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» Learning allows us to harness training data
» Learning allows us to harness parallelization
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Neural networks
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figure from:

http://www.gamasutra.com/view/news/128521/Indepth_IEEE_754_Multiplication_And_Addition.php
» Waste of circuitry?



Binary Connect

» Courbariaux, Bengio, David (2015):

» Stochastically binarize (or ternarize) weights during
propagation (forward and backward) of activations.

Wi+ 1
pWy=1) = —5—

pWj=-1) = 1-P(W;=1)

» Use full resolution for weight updates.



Quantized Backprop

AW = [nsoH (Wx+b)]x"
Ab = néoh/(WX—l—b)
5§ = [WT's]oh (Wx+Db)

» Lin, Courbariaux, Memisevic, Bengio (2015):

» Eliminate multiplications in weight updates by
quantizing activations to power of two

» see also: (Simard, Graf 1992)



Classification performance

Full precision

Binary connect

Binary connect +

Ternary connect +

Quantized backprop Quantized backprop
MNIST 1.33% 1.23% 1.29% 1.15%
CIFAR10 15.64% 12.04% 12.08% 12.01%
SVHN 2.85% 2.47% 2.48% 2.42%




Two issues with convnets

» The number of neurons is very large: conv-nets

. f #neurons
maximize the ratio Iparameters

» During learning, updates need to be distributed
across parameters, which requires long-range
communication. (During inference, it is common to
distribute each filter over image locations, t00).



Improving fully connected nefts

» Architecture (Linear bottleneck layers)
» Non-linearities (Zero-bias relus)
» Optimization (Unsupervised pre-training helps)



Network activation sparsity
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Sparsity levels in two networks trained on CIFAR-10. N1=(1000-2000-3000),
N2=(2000-2000-2000 units). (N1_Crpt, N2_Crpt trained with dropout).

figure by Kishore Konda
» Unfortunately, sparsity leads to “update scarcity”.



Interleaved linear layers
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» Reduce parameters, increase gradient density.



Autoencoders learn negative biases

contractive AE (sigmoid) | denoising AE (ReLU)
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» see also M. Ranzato, et al. 2007, K. Kavukcuoglu, et
al., 2008.



The 2-d subspaces for images

Wy Wy

For orthogonal features, which coefficients minimize
reconstruction error?

X~ QWwy + Q,w,

Qg Z?, a, =7

figures by Javier Movellan



The 2-d subspaces for images

Wi wy

For orthogonal features, which coefficients minimize
reconstruction error?

X~ QWi + ayw,

Qy = WX, a,=Ww/Xx

figures by Javier Movellan



Do autoencoders orthogonalize weights?
» Autoencoders minimize
(r(x) — x)

using as the reconstruction:

r(x)=Wh(x)= Y hw

k:h#£0

where hy is the output of hidden unit k

» For orthonormal active weights the optimal
coefficients would be:

he = wix
» In reality, a ReLU autoencoder uses

hk = WEX—i— bk



Truncated rectified unit (Trec)

wix - (wix > 0)
T

wix

» Like spike-and-slab, hard-threshold, “coring”



Truncated linear unit (TLiN)

wix - (Jwix| > 0)
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» Like spike-and-slab, hard-threshold, “coring”




ZAE features from tiny images (Torralba et al.)




Deep fully-connected CIFAR-10

4000-1000-4000 ReLU-Lln_ 56.84
4000-4000-4000 RelU 52.84

4000-1000-4000 RelUF | 54 .91

4000-4000 RelU | | 53.92

—
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(Zhouhan Lin)
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Deep fully-connected CIFAR-10

4000-4000-4000 ZAE | 62.35
4000-1000-4000 ZAE | | 62.77
4000-4000 ZAE | | 61.88

30 35 40 45 50 55 60 65 70 U5
Accuracy (%)

(Zhouhan Lin)



Deep fully-connected CIFAR-10

4000-4000-4000 ZAE | 62.35
4000-1000-4000 ZAE - | 62.77
4000-4000 ZAE | | 61.88

30 35 40 45 50 55 60 65 70 75
Accuracy (%)

(Zhouhan Lin)

8 layers and dropout: 69.62%
Training with deformations (not perm-invariant):
78.62%



Deep fully-connected CIFAR-10
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Methods

Logistic Regression on whitened data (Krishevsky);

Pure backprop on a 782-10000-10 network (Krishevsky);

Pure backprop on a 782-10000-10000-10 network (Krishevsky);

RBM with 2 hidden layers of 10000 hidden units each, plus alogistic regression (Krishevsky);
RBM with 10000 hiddens plus logistic regression (Krishevsky);

Fastfood FFT model (13);

Zerobias autoencoder of 4000 hidden units with logistic regression (10);
782-4000-1000-4000-10 Z-Lin network frained without dropout;

782-4000-1000-4000- 1000-4000-1000-4000-10 Z-Lin network, trained with dropout

Z-Lin network the same as (8) but frained with dropout and data augmentation



Differentiable models of computation

» (Bahdanau et al. 2014), (Graves et al, 2014), (Weston
et al, 2014), (Grefenstette et al. 2015), etc.




Other neural program applications

v

Distiling complicated models or functions (Bucila et al
2006)

Speeding up routines (eg. Esmaeilzadeh et al. 2012)
Generating, then editing, text (eg. for tfranslation)?
Generating mocap sequences?

v

v

v



Deep Learning as compute paradigm

» Simulating neural nets on classic hardware never
really worked

» Simulating classic hardware on neural nets works
quite well

» The reason is that learning is a way to harness any

kind of hardware, even the kind of hardware that
would be hard to program



