tn)
∂θ

new parameter value

learning rateold parameter value

For one or several training cases at a time, iterate:
1. compute cost (forward pass)
2. compute derivatives (backward pass)
3. update parameters

Roland Memisevic Deep Learning August 23, 2015

Stochastic gradient descent (SGD)

θ(0)

θ(τ)

θ(τ+1)= θ(τ) − η∂cost(xn,tn)
∂θ

new parameter value

learning rateold parameter value

I Most operations performed on each training example
will be matrix-vector products.

I To get a higher arithmetic intensity it is common to
use mini-batches (often of size ≈ 100, currently...).

I Each full pass through the training set is called an
epoch.

Roland Memisevic Deep Learning August 23, 2015

Computing derivatives: Error back-propagation
(backprop): Rumelhart, Hinton, Williams 1986

x y

h1 h2 h3

W 01 W 12 W 23 W out

cost(x , t)

I Use the chainrule! For regression and classification we get:
∂cost
∂y(xn)

= y(xn)− tn

I Next: If y has any parameters, W out, collect them using:

∂cost
∂W out = (y(xn)− tn) ·

∂y(xn)

∂W out

I Next: Descend to the next layer by computing

∂cost
∂h3

=
∂cost
∂y(xn)

· ∂y(xn)

∂h3(xn)
...and so on...

Roland Memisevic Deep Learning August 23, 2015

Backprop general form

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

bprop grad

∂f
∂wf

∂f
∂g

fprop

f

I Backprop can be thought of as an engineering
principle, that prescribes how to design an
end-to-end train-able system from differentiable
components:

I Use components which provide the methods fprop,
bprop and grad. Then backprop can be automated.

I Well-suited for support by software frameworks
Roland Memisevic Deep Learning August 23, 2015

Potential Issues

I “But what about local minima?”
I “But what about overfitting?”
I Vanishing gradients

Roland Memisevic Deep Learning August 23, 2015

The cost surface/local optima

I Local minima not an issue in practice
I This is probably due to high dimensional parameter

space, which causes most critical points to be saddle
points not local optima.

I Some recent theoretical work supports this view
(Choromanska et al. 2014); (Dauphin, et al. 2014)

figure from wikipedia

Roland Memisevic Deep Learning August 23, 2015

Overfitting

w

Roland Memisevic Deep Learning August 23, 2015

Overfitting

Roland Memisevic Deep Learning August 23, 2015

Overfitting in regression

(Bishop 2006: Pattern recognition and machine learning)

Roland Memisevic Deep Learning August 23, 2015

Preventing overfitting in neural networks

I Early stopping:

training iteration

training cost

training iteration

validation cost

I Weight decay (somewhat outdated): add a weight
penalty to the training objective (weight constraints
now more common)

I Dropout (Hinton et al., 2012): Corrupt hidden unit
activations during training

I More data
I Weight sharing (reduce the number of parameters):

Roland Memisevic Deep Learning August 23, 2015

Weight sharing

x y

h1 h2 h3

W 1,2
2,3

W 2,3
5,6

0x32ff

I Parameters can be shared by having them point to
the same memory location.

I Very common way to reduce parameters and
encode prior knowledge.

I Central ingredient in conv-nets (CNNs) and recurrent
nets (RNNs).

I Caveat: It requires long-range communication.
Roland Memisevic Deep Learning August 23, 2015

The vanishing gradients problem

x y

h1 h2 h3

W 01 W 12 W 23 W out

I The backward-pass is a sequence of matrix multiplies.
I Depending on the magnitude of the eigenvalues,

initial values can blow up or decay to zero.
I This can may learning difficult or slow.
I Potential solutions: architectural tricks (for example,

the “LSTM” unit)

Roland Memisevic Deep Learning August 23, 2015

Neural nets learn distributed representations

x y

h1 h2 h3

W 01 W 12 W 23 W out

I Neural networks encode information as vectors of real
values.

I This makes it easy to encode conceptual similarities.
In a text processing task, for example:

I If user searches for Dell notebook battery size, we
would like to match documents with “Dell laptop
battery capacity”

I If user searches for Seattle motel, we would like to
match documents containing “Seattle hotel”

(Example from Chris Manning)
Roland Memisevic Deep Learning August 23, 2015

Summary so far

1. Non-linear pipelines are good
2. It is easy to train non-linear pipelines end-to-end using

back-prop + SGD
3. Local minima are a non-issue
4. Overfitting is an issue, but it can be solved

I The two crucial changes that made deep learning
work on real-world tasks ≈ 2010:

GPUs + Large datasets

Roland Memisevic Deep Learning August 23, 2015

DL impact in speech recognition

figure from Yoshua Bengio

Roland Memisevic Deep Learning August 23, 2015

Convolutional networks (CNN)

I LeCun et al. 1998
I The gist: Instead of feeding a large image to the

network, feed small patches to the network.
I → dramatic reduction of parameters
I CNNs also have subsampling layers, so higher layers

see more of the image.

Roland Memisevic Deep Learning August 23, 2015

ImageNet challenge 2012

Roland Memisevic Deep Learning August 23, 2015

ImageNet challenge 2012

some first-layer features

some results

Krizhevsky, Sutskever, Hinton; 2012

Roland Memisevic Deep Learning August 23, 2015

High-level features

Girshick et al., 2014

Roland Memisevic Deep Learning August 23, 2015

GoogLeNet (Szegedy et al. 2014)

I Exercise in (a) scaling up, (b)
unconventional architectures

I Won ImageNet 2014 with 6.66%
top-5 error rate

I A variation of this network including
BatchNormalization (Ioffe, Szegedy,
2015) achieves 4.8% top-5 error rate,
surpassing the accuracy of human
raters

Roland Memisevic Deep Learning August 23, 2015

Emotion recognition in the wild Challenge 2013

Roland Memisevic Deep Learning August 23, 2015

Conv-nets learn good generic features

non-imagenet classes:

(Donahue et al, 2013)

Roland Memisevic Deep Learning August 23, 2015

Word embeddings

I Bengio et al 2000
I This is a way to learn distributed representations for

symbols (words).

Roland Memisevic Deep Learning August 23, 2015

Word embeddings

King - Man + Woman = Queen

Mikolov et al. 2013

Roland Memisevic Deep Learning August 23, 2015

Robotics/Reinforcement Learning

Levine et al. 2015 Mnih et al. 2013

Roland Memisevic Deep Learning August 23, 2015

Recurrent networks (RNN)

picture from http://www.cs.toronto.edu/ asamir/cifar/Ilya slides.pdf

I Stepping the network T time steps yields the
equivalent of a T -layer feedforward net with weights
that are shared between layers.

I Training the network by unrolling it in time is called
back-prop-through-time (BPTT).

I Vanishing gradients especially problematic here.
Roland Memisevic Deep Learning August 23, 2015

Long-Short Term Memory (LSTM)

(Hochreiter, Schmidthuber; 1997)

Roland Memisevic Deep Learning August 23, 2015

RNN applications (thanks mainly to LSTM)

I Machine Translation (Sutskever et al. NIPS 2014), (Cho
et al. Arxiv 2014)

I Speech synthesis (Fan et al. INTERSPEECH 2014)
I Speech recognition (Hannun et al., 2014)
I Handwriting generation

http://www.cs.toronto.edu/ graves/handwriting.html
I Text generation
I Caption generation

Roland Memisevic Deep Learning August 23, 2015

The encoder-decoder architecture

Machine translation examples:

Sutskever et al. NIPS 2014, Bahdanau et al. 2014

Roland Memisevic Deep Learning August 23, 2015

Caption generation (Xu et al 2015)

Roland Memisevic Deep Learning August 23, 2015

Handwriting generation

http://www.cs.toronto.edu/ graves/handwriting.html

Roland Memisevic Deep Learning August 23, 2015

Generating text

from: Andrej Kaparthy:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Roland Memisevic Deep Learning August 23, 2015

Generating text

from: Andrej Kaparthy:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Roland Memisevic Deep Learning August 23, 2015

Generating text

from: Andrej Kaparthy:
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Roland Memisevic Deep Learning August 23, 2015

DRAWing (Gregor et al., 2015)

Roland Memisevic Deep Learning August 23, 2015

Sentence embeddings (Kiros et al 2015)
I A natural generalization of a word embedding is a

sentence embedding:

Roland Memisevic Deep Learning August 23, 2015

Deep Learning as a compute paradigm

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

I perform a series of operations to
solve a task

I + use learning to define the
computations

I + make each computation parallel

Roland Memisevic Deep Learning August 23, 2015

Deep Learning as a compute paradigm

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

I perform a series of operations to
solve a task

I + use learning to define the
computations

I + make each computation parallel

Roland Memisevic Deep Learning August 23, 2015

Deep Learning as a compute paradigm

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

I perform a series of operations to
solve a task

I + use learning to define the
computations

I + make each computation parallel

Dense, parallel computations are easy, if we
don’t need to program them.

Roland Memisevic Deep Learning August 23, 2015

Deep learning needs parallel hardware.

Parallel hardware needs deep learning.

Roland Memisevic Deep Learning August 23, 2015

Part II: Research directions, software tools, outlook

Roland Memisevic Deep Learning August 23, 2015

Structured prediction

Roland Memisevic Deep Learning August 23, 2015

Structured prediction
Prediction:

yx

Structured prediction:

x y

Problem: combinatorial explosion
Solution: Impose tractable dependency structure

x y

I Applications: Scene labeling, text, speech, ...

Roland Memisevic Deep Learning August 23, 2015

Structured prediction
Prediction:

yx

Structured prediction:

x y

Problem: combinatorial explosion
Solution: Impose tractable dependency structure

x y

I Applications: Scene labeling, text, speech, ...

Roland Memisevic Deep Learning August 23, 2015

Structured prediction
Prediction:

yx

Structured prediction:

x y

Problem: combinatorial explosion

Solution: Impose tractable dependency structure

x y

I Applications: Scene labeling, text, speech, ...

Roland Memisevic Deep Learning August 23, 2015

Structured prediction
Prediction:

yx

Structured prediction:

x y

Problem: combinatorial explosion
Solution: Impose tractable dependency structure

x y

I Applications: Scene labeling, text, speech, ...

Roland Memisevic Deep Learning August 23, 2015

Solution proposed in 1998

I Main insight: When layers are complex graphs,
back-prop still works (LeCun et al 1998)

I This observation was recycled in 2001 under the name
Conditional Random Field

Roland Memisevic Deep Learning August 23, 2015

Streetview (Goodfellow et al, ICLR 2014)

I recent extension to recognizing text in images: eg.
Jaderberg et al. ICLR 2015

Roland Memisevic Deep Learning August 23, 2015

Towards scene understanding

Farabet et al, 2013

Roland Memisevic Deep Learning August 23, 2015

Unsupervised learning

Roland Memisevic Deep Learning August 23, 2015

The curse of dimensionality

I There are 216∗16 tiny binary images
of size 16× 16 pixels.

I A child of age 3 has seen less than
10 billion images and much fewer
labeled images.

I How is it possible we can do any
vision?

Roland Memisevic Deep Learning August 23, 2015

The curse of dimensionality

All natural images

All images

Roland Memisevic Deep Learning August 23, 2015

Unsupervised learning

x

z

g(x)f (z)

I Data may be distributed along some
lower-dimensional manifold in the dataspace.

Roland Memisevic Deep Learning August 23, 2015

Principal Components Analysis (PCA)

x2

x1

I If that manifold is linear, learning is easy and it can
done in closed form: Compute the eigenvectors of
the data covariance matrix.

Roland Memisevic Deep Learning August 23, 2015

Autoencoders

sk

xj

Akj

Wjk

x

r(x)

x̂j

I If the manifold is non-linear (or
not a really a manifold) we
can use autoencoders.

I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress the inputs.

Roland Memisevic Deep Learning August 23, 2015

Autoencoders

xj

Akj

Wjk

x

r(x)

x̂j

sk

I In practice, it is more common
to use overcomplete hiddens
and to enforce compression in
other ways (for example, by
making the hidden activations
sparse).

Roland Memisevic Deep Learning August 23, 2015

Autoencoders learn to do compression

r(x) = Wh
(
WTx + b

)

x

r(x)

0 0 1 0 0 0 0

0 0 1 0 0 0 0

1 1 0

Roland Memisevic Deep Learning August 23, 2015

Autoencoders learn to do compression

r(x) = Wh
(
WTx + b

)

x

r(x)

0 0 0 0 0

0 0 0 0

1 10

00 1

10

Roland Memisevic Deep Learning August 23, 2015

Stacked autoencoders (Le et al. 2012)

Roland Memisevic Deep Learning August 23, 2015

Other unsupervised methods

I Restricted Boltzmann machines
I Independent components analysis
I Sparse coding
I K-means clustering
I Most of these models can be implemented as a form

of autoencoder, or trained using their own,
specialized learning criteria.

Roland Memisevic Deep Learning August 23, 2015

The utility of unsupervised learning

I Unsupervised learning helps when the amount of
labeled data is small.

I But its utility pales in comparison to supervised
back-prop on lots of data.

I Possible reasons:
I (i) reconstruction may be the wrong objective
I (ii) we need to scale up more
I (iii) we need to rethink unsupervised learning

Roland Memisevic Deep Learning August 23, 2015

Architecture/non-linearities

Roland Memisevic Deep Learning August 23, 2015

wTx ?

Mel, 1994

Roland Memisevic Deep Learning August 23, 2015

”Transistor neurons”

z

[
x;y

]xi yj

zk

I Many tasks are based on
encoding relations not things:
Analogy making, motion
understanding, invariance,
depth estimation

I Multiplicative neurons may be
a way to efficiently learn and
encode such structure.

Roland Memisevic Deep Learning August 23, 2015

LSTM uses gating to address vanishing gradients

(Hochreiter, Schmidthuber; 1997)
I LSTM addresses the vanishing gradients problem by

introducing a constant unit (with self-connection 1.0)
surrounded by “control logic” (gating units).

Roland Memisevic Deep Learning August 23, 2015

Other RNN gating mechanisms

xjxi

zk

z

x t−1 x t

Cho et al 2014 Michalski et al 2014

Roland Memisevic Deep Learning August 23, 2015

Orthogonal transformations

UTLU =

R1
. . .

Rk

 Ri =

[
cos(θi) − sin(θi)
sin(θi) cos(θi)

]

x

y = Lx

UT

U

Roland Memisevic Deep Learning August 23, 2015

sine waves

Roland Memisevic Deep Learning August 23, 2015

sine waves

Roland Memisevic Deep Learning August 23, 2015

sine waves

Roland Memisevic Deep Learning August 23, 2015

sine waves

Roland Memisevic Deep Learning August 23, 2015

chirps

0 5 10
predict-ahead interval

0

1.0

1.8

m
ea

n
sq

ua
re

d
er

ro
r

(CRBM vs RNN vs grammar cells)

Roland Memisevic Deep Learning August 23, 2015

Harmonics

Roland Memisevic Deep Learning August 23, 2015

Form attention to differentiable models of
computation and “neural programs”

Roland Memisevic Deep Learning August 23, 2015

Attention

Hard attention Soft attention
(Mnih et al, 2014) (Bahdanau et al, 2014)

Roland Memisevic Deep Learning August 23, 2015

Differentiable models of computation
I Neural Turing Machine (Graves et al, 2014)
I Memory Networks (Weston et al, 2014)
I Learning to Transduce with Unbounded Memory

(Grefenstette et al. 2015)

I To be able to back-propagate, all operations have to
be based on differentiable operations

I (But sampling-based methods may work otherwise)
Roland Memisevic Deep Learning August 23, 2015

Learning to execute (Zaremba, Sutskever; 2014)

Roland Memisevic Deep Learning August 23, 2015

From neural networks to “neural programs”

Kumar et al 2015

Roland Memisevic Deep Learning August 23, 2015

From neural networks to “neural programs”

Kumar et al 2015

Roland Memisevic Deep Learning August 23, 2015

Von Neumann via Deep Learning

I In the past we simulated neural nets on classic
hardware and it didn’t work

I Today we simulate classic hardware on neural nets
and it works beautifully

The benefit of today’s way: Add parallelization and your
“program” may run faster and faster and faster...

Roland Memisevic Deep Learning August 23, 2015

Towards hardware-friendlier deep learning

Roland Memisevic Deep Learning August 23, 2015

Deep learning with limited precision

I Gupta et al, 2015
I Courbariaux et al, 2015:

Format Prop. Up. PI MNIST MNIST CIFAR10 SVHN
Single float 32 32 1.05% 0.51% 14.05% 2.71%
Half float 16 16 1.10% 0.51% 14.14% 3.02%
Fixed point 20 20 1.39% 0.57% 15.98% 2.97%
Dynamic fxp. 10 12 1.28% 0.59% 14.82% 4.95%

Roland Memisevic Deep Learning August 23, 2015

Spiking networks

Sparsity levels in two networks
trained on CIFAR-10.
N1=(1000-2000-3000),

N2=(2000-2000-2000 units).
(N1 Crpt, N2 Crpt trained with

dropout).

figure by Kishore Konda

I Neural network activations
(real and artificial) tend to
be sparse.

I So we are sending around,
and multiplying by, lots of
floating-point zeros.

I We are also applying
synchronization and logic,
although real brains don’t
seem to.

I The logical conclusion:
spiking networks (but it is
not clear yet how to train
them)

Roland Memisevic Deep Learning August 23, 2015

Back-prop using asynchronous, local
computations?

x y

h1 h2 h3

W 01 W 12 W 23 W out

In the brain, where is the backward
channel?

Roland Memisevic Deep Learning August 23, 2015

Towards back-prop using local computations
I Hinton 2007: Use the temporal derivative to encode

the error derivative!
I (see also: Bengio et al. 2015)
I Recall that the derivative of most common cost

functions is, conveniently, given by

∂cost
∂y(xn)

= y(xn)− tn

How local back-prop may work
I Let top-layer drive the activations towards the correct

value.
I Let feedback weights transport that change downward.
I Make weight changes proportional to the rate of change

of a postsynaptic neuron and the value of the
pre-synaptic neuron.

Roland Memisevic Deep Learning August 23, 2015

Is the brain doing local back-prop?
I (Hinton 2007): “What would neuro-scientists see if this

is what’s happening in the brain?”
I They should see this (and they do!):

picture from http://www.scholarpedia.org/article/Spike-timing dependent plasticity
Roland Memisevic Deep Learning August 23, 2015

Research directions

I Applications
I Architectures (attention, vanishing gradients, neural

programs)
I Reinforcement learning
I Theory
I Scaling up, hardware
I Multimodality and grounding: vision, language,

speech, robotics

Roland Memisevic Deep Learning August 23, 2015

Tricks and facts

I Do not be afraid of non-differentiabilities (or even
discontinuities). They don’t matter.

I Gradient clipping (constraining the norm of the
gradients) helps avoid getting thrown out by NaNs
too often (especially for recurrent nets).

I Batch-normalization (Ioffe, Szegedy; 2015) helps
training: Normalize hidden unit activations to have
fixed means/standard deviations during training, by
drawing the statistics form the current mini-batch.

I Adding a “momentum-term” to your SGD updates
can have a very strong influence on convergence
speed.

I You rarely successfully “try out” a model on a new
task, you make the model work on the task.

Roland Memisevic Deep Learning August 23, 2015

Deep Learning Software/Frameworks

I Back-prop: torch, theano
I Add-ons: blocks, fuel, lasagne
I Low-level: cuDNN, nervanagpu, cudamat
I Convnets: caffe, overfeat, cuda-convnet,

sklearn-theano
I Word embeddings: word2vec (available in gensim)

Roland Memisevic Deep Learning August 23, 2015

sklearn-theano

Roland Memisevic Deep Learning August 23, 2015

theano

http://www.deeplearning.net/tutorial/

Roland Memisevic Deep Learning August 23, 2015

theano code snippet (from deeplearning.net)

import theano
from theano import tensor

a = tensor.dscalar()
b = tensor.dscalar()

c = a + b

f = theano.function([a,b], c)

assert 4.0 == f(1.5, 2.5)

Roland Memisevic Deep Learning August 23, 2015

theano code snippet: linear regression
import theano
import theano.tensor as T

#define computational graph:
W = T.dmatrix()
inputs = T.dmatrix()
targets = T.dmatrix()
outputs = T.dot(W.T, inputs)
cost_theano = ((outputs - targets)**2).mean()
grad_theano = T.grad(cost_theano, W)

#compile functions:
cost = theano.function([W,inputs,targets], cost_theano)
grad = theano.function([W,inputs,targets], grad_theano)

#try on some _random_ data:
my_w = 0.01*randn(10,1).astype("float32")
my_inputs = randn(100,10).T.astype("float32")
my_targets = randn(1,100).astype("float32")
print cost(my_w, my_inputs, my_targets)
my_w -= 0.1*grad(my_w, my_inputs, my_targets)
print cost(my_w, my_inputs, my_targets)

Roland Memisevic Deep Learning August 23, 2015

theano code snippet: autoencoder

.

.

.
prehiddens = T.dot(inputs, W)
hiddens = (prehiddens > selectionthreshold) * prehiddens
outputs = T.dot(hiddens, W.T) + bvis

cost = T.mean(T.sum(0.5 * ((inputs - outputs)**2), axis=1))
grad = T.grad(cost, params)
.
.
.

Roland Memisevic Deep Learning August 23, 2015

Thank you

Questions?

www-labs.iro.umontreal.ca/˜ memisevr/talks/memisevicHotchips2015.pdf

Roland Memisevic Deep Learning August 23, 2015

Deep learning needs parallel hardware.

Parallel hardware needs deep learning.

www-labs.iro.umontreal.ca/˜ memisevr/talks/memisevicHotchips2015.pdf

Roland Memisevic Deep Learning August 23, 2015

