
Towards hardware-friendlier
neural networks

Roland Memisevic

University of Montreal

December 5, 2015



Machine Learning

Wx y

I Learning allows us to harness training data
I Learning allows us to harness parallelization



Machine Learning

Wx y

I Learning allows us to harness training data

I Learning allows us to harness parallelization



Machine Learning

Wx y

I Learning allows us to harness training data
I Learning allows us to harness parallelization



Neural networks

x y

h1 h2 h3

W 01 W 12 W 23 W out



Floating point multiplication

figure from:

http://www.gamasutra.com/view/news/128521/Indepth IEEE 754 Multiplication And Addition.php

I Waste of circuitry?



Binary Connect

I Courbariaux, Bengio, David (2015):
I Stochastically binarize (or ternarize) weights during

propagation (forward and backward) of activations.

p(Wij = 1) =
Wij + 1

2
p(Wij = −1) = 1− P(Wij = 1)

I Use full resolution for weight updates.



Quantized Backprop

∆W =
[
ηδ ◦ h′(Wx + b

)]
xT

∆b = ηδ ◦ h′(Wx + b
)

δ =
[
WTδ

]
◦ h′(Wx + b

)
I Lin, Courbariaux, Memisevic, Bengio (2015):
I Eliminate multiplications in weight updates by

quantizing activations to power of two
I see also: (Simard, Graf 1992)



Classification performance



Two issues with convnets

I The number of neurons is very large: conv-nets
maximize the ratio #neurons

#parameters
I During learning, updates need to be distributed

across parameters, which requires long-range
communication. (During inference, it is common to
distribute each filter over image locations, too).



Improving fully connected nets

I Architecture (Linear bottleneck layers)
I Non-linearities (Zero-bias relus)
I Optimization (Unsupervised pre-training helps)



Network activation sparsity

Sparsity levels in two networks trained on CIFAR-10. N1=(1000-2000-3000),
N2=(2000-2000-2000 units). (N1 Crpt, N2 Crpt trained with dropout).

figure by Kishore Konda

I Unfortunately, sparsity leads to ”update scarcity”.



Interleaved linear layers

I Reduce parameters, increase gradient density.



Autoencoders learn negative biases

contractive AE (sigmoid) denoising AE (ReLU)

I see also M. Ranzato, et al. 2007, K. Kavukcuoglu, et
al., 2008.



The 2-d subspaces for images

wk w`

For orthogonal features, which coefficients minimize
reconstruction error?

x ≈ akwk + a`w`

ak =?, a` =?
figures by Javier Movellan



The 2-d subspaces for images

wk w`

For orthogonal features, which coefficients minimize
reconstruction error?

x ≈ akwk + a`w`

ak = wT
k x, a` = wT

` x
figures by Javier Movellan



Do autoencoders orthogonalize weights?
I Autoencoders minimize(

r(x)− x
)2

using as the reconstruction:

r(x) = Wh(x) =
∑

k:hk 6=0

hkwk

where hk is the output of hidden unit k
I For orthonormal active weights the optimal

coefficients would be:

hk = wT
k x

I In reality, a ReLU autoencoder uses

hk = wT
k x + bk



Truncated rectified unit (Trec)

wT
k x

θ

wT
k x · (wT

k x > θ)

I Like spike-and-slab, hard-threshold, “coring”



Truncated linear unit (TLin)

wT
k x

θ

wT
k x · (|wT

k x| > θ)

−θ

I Like spike-and-slab, hard-threshold, “coring”



ZAE features from tiny images (Torralba et al.)



Deep fully-connected CIFAR-10

(Zhouhan Lin)



Deep fully-connected CIFAR-10

(Zhouhan Lin)



Deep fully-connected CIFAR-10

(Zhouhan Lin)

8 layers and dropout: 69.62%
Training with deformations (not perm-invariant):

78.62%



Deep fully-connected CIFAR-10

1. Logistic Regression on whitened data [Krishevsky];

2. Pure backprop on a 782-10000-10 network [Krishevsky];

3. Pure backprop on a 782-10000-10000-10 network [Krishevsky];

4. RBM with 2 hidden layers of 10000 hidden units each, plus alogistic regression [Krishevsky];

5. RBM with 10000 hiddens plus logistic regression [Krishevsky];

6. Fastfood FFT model [13];

7. Zerobias autoencoder of 4000 hidden units with logistic regression [10];

8. 782-4000-1000-4000-10 Z-Lin network trained without dropout;

9. 782-4000-1000-4000-1000-4000-1000-4000-10 Z-Lin network, trained with dropout

10. Z-Lin network the same as (8) but trained with dropout and data augmentation



Differentiable models of computation

I (Bahdanau et al. 2014), (Graves et al, 2014), (Weston
et al, 2014), (Grefenstette et al. 2015), etc.



Other neural program applications

I Distilling complicated models or functions (Bucila et al
2006)

I Speeding up routines (eg. Esmaeilzadeh et al. 2012)
I Generating, then editing, text (eg. for translation)?
I Generating mocap sequences?



Deep Learning as compute paradigm

I Simulating neural nets on classic hardware never
really worked

I Simulating classic hardware on neural nets works
quite well

I The reason is that learning is a way to harness any
kind of hardware, even the kind of hardware that
would be hard to program


