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“It’s the features, stupid!”
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“It’s the features, stupid!”

A common computer vision pipeline before 2012
1. Find interest points.

2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.
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“It’s the features, stupid!”

high-rise

?

cathedral

f2

f1

I This creates a representation that even a linear
classifier can deal with.

bottom line: non-linear pipelines are useful
(aka “the representation matters”)
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What do good low-level features look like?

I Local features that are
often found to work well
are based on oriented
structure (such as Gabor
features)

I These were discovered
again and again (also in
other areas) and are
closely related to the
Short Time Fourier
Transform.
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

I Learning allows us to harness training data(
xn, tn

)
n=1...N

I Learning allows us to harness parallel hardware
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Weight sharing

x y
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0x32ff

I Parameters can be shared by having them point to
the same memory location.

I This is a very common way to reduce parameters and
encode prior knowledge.

I The central ingredient in conv-nets (CNNs) and
recurrent nets (RNNs).

I Caveat: It requires long-range communication.
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Translation invariance and locality

I Most structure in natural
images is local
→ Most low-level operations
may be based on patches.

I Most structure in natural
images is position-invariant
→We may perform the same
set of operations everywhere
across the image.

Roland Memisevic Deep Learning in Image Processing ICISP 2016



Convolutional neural networks (CNN)

I Two main ideas:
1. Use only local features.
2. Apply the same features at many different positions.

I Add subsampling (max- or average-pooling) layers,
so that higher layers can see (gradually) larger
regions of the image.

I LeCun et al. 1998
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Features want to be local

I (right) Features learned by a fully connected network
on RGB images of size 32× 32 pixels.

I A reasonable number of features for these images
might be 32× 32× 3 = 3072 (a complete basis)

I Better would be overcomplete.
I → you should use ≥ 9 mio parameters in the first layer
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Convolutional neural networks (CNN)

I The number of parameters in a convolutional layer is:
num vertical filtersize × num horizontal filtersize × num
input channels × num output channels

I Without weight sharing, this could be, say,
10× 10× 3× 3072 ≈ 1 mio (if complete)

I With weight sharing this could be
10× 10× 3× 100 ≈ 30k (already overcomplete)

I The number of hidden units in this case:
num vertical pixels × num horizontal pixels × num
channels (eg. 32× 32× 100 = 102400)
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Neural network activations are sparse

figure by Kishore Konda
Sparsity levels in two networks trained on CIFAR-10. N1=(1000-2000-3000), N2=(2000-2000-2000 units).

(N1 Crpt, N2 Crpt trained with dropout).

I Sparsity is good, because it “disentangles”.
I However, sparsity can lead to update scarcity.
I Conv-nets maximize the ratio

#neurons
#parameters
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ImageNet challenge 2012
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GoogLeNet (Szegedy et al. 2014)
I Won ImageNet 2014 with 6.66%

top-5 error rate
I Key insights: Scaling up,

unconventional architecture (eg.
cross-channel pooling),
intermediate targets

I A variation of this network based on
Batch Normalization (Ioffe, Szegedy,
2015) achieves 4.8% top-5 error rate,
surpassing the accuracy of human
labelers

I Since then:
I Face identification
I Place recognition
I Scene rendering
I Denoising
I Robotics, etc.
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Research challenges

I Hardware, scaling up
I Network design (attention mechansims, dealing with

vanishing gradients, memory mechanisms, etc.)
I Multi-view learning
I Datasets
I Reinforcement learning
I Transfer learning
I Theory
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Vision is not object recognition
I Many vision (and other) tasks depend on encoding

relations across multiple images:
I Geometry, stereo, structure-from-motion, motion

understanding, activity analysis, tracking, optical flow,
modeling object relations, articulation, odometry,
analogy, ...
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Some things are hard to infer from still images

(Ayvaci, Soatto 2012)
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Random dot stereograms
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Learning transformations with bi-linear models

yj

xi

x y

z
zk

I wjk(x) =
∑

i wi jkxi , so

zk =
∑

j

wjkyj =
∑

j

(∑
i

wijkxi
)
yj =

∑
ij

wijkxiyj

(Tenenbaum, Freeman; 2000), (Grimes, Rao; 2005),
(Olshausen; 2007), (Memisevic, Hinton; 2007)
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Real neurons: wTx ?

(Mel, 1994)
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Some theory (Konda et al. ICLR 2014)
I Assume two images x,y are related through an

orthogonal transformation T :

y = Tx

I Goal: Detect the transfomation, given the images
I Synchrony condition: Take a filter pair wx ,wy with

wy = Twx

and check whether

wT
y y = wT

x x

I Why does this work?

y = Tx ⇒ wT
yy = wT

y Tx = (T Twy)
Tx = wT

xx
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A learning algorithm (“synchrony K-means”)
I Goal: learn the filters given a set

of image pairs
I Use the activation function

s = arg maxk [ (wk
x )Tx (wk

y )Ty ]

I Define the reconstruction error:

Ly =
(

y −ws
y
(
(ws

x)Tx
) )2

I Differentiating yields the update
rule:

∆ws
y = η

(
y(ws

x)Tx−ws
y
(

(ws
x)Tx

)2
)

I This is a Hebbian term plus an
active forgetting term.

Roland Memisevic Deep Learning in Image Processing ICISP 2016



Learning stereo vision

left image right image predicted disparity
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Learning stereo vision (Konda et al. 2013)
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Inferred depth map

I top: inferred depth map,
I bottom: thresholded to remove uncertain regions
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Learning depth and motion: Hollywood 3D

xleft :

xright:

Action SAE-
MD

SAE-
MD(Av)

SAE-
MD(Ct)

SAE-M SAE-D ISA 3D-Ha 4D-Ha 3.5D-Ha

NoAction 12.10 12.77 13.10 15.73 12.15 12.27 12.1 12.9 13.7
Run 52.56 50.44 51.45 45.38 56.07 24.91 19.0 22.4 27.0
Punch 41.09 38.01 32.68 33.86 36.17 31.17 10.4 4.8 5.7
Kick 9.41 7.94 6.86 6.63 11.84 9.96 9.3 4.3 4.8
Shoot 30.26 35.51 30.49 30.52 40.72 32.48 27.9 17.2 16.6
Eat 5.85 7.03 6.78 7.29 9.03 6.89 5.0 5.3 5.6
Drive 52.65 59.62 51.35 61.61 45.19 54.47 24.8 69.3 69.6
UsePhone 22.79 23.92 19.01 23.60 23.36 17.67 6.8 8.0 7.6
Kiss 15.03 16.40 16.12 17.86 17.06 14.94 8.4 10.0 10.2
Hug 6.64 7.02 7.61 7.38 9.27 9.48 4.3 4.4 12.1
StandUp 37.35 34.23 37.01 29.16 15.01 26.71 10.1 7.6 9.0
SitDown 6.51 6.95 7.53 7.40 9.06 5.13 5.3 4.2 5.6
Swim 16.58 29.48 17.60 29.45 26.70 16.09 11.3 5.5 7.5
Dance 43.15 36.26 44.59 29.64 25.12 53.72 10.1 10.5 7.5
mean
AP

25.14 26.11 24.45 24.61 24.05 22.55 12.6 13.3 14.1
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Combining depth and motion for visual odometry

Images taken from KITTI odometry dataset and http://www.cvlibs.net/datasets/kitti/index.php
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Learning visual odometry

5 frames

Left video sequence Right video sequence
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512

Softmax (Velocity/Direction)

256

5

5
128

Elementwise product

Fully connected layer

convolution, stride=1 
+ pooling [2,2] 

convolution, stride=5

Roland Memisevic Deep Learning in Image Processing ICISP 2016



Experiments
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(d) Train sequence (Seq.8)
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(e) Test sequence (Seq.9)

Ground truth shown in red, discretised ground truth in
green, prediction in blue.
(Need landmark detection/loop closure techniques to
improve maps.)
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Research challenges

I Hardware, scaling up
I Network design (attention, vanishing gradients, neural

programs)
I Multi-view learning
I Datasets
I Reinforcement learning
I Transfer learning
I Theory
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Conv-nets learn good generic features

(Razavian, Azizpour, Sullivan, Carlsson; 2014), see also
(Donahue et al, 2013)
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Karayev et al 2014: Recognizing Image Style
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A surprising application of imagenet-features:
Gatys, Ecker, Bethge (2015)
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Adding a content-cost (Gatys, Ecker, Bethge;
2015)

I Optimize pixels so as to (i) match the hidden layer
activations of the content image (ii) match a
non-linear function of the hidden layer activations of
a “style image”
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Why do Gramians work? (joint work with
Guillaume Berger)

I Gatys et al’s Gramian measures coincidences across
features.

I On the lowest layer, this amounts to accounting for
the relative “arrival phase” of individual Fourier
components.

I Averaging is necessary, because textures are static by
definition.
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Adding long-range structure

I To account for long-range correlations, we should
measure coincidences across feature maps and
across space.
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Symmetric textures
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Symmetric textures
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In-painting
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In-painting
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In-painting
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What is wrong with unsupervised learning?

I The irony: We are using image classification to
improve rendering, not the other way around.

I Transfer learning is becoming a huge practical
success while unsupervised learning never took off.

I One reason why UL may be the wrong approach (but
transfer learning should work):
There is more structure in natural images than that
which is relevant for humans.

I Teasing out “the structure” in natural data, as
attempted by UL, may be asking too much.

I Across tasks and modalities, humans get a lot of
supervision signals:
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Just how generic is human cognition?

3 + x = 7

I We solve equations like these using “dexterous
manipulation” involving our motor cortex.

I See, eg., (Hofstadter, Sander 2013), (Lakoff, 1980), or
the “embodied cognition” movement

I We now know that analogy making has a concrete
practical benefit! They allow us to get more data!

Transfer learning and analogical reasoning are useful,
because they eliminate the data dilemma
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Thank you

Questions?
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