
IFT3395/6390, Assignment 2

Date posted: Oct. 30, 2014,

Due: Nov. 12, 2014, at the start of class

1. (6/10) Suppose you have a training dataset Dn = {(x1, t1), . . . , (xn, tn)} with input
observations xi ∈ Rd and class-labels ti ∈ {1, . . . ,M} (there are M classes in total).

Consider a feed-forward neural net with a single hidden layer (thus, 3 layers in total
if you count the inputs and outputs as separate layers). The hidden layer contains dh
neurons fully connected to the input layer, with hyperbolic tangent non-linearity (tanh).
The output layer contains M neurons (fully connected to the hidden layer) which are
combined using a softmax non-linearity. The output of the jth neuron in the output
layer computes the probability that the input, x, to the network belongs to class j.

It is strongly suggested that you draw a sketch of the network in order to better
understand the following stages (but we are not asking to provide your sketch in your
response!).

a) Let W(1) be a dh×d-matrix of weights and b(1) be a vector of biases, which together
specify the synaptic weights going from the input-layer to the hidden layer. What is
the dimension of b(1)?

Write down the formula to calculate the vector of activations (i.e. before the non-
linearity) of the neurons in the hidden layer, ha, given an input, x, at first in matrix
expression, then more detailed the element-by-element computation of the entries of
ha. Then write down the vector of outputs of the hidden layer neurons, hs, in terms of
the activations, ha.

b) Let W(2) be the weight matrix from the hidden to output layer and b(2) be the
vector of biases for the output layer. What are the dimensions of W(2) et b(2)?

Write down the formula describing the vector of activations of neurons in the output
layer oa given hs in matrix form, then element-wise.

c) Training the neural network amounts to finding the parameters which minimize the
value of the loss function for the training set. Describe precisely what is contained in
the set of all network parameters, θ. What is the number, nθ, of parameters in θ?

For learning we will use the method of stochastic gradient descent. The gradient of the
cost, L, incurred by the i’th training example (xi, ti) wrt. the parameters is:

∂L

∂θ
=


∂L(xi,ti)
∂θ1

·
·
·

∂L(xi,ti)
∂θnθ





To calculate the gradient we will use error back-propagation.

IMPORTANT: The method of error back-propagation is based on an intelligent and
efficient application of the chain rule of differentiation, that avoids the unnecessary
repetition of expensive calculations. It assumes that we have pre-calculated and saved
off the activations and outputs of all neurons in the network during the forward prop-
agation phase, and that one can use them without having to re-calculate them when
computing the gradient. For this reason, it is important to express the derivatives as a
function of these pre-calculated values, without substituting their own detailed calcu-
lation. This would amount to re-computing these and would yield expressions longer,
more complicated and more inefficient than necessary.

The output of the neurons in the output layer is given by

os = softmax(oa)

osk =
exp

(
oak
)∑M

j=1 exp
(
oaj
)

The negative log-likelihood loss function is given by

L(x, t) = − log ost(x)

As you showed in Assignment 1, the partial derivatives of the cost, L, wrt. the activa-
tions of the neurons in the last layer are

∂L(x, t)

∂oak
=

{
osk − 1 if k = t

osk if k 6= t

or, in matrix form:
∂L(x, t)

∂oa
= os − onehotm(t)

d) Show that the gradients wrt. parameters W(2) and b(2) are given by:

∂L

∂W(2)
=

∂L

∂oa
(
hs
)T

and
∂L

∂b(2)
=

∂L

∂oa

where ∂L
∂oa

and hs are column vectors. Specify the dimensions of the gradients.

e) Using the chain rule

∂L

∂hsj
=

M∑
k=1

∂L

∂oak

∂oak
∂hsj

show that the partial derivatives of the cost L wrt. the outputs of the neurons in the
hidden layer are given by:

∂L

∂hs
=
(
W(2)

)T ∂L
∂oa

where ∂L
∂oa

is a column vector. Specify the dimensions of the gradients.



f) Calculate the partial derivatives wrt. the activations of the neurons of the hidden
layer. Since L depends on the activation, haj , of a neuron in the hidden layer only
through its output hsj , the chain rule yields:

∂L

∂haj
=
∂L

∂hsj

∂hsj
∂haj

Note that hs = tanh(ha), where the hyperbolic tanget activation is applied element-
wise. The hyperbolic tangent is given by tanh(z) = sinh z

cosh z
= ez−e−z

ez+e−z
= e2z−1

e2z+1
First show

that ∂ tanh z
∂z

= 1− tanh2(z). Express the result in matrix form, and define the dimension
of each matrix or vector involved.

g) Calculate the gradients wrt. the parameters W(1) and b(1) of the hidden layer.
Express the gradients in matrix form.

h) Consider quadratic “weight decay ” regularization, which penalizes the squared (L2)-
norm of of the weights (but not the biases). How does this change the gradient of the
cost wrt. to the parameters?

i) Describe in detail how any derivatives will change if we use the rectifier non-linearity
“RELU”:

RELU(haj ) =

{
haj if haj ≥ 0

0 if haj < 0

instead of the tanh.

2. (4/10) Implement the neural network, and apply it to the classification data used in
Assignment 1 (see Assignment 1 for more information about the data if you forgot the
details):

www.iro.umontreal.ca/~memisevr/teaching/ift3395_2014/devoirs/train_images.txt

www.iro.umontreal.ca/~memisevr/teaching/ift3395_2014/devoirs/test_images.txt

www.iro.umontreal.ca/~memisevr/teaching/ift3395_2014/devoirs/train_labels.txt

www.iro.umontreal.ca/~memisevr/teaching/ift3395_2014/devoirs/test_labels.txt

You can either (i) use the step-by-step calculation of gradients derived in the previous
question (including for weight decay), or (ii) use an existing implementation (such as
the library theano).

Hints:

• Parameter initialisation: It is necessary to initialize the parameters randomly
(making sure to avoid symmetries and saturation of neurons). Initialize the weights
of each layer by drawing from the uniform distribution in the interval

[ −1√
nc
, 1√

nc

]
,

where nc is the number of inputs to this layer (the number of neurons in the
input-layer to which each neuron of this layer is connected, so this number typi-
cally changes from layer to layer). The biases can be initialized to 0. Clearly justify
any deviation from this choice of initialisation.



• If you use the step-by-step calculation of the gradient we suggest writing the
methods fprop, bprop and grad as discussed in class.

• Verification of gradients using finite differences: On can estimate the gardient
numerically using finite differences. You need to implement this estimation in order
to verify correctness of your derivatives (or of those computed by the librairy that
you use). To do so, first calculate the value of the loss for the current parameter
value (for one training exemple). After that, modify each (scalar) parameter θk by
a small value (10−6 < ε < 10−4) and re-calculate the loss (for the same training
exemple), then set the parameter back to its initial value. The partial derivative
wrt. each parameter can be estimated by dividing the change in loss by ε. The
ratio of your gradient calculated using back-prop to the gradient estimated by
finite differences should be situer somewhere between 0.99 and 1.01.

• Batchsize: Perform gradient descent using mini-batches of size 100. In the case of
mini-batches, you do not work with individual data-points, but rather a batch of
examples at a time, grouped in a matrix (which will also yield a matrix representing
values at the hidden layer and at the outputs). (The case of a minibatch size of 1
would be the exact equivalent of stochastic gradient descent.)

What to hand in:

• Gradient verification: produce a plot showing the gradient for your network com-
puted with finite differences using the first training example. In the same plot show
the gradient computed using back-propagation. Make these plots, even if you use
a software like theano for computing derivatives automatically.

• Train your network on the training data. Show training and test curves (curves
showing the classification error and the cost function as a function of training
epochs). Include in your report the curves obtained with the best value of hyper-
parameters, ie. for which your model attains the lowest classification error on the
test data. Make two graphs: One for the classification error rates (train and test,
clearly identified in the legend) and another for the mean loss function values
(train and test). Report the values for the best hyper-parameter settings you
found, corresponding to your included curves.

• Rectifier non-linearity: Repeat the preceding experiment using the rectifier non-
linearity. You may want to verify the derivatives like before before using this
non-linearity (but it is not necessary to hand in the result of this verification).

• (Bonus, 1 point) Repeat the preceding experiment by using Dropout (proposed
recently in http://arxiv.org/pdf/1207.0580.pdf) instead of weight-decay for regu-
larization during training: Randomly multiply the hidden unit outputs hsj in the
current mini-batch by 0 with probability 1

2
. (This should be done independently

for each training example and each hidden dimension.) At test-time, do not per-
form this random corruption of hiddens, and instead multiply the weights in the
hidden-to-output layer by 0.5.


