Deep Learning in Image Processing

Roland Memisevic

University of Montreal & TwentyBN

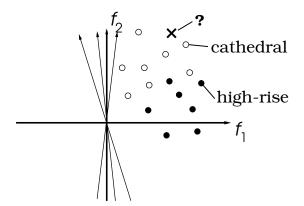
ICISP 2016

Roland Memisevic

Deep Learning in Image Processing

Roland Memisevic

Deep Learning in Image Processing

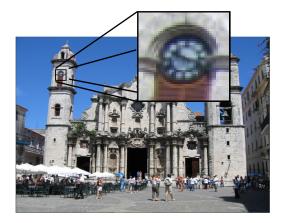


Roland Memisevic

Deep Learning in Image Processing

Roland Memisevic

Deep Learning in Image Processing



Roland Memisevic

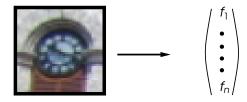
Deep Learning in Image Processing

A common computer vision pipeline before 2012

1. Find interest points.

A common computer vision pipeline before 2012

- 1. Find interest points.
- 2. Crop patches around them.



A common computer vision pipeline before 2012

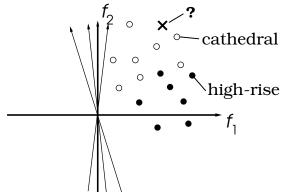
- 1. Find interest points.
- 2. Crop patches around them.
- 3. Represent each patch with a sparse local descriptor.

A common computer vision pipeline before 2012

- 1. Find interest points.
- 2. Crop patches around them.
- 3. Represent each patch with a sparse local descriptor.
- 4. Combine the descriptors into a representation of the image.

"It's the features, stupid!" 0 -cathedral Ο 0 0 high-rise

 This creates a representation that even a linear classifier can deal with.



 This creates a representation that even a linear classifier can deal with.

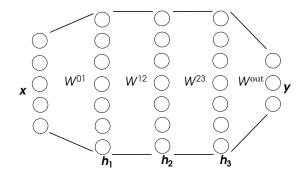
bottom line: **non-linear pipelines are useful** (aka "the representation matters")

Roland Memisevic

What do good low-level features look like?

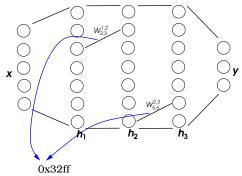
- Local features that are often found to work well are based on oriented structure (such as Gabor features)
- These were discovered again and again (also in other areas) and are closely related to the Short Time Fourier Transform.

Neural networks are trainable pipelines



- Learning allows us to harness training data $(\mathbf{x}_n, \mathbf{t}_n)_{n=1...N}$
- Learning allows us to harness parallel hardware

Weight sharing



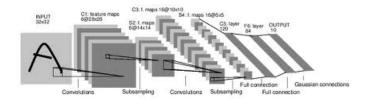
- Parameters can be shared by having them point to the same memory location.
- This is a very common way to reduce parameters and encode prior knowledge.
- The central ingredient in conv-nets (CNNs) and recurrent nets (RNNs).
- Caveat: It requires long-range communication.

Roland Memisevic

Translation invariance and locality

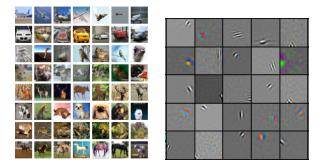
- Most structure in natural images is local
 Most low-level operations
 - may be based on patches.
- Most structure in natural images is **position-invariant** We may perform the same set of operations everywhere across the image.

Convolutional neural networks (CNN)



- Two main ideas:
 - 1. Use only local features.
 - 2. Apply the same features at many different positions.
- Add subsampling (max- or average-pooling) layers, so that higher layers can see (gradually) larger regions of the image.
- LeCun et al. 1998

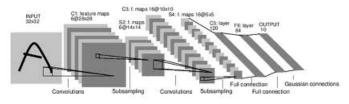
Features want to be local



- (right) Features learned by a fully connected network on RGB images of size 32 × 32 pixels.
- A reasonable number of features for these images might be 32 × 32 × 3 = 3072 (a complete basis)
- Better would be overcomplete.
- \blacktriangleright \rightarrow you should use \geq 9 mio parameters in the first layer

Roland Memisevic

Convolutional neural networks (CNN)



- The number of parameters in a convolutional layer is: num vertical filtersize × num horizontal filtersize × num input channels × num output channels
- ► Without weight sharing, this could be, say, $10 \times 10 \times 3 \times 3072 \approx 1$ mio (if complete)
- ► With weight sharing this could be $10 \times 10 \times 3 \times 100 \approx 30$ k (already overcomplete)
- The number of hidden units in this case: num vertical pixels × num horizontal pixels × num channels (eg. 32 × 32 × 100 = 102400)

Roland Memisevic

Neural network activations are sparse

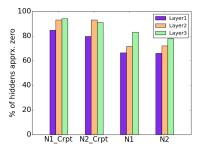


figure by Kishore Konda Sparsity levels in two networks trained on CIFAR-10. N1=(1000-2000-3000), N2=(2000-2000-2000 units). (N1_Crpt, N2_Crpt trained with dropout).

- Sparsity is good, because it "disentangles".
- However, sparsity can lead to update scarcity.
- Conv-nets maximize *the ratio*

#neurons

#parameters

Roland Memisevic

ImageNet challenge 2012

 ImageNet Large Scal: × ★ mageNet Large Scal: × ★ → C www.image-net.org/challenges 	/LSVRC/2012/results.html				ş
	IMAGENET Large Held in conjunction with PAS			12 (ILSVRC2012)	
	Back to Main page				
	All results Task 1 (classification) Task 2 (localization) Task 2 (localization) Task 3 (fine-grained classific Team information and abstra Task 1				
	Team name	Filename	Error (5 guesses)	Description	
	SuperVision	test-preds-141-146.2009-131- 137-145-146.2011-145f.	0.15315	Using extra training data from ImageNet Fall 2011 release	
	SuperVision	test-preds-131-137-145-135- 145f.bt	0.16422	Using only supplied training data	
	151	pred_FVs_wLACs_weighted.bxt	0.26172	Weighted sum of scores from each classifier with SIFT+FV, LBP+FV, GIST+FV, and CSIFT+FV, respectively.	
	ISI	pred_FVs_weighted.bxt	0.26602	Weighted sum of scores from classifiers using each FV.	
	ISI	pred_FVs_summed.txt	0.26646	Naive sum of scores from classifiers using each FV.	
		and Sile with Co. summed by	0.26052	Naive sum of scores from each classifier with	

GoogLeNet (Szegedy et al. 2014)

- Won ImageNet 2014 with 6.66% top-5 error rate
- Key insights: Scaling up, unconventional architecture (eg. cross-channel pooling), intermediate targets
- A variation of this network based on Batch Normalization (loffe, Szegedy, 2015) achieves 4.8% top-5 error rate, surpassing the accuracy of human labelers
- Since then:
 - Face identification
 - Place recognition
 - Scene rendering
 - Denoising
 - Robotics, etc.

Roland Memisevic

Research challenges

- Hardware, scaling up
- Network design (attention mechansims, dealing with vanishing gradients, memory mechanisms, etc.)
- Multi-view learning
- Datasets
- Reinforcement learning
- Transfer learning
- Theory

Research challenges

Hardware, scaling up

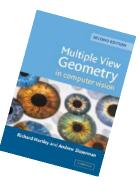
 Network design (attention mechansims, dealing with vanishing gradients, memory mechanisms, etc.)

Multi-view learning

- Datasets
- Reinforcement learning
- Transfer learning
- Theory

Vision is not object recognition

- Many vision (and other) tasks depend on encoding relations across multiple images:
- Geometry, stereo, structure-from-motion, motion understanding, activity analysis, tracking, optical flow, modeling object relations, articulation, odometry, analogy, ...

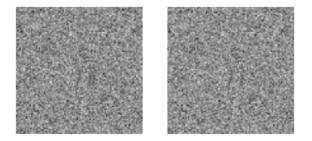


Some things are hard to infer from still images

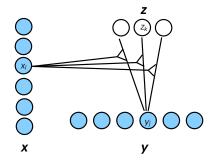
(Ayvaci, Soatto 2012)

Roland Memisevic

Random dot stereograms



Learning transformations with bi-linear models



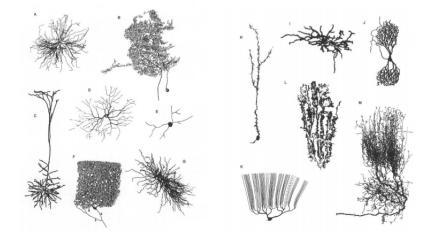
•
$$w_{jk}(\mathbf{x}) = \sum_{i} w_{ijk} x_i$$
, so
 $Z_k = \sum_{j} w_{jk} y_j = \sum_{j} \left(\sum_{i} w_{ijk} x_i \right) y_j = \sum_{ij} w_{ijk} x_i y_j$

(Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005), (Olshausen; 2007), (Memisevic, Hinton; 2007)

Roland Memisevic

Deep Learning in Image Processing

Real neurons: $w^{T}x$?



(Mel, 1994)

Roland Memisevic

Some theory (Konda et al. ICLR 2014)

Assume two images x, y are related through an orthogonal transformation T:

- Goal: Detect the transformation, given the images
- Synchrony condition: Take a filter pair w_x, w_y with

$$w_y = T w_x$$

and check whether

$$\boldsymbol{w}_{\boldsymbol{y}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{w}_{\boldsymbol{x}}^{\mathrm{T}}\boldsymbol{x}$$

Why does this work?

$$\boldsymbol{y} = T\boldsymbol{x} \Rightarrow \boldsymbol{w}_{\boldsymbol{y}}^{\mathrm{T}}\boldsymbol{y} = \boldsymbol{w}_{\boldsymbol{y}}^{\mathrm{T}}T\boldsymbol{x} = (T^{\mathrm{T}}\boldsymbol{w}_{\boldsymbol{y}})^{\mathrm{T}}\boldsymbol{x} = \boldsymbol{w}_{\boldsymbol{x}}^{\mathrm{T}}\boldsymbol{x}$$

Roland Memisevic

A learning algorithm ("synchrony K-means")

- Goal: learn the filters given a set of image pairs
- Use the activation function

$$s = \arg \max_k [(\boldsymbol{w_x^k})^{\mathrm{T}} \boldsymbol{x} (\boldsymbol{w_y^k})^{\mathrm{T}} \boldsymbol{y}]$$

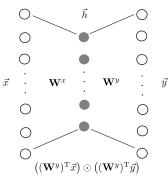
Define the reconstruction error:

$$L_{y} = \left(\boldsymbol{y} - \boldsymbol{w}_{y}^{s} \left((\boldsymbol{w}_{x}^{s})^{\mathrm{T}} \boldsymbol{x} \right) \right)^{2}$$

 Differentiating yields the update rule:

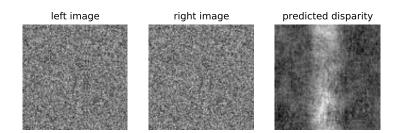
$$\Delta \boldsymbol{w_y^s} = \eta \left(\boldsymbol{y} (\boldsymbol{w_x^s})^{\mathrm{T}} \boldsymbol{x} - \boldsymbol{w_y^s} \left((\boldsymbol{w_x^s})^{\mathrm{T}} \boldsymbol{x} \right)^2 \right)$$

This is a Hebbian term plus an active forgetting term.

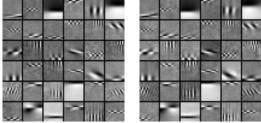


Roland Memisevic

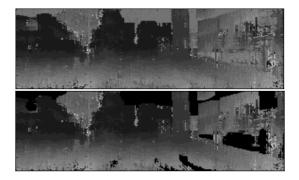
Learning stereo vision



Learning stereo vision (Konda et al. 2013)



Inferred depth map



- top: inferred depth map,
- bottom: thresholded to remove uncertain regions

Learning depth and motion: Hollywood 3D

Action	SAE-	SAE-	SAE-	SAE-M	SAE-D	ISA	3D-Ha	4D-Ha	3.5D-Ha
ACION	MD	MD(Av)	MD(Ct)	JAL-IVI	JAL-D	134	5D-110	4D-110	5.5D-Hu
NoAction	12.10	12.77	13.10	15.73	12.15	12.27	12.1	12.9	13.7
Run	52.56	50.44	51.45	45.38	56.07	24.91	19.0	22.4	27.0
Punch	41.09	38.01	32.68	33.86	36.17	31.17	10.4	4.8	5.7
Kick	9.41	7.94	6.86	6.63	11.84	9.96	9.3	4.3	4.8
Shoot	30.26	35.51	30.49	30.52	40.72	32.48	27.9	17.2	16.6
Eat	5.85	7.03	6.78	7.29	9.03	6.89	5.0	5.3	5.6
Drive	52.65	59.62	51.35	61.61	45.19	54.47	24.8	69.3	69.6
UsePhone	22.79	23.92	19.01	23.60	23.36	17.67	6.8	8.0	7.6
Kiss	15.03	16.40	16.12	17.86	17.06	14.94	8.4	10.0	10.2
Hug	6.64	7.02	7.61	7.38	9.27	9.48	4.3	4.4	12.1
StandUp	37.35	34.23	37.01	29.16	15.01	26.71	10.1	7.6	9.0
SitDown	6.51	6.95	7.53	7.40	9.06	5.13	5.3	4.2	5.6
Swim	16.58	29.48	17.60	29.45	26.70	16.09	11.3	5.5	7.5
Dance	43.15	36.26	44.59	29.64	25.12	53.72	10.1	10.5	7.5
mean AP	25.14	26.11	24.45	24.61	24.05	22.55	12.6	13.3	14.1

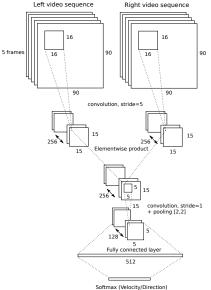
Combining depth and motion for visual odometry

Images taken from KITI odometry dataset and http://www.cvlibs.net/datasets/kitti/index.php

Roland Memisevic

Deep Learning in Image Processing

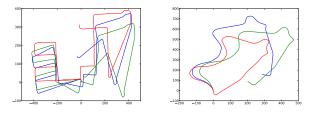
Learning visual odometry



Roland Memisevic

Deep Learning in Image Processing

Experiments



(d) Train sequence (Seq.8) (e) Test sequence (Seq.9)

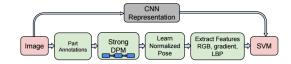
Ground truth shown in **red**, discretised ground truth in **green**, prediction in **blue**.

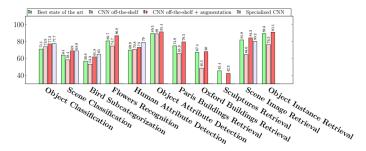
(Need landmark detection/loop closure techniques to improve maps.)

Research challenges

- Hardware, scaling up
- Network design (attention, vanishing gradients, neural programs)
- Multi-view learning
- Datasets
- Reinforcement learning
- Transfer learning
- Theory

Conv-nets learn good generic features





(Razavian, Azizpour, Sullivan, Carlsson; 2014), see also (Donahue et al, 2013)

Roland Memisevic

Deep Learning in Image Processing

Karayev et al 2014: Recognizing Image Style

HDR

Vintage

Noir

Northern Renaissance

Impressionism

Abs. Expressionism

Color Field Painting

Wikipaintings: 85K images for 25 art genres.

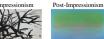
Cubism

Minimal

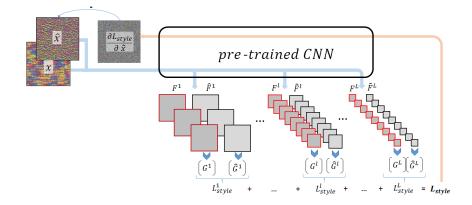
Romantic

Hazy

Flickr Style: 80K images covering 20 styles.



A surprising application of imagenet-features: Gatys, Ecker, Bethge (2015)



Roland Memisevic

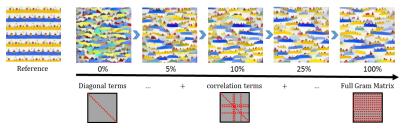
Deep Learning in Image Processing

Adding a content-cost (Gatys, Ecker, Bethge; 2015)

Optimize pixels so as to (i) match the hidden layer activations of the content image (ii) match a non-linear function of the hidden layer activations of a "style image"

Roland Memisevic

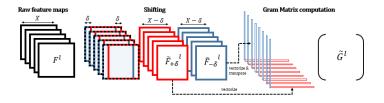
Why do Gramians work? (joint work with Guillaume Berger)



- Gatys et al's Gramian measures coincidences across features.
- On the lowest layer, this amounts to accounting for the relative "arrival phase" of individual Fourier components.
- Averaging is necessary, because textures are static by definition.

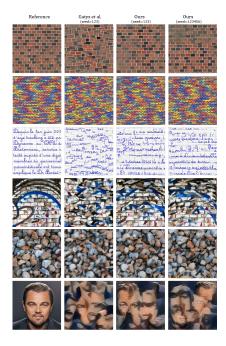
Roland Memisevic

Adding long-range structure

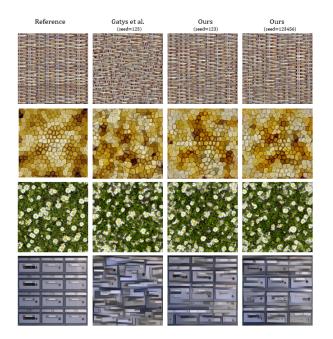


 To account for long-range correlations, we should measure coincidences across feature maps and across space.

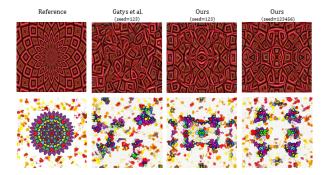
Roland Memisevic



Roland Memisevic



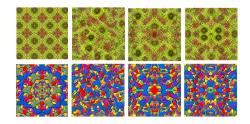
Symmetric textures



Roland Memisevic

Deep Learning in Image Processing

Symmetric textures



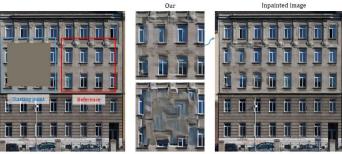
Roland Memisevic

Deep Learning in Image Processing

In-painting

Gatys et al.

In-painting



Gatys et al.

In-painting

Our

Gatys et al.

Inpainted image

Roland Memisevic

What is wrong with unsupervised learning?

- The irony: We are using image classification to improve rendering, not the other way around.
- Transfer learning is becoming a huge practical success while unsupervised learning never took off.
- One reason why UL may be the wrong approach (but transfer learning should work):
 There is more structure in natural images than that which is relevant for humans.
- Teasing out "the structure" in natural data, as attempted by UL, may be asking too much.
- Across tasks and modalities, humans get a lot of supervision signals:

Just how generic is human cognition?

3 + x = 7

- We solve equations like these using "dexterous manipulation" involving our motor cortex.
- See, eg., (Hofstadter, Sander 2013), (Lakoff, 1980), or the "embodied cognition" movement
- We now know that analogy making has a concrete practical benefit! They allow us to get more data!

Transfer learning and analogical reasoning are useful, because they eliminate the data dilemma

Roland Memisevic

Thank you Questions?

Roland Memisevic

Deep Learning in Image Processing