Why does classification help generation and not the other way around?

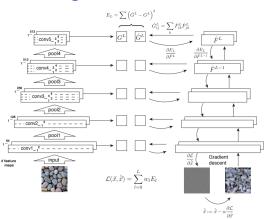
Roland Memisevic

University of Montreal & TwentyBN

MIT Deep Learning Workshop 2016

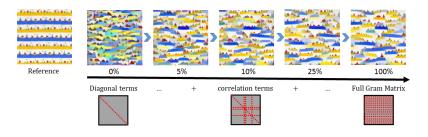
Gatys, Ecker, Bethge 2015

Gatys, Ecker, Bethge 2015



- Compute the spatial average of all pairs of products of features for source image x ("Gramians")
- ▶ Optimize another image \hat{x} so as to make the Gramians match those of x

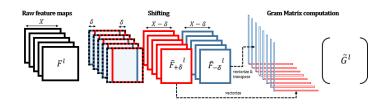
What do the Gramians represent? (joint work with Guillaume Berger)



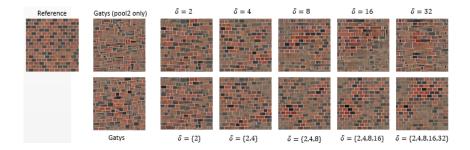
- They are static
- They represent local coincidences across features
- On the lowest layer, this can represent the relative "arrival phases" of individual Fourier components.

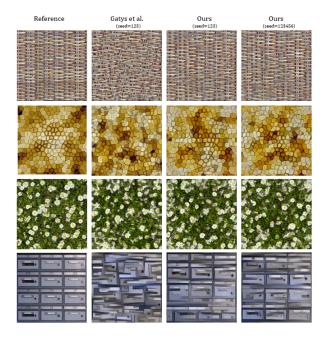
Depuis le 1er juin 201 d'espe tracking a été pr Dynarvox au GBU de Bretonneau, service r testé auprès d'une dizai membres du personned paraméticale ont trour explique le Dr BodetThe sale was a sale and sale a

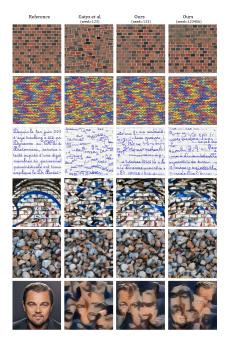
Adding long-range structure



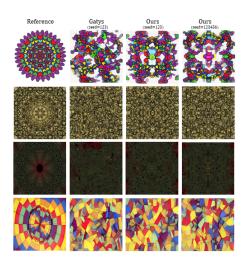
- Static: yes
- Local: no
- To account for long-range correlations, measure coincidences between features spatially transformed features.



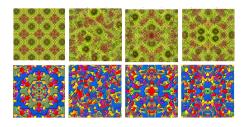




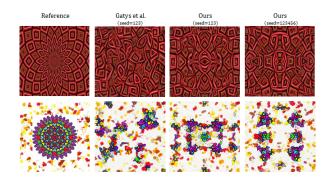
Symmetric textures

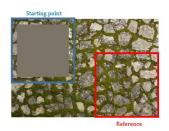


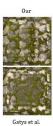
Symmetric textures

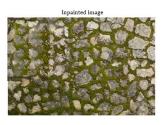


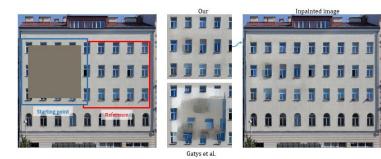
Symmetric textures









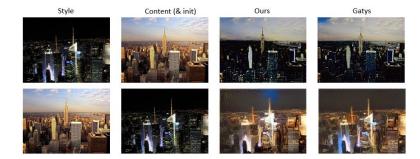


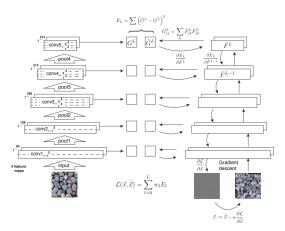
Season transfer

Season transfer

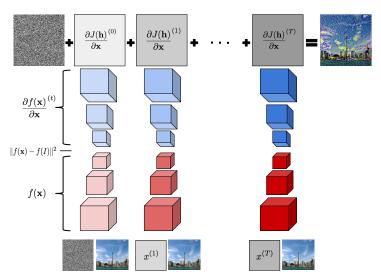
Season transfer

Daytime transfer

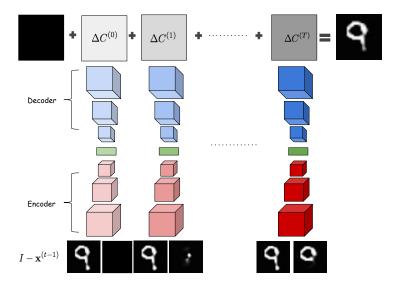




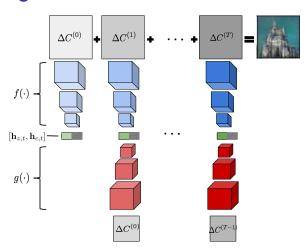
Gatys et al. as a recurrent net (joint work with Daniel Im)



The DRAW network (Gregor et al 2015)



Recurrent generative adversarial networks



- Train adversarily (Goodfellow et al. 2014)
- ▶ cf. Denton et al. 2015

Cifar 10 samples generated by GRAN

LSUN samples generated by GRAN

LSUN samples generated by GRAN

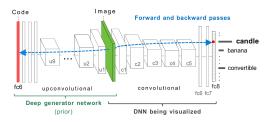
Nearest neighbors

Intermediate samples

Quantitative comparison

Data set	Battler	r _{test}	r _{sample}	Winner
MNIST	GRAN1 vs. GRAN3	0.79	1.75	GRAN3
	GRAN1 vs. GRAN5	0.95	1.19	GRAN5
CIFAR10	GRAN1 vs. GRAN3	1.28	1.001	GRAN3
	GRAN1 vs. GRAN5	1.29	1.011	GRAN5
	GRAN3 vs. GRAN5	1.00	2.289	GRAN5
LSUN	GRAN1 vs. GRAN3	0.95	13.68	GRAN3
	GRAN1 vs. GRAN5	0.99	13.97	GRAN5
	GRAN3 vs. GRAN5	0.99	2.38	GRAN5

Nguyen et al. 2016



► The irony: We are now using image classification to improve rendering, not the other way around.

- ► The irony: We are now using image classification to improve rendering, not the other way around.
- Why does unsupervised learning not work? A possible answer:
 - There is more to natural images than we need to know.

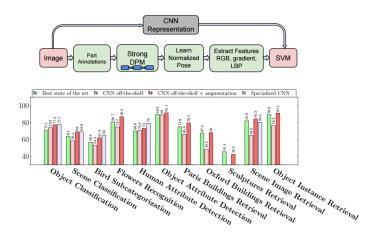
- ► The irony: We are now using image classification to improve rendering, not the other way around.
- Why does unsupervised learning not work? A possible answer:
 - There is more to natural images than we need to know.
- For supervised learning, how do we deal with the data dilemma?

- ► The irony: We are now using image classification to improve rendering, not the other way around.
- Why does unsupervised learning not work? A possible answer:
 - There is more to natural images than we need to know.
- For supervised learning, how do we deal with the data dilemma?
- \blacktriangleright We want more data per parameter. \rightarrow Share neural circuitry

Douglas Hofstadter: Intelligence is analogy-making *on all levels*

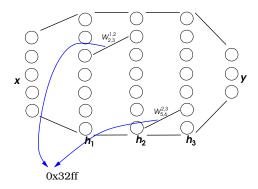
- "The brain is a computer"
- "The company will weather this storm"
- "What is the Washington of France"
- "This is a hammer"
- "Move x to the other side"
- "This is an elevator"
- "This is an edge"

Transfer learning: sharing a CNN across tasks

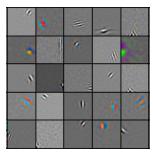


(Razavian, Azizpour, Sullivan, Carlsson; 2014), (Donahue et al. 2013), (Thrun 1996), ...

Sharing weights



Visual features want to be shared



features from a fully-connected net

- ▶ Fully connected, square: \approx 9mio parameters
- Local receptive fields: ≈ 1mio parameters
- ▶ With weight sharing: \approx 30k parameters

Sparsity is good

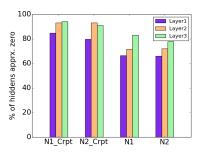


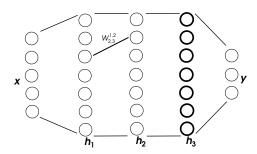
figure by Kishore Konda

Sparsity levels in two networks trained on CIFAR-10. N1=(1000-2000-3000), N2=(2000-2000-2000 units).

(N1.Crpt. N2.Crpt trained with dropout).

► Conv-nets really maximize the ratio

Sharing lower layers (deep learning)



- Higher-layer neurons share lower-layer weights.
- ► The function multi-layer nets can represent may be restricted and unnatural (see Surya's and Tomaso's talks), but this is may be our only chance.

Sharing networks in RL policies

- Rusu et al. 2016
- Parisotto et al. 2016
- Romoff et al. 2016

Just how generic is human cognition?

$$3 + x = 7$$

- ▶ We solve equations like these using "dexterous manipulation" involving our motor cortex.
- Why is this useful?

Just how generic is human cognition?

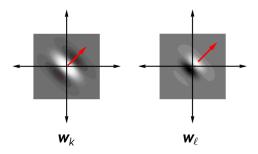
$$3 + x = 7$$

- ► We solve equations like these using "dexterous manipulation" involving our motor cortex.
- Why is this useful?

Cognition is analogy making, because this can make supervised learning work.

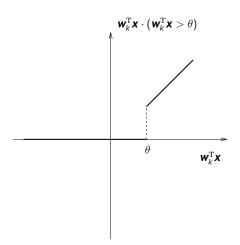
Thank you Questions?

Another opportunity for sharing

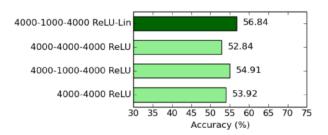


figures by Javier Movellan

Zero-bias activation function

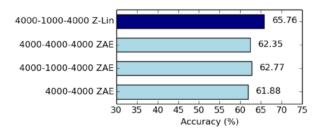


Deep fully-connected CIFAR-10



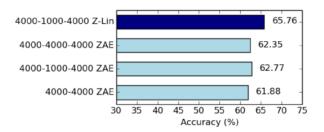
(Zhouhan Lin)

Deep fully-connected CIFAR-10



(Zhouhan Lin)

Deep fully-connected CIFAR-10



(Zhouhan Lin)

8 layers and dropout: **69.62%**Training with deformations (not perm-invariant): **78.62%**

Multi-task learning research

- increase network capacity (non-linearities, biases)
- multi-node (and scaling up in general)
- multi-task recurrent nets
- find opportunities for sharing
- multi-modality (e.g. language and images; or NMT and image classification)
- model-zoo
- pool datasets