Translation invariance and locality

Almost all structure in natural images is *position-invariant* and *local*. This has several practical consequences:

- Almost all low-level vision operations will be based on small patches.
- The universal mathematical framework for understanding the structure in images is the Fourier transform.

Ways to represent an image

- as a *matrix* (or *tensor*) for multi-channel images such as color images
- as a *sequence* of gray-values or colors (*vectorization*, “serialization”)
- as a *vector* equipped with operations from linear algebra (a point in “pixel space”)
- as a *sequence of features* computed from the image

It is common to jump back-and-forth between these representations.

For matrix representations, it can be convenient to use negative indexes, so that the origin is in the center of the image.

Linear features

- One of the simplest and most common operations on a vectorized image is linear projection:

\[w^T x = \sum_i w_i x_i \]

or, if images are matrices:

\[\sum_{x=-\infty}^{\infty} \sum_{y=-\infty}^{\infty} W(x, y) I(x, y) \]

The resulting scalar will be large if \(x \) is similar to \(w \)

\(w \) is called “feature”, “filter”, or “mask”

Features can be defined by hand or learned from data.
Filtering

We define “filtering” as scanning a linear feature W across the image:

$$O(x, y) = \sum_{x^* = -\infty}^{\infty} \sum_{y^* = -\infty}^{\infty} W(x^*, y^*) I(x + x^*, y + y^*)$$

which yields feature map where structure similar to W is enhanced.

Almost every recognition system makes use of this.

Feature maps may be multidimensional if we apply multiple filters on the same image.

Usually the features are a much smaller than the image, and both can be thought of as padded with zeros on all sides.

Of course, one can do the same for 1-d signals.

Example: two feature maps from edge filters

![linear filter](image1.png) ![linear filter](image2.png) ![a non-linear combination](image3.png)

How to deal with the boundaries

- There are several things one can do at the boundaries:
 1. Make the output smaller than the original image
 2. Assume that the image is padded with zeros
 3. “wrap-around”: Think of image as being periodic

All of these can be found in practice, depending on application, preferences, etc.
Filtering the impulse

- What happens if we filter the impulse image

\[\delta(x, y) = \begin{cases} 1, & \text{if } x = 0 \text{ and } y = 0, \\ 0, & \text{otherwise} \end{cases} \]

with some filter mask \(W(x, y) \)?

Convolution

- The **convolution** of two images is defined by

\[I_1(x, y) * I_2(x, y) = \sum_{x_1=-\infty}^{\infty} \sum_{y_1=-\infty}^{\infty} I_1(x-x_1, y-y_1) I_2(x_1, y_1) \]

- Typically (not always), one image will be a feature vector \(h(x, y) \):

\[l(x, y) * h(x, y) = \sum_{x_1=-\infty}^{\infty} \sum_{y_1=-\infty}^{\infty} l(x-x_1, y-y_1) h(x_1, y_1) \]

- In 1-d:

\[s(y) * h(y) = \sum_{y_1=-\infty}^{\infty} s(y-y_1) h(y_1) \]

Properties of convolution

- commutative:

\[s(x, y) * h(x, y) = h(x, y) * s(x, y) \]

- associative:

\[(s(x, y) * h_1(x, y)) * h_2(x, y) = s(x, y) * (h_1(x, y) * h_2(x, y)) \]

- distributive:

\[s(x, y) * (h_1(x, y) + h_2(x, y)) = s(x, y) * h_1(x, y) + s(x, y) * h_2(x, y) \]

- These are properties of *products.*
Convolution as superposition, impulse response

- One usually thinks of convolution as scanning a (flipped) filter across the image.
- One can also think of convolution as computing a weighted sum over translated copies of the image.
- The (flipped) filter entries are then the weights in the combination.
- The impulse response of a filter is defined as the result of convolving the filter with the impulse image.

Continuous convolution

- In continuous domains, replace the sum with an integral:
 \[(s \ast h)(x, y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} s(x', y') \cdot h(x-x', y-y') \, dx' \, dy' \]
- Caveat: To get a sensible impulse response, the impulse signal needs to integrate to one. But at the same time it has to be equal to zero everywhere except at the origin.
- Solution: The Dirac delta.

Finite convolution

- In practice, almost all filters that we need to deal with are finite.
- So we may write
 \[(I \ast h)_{m,n} = \sum_{k=-K}^{K} \sum_{r=-R}^{R} h(k, r) I(m-k, n-r) \]
- For images of size \(M \times N \) this takes \(MNKR \) operations.
- \(K \) and \(R \) are usually much smaller than \(M \) and \(N \).
Separability

- An image $I(m, n)$ is called separable, if there exist 1d signals I_1, I_2 with

$$I(m, n) = I_1(m)I_2(n)$$

- In vector notation:

$$I = I_1 I_2^T$$

- Filters can be separable, too.

Convolution and separability

- If the filter h is separable, we have:

$$I \ast h(m, n) = \sum_k \sum_r h(k, r)s(m - k, n - r) = \sum_k h_1(k) \sum_r h_2(r)s(m - k, n - r) = a(m - k, n)$$

- We can pre-compute $a(\cdot, \cdot)$ using MNR operations.
- Given $a(\cdot, \cdot)$ the result takes only MNK operations.
- This makes $MN(R + K)$ in total.

Separable/non separable example

- Convolution amounts to applying a single linear transformation everywhere. This makes it a Linear Time-Invariant system (LTI System)

- (note: “time”, for us, usually means space)
- LTI system is aka Linear Shift-Invariant system (LSI System)
- A system is a function that takes a signal as input and outputs a new signal.
- There are many dimensions along which one can characterize systems: causality, finite vs. infinite impulse response (FIR vs. IIR filter), stability (eg. “BIBO”), ...
Sine and cosine

▶ Two signals which (if combined into one) are intimately related to LTI systems are the sine and the cosine-signal:

\[s_c(x; A, \omega, \varphi) = A \cos(\omega x + \varphi) \]

\[s_s(x; A, \omega, \varphi) = A \sin(\omega x + \varphi) \]

▶ \(\omega \) is called (“angular”) frequency; \(\varphi \) is called phase.

▶ Its reciprocal is called wavelength.

Digression: Complex numbers

▶ Complex numbers are “2d-vectors” with some special arithmetic, most of which are due to Euler’s formula:

\[e^{i\varphi} = \cos \varphi + i \sin \varphi \]

▶ Most applications rely on jumping back-and-forth between cartesian and polar coordinates:

\[c = a + ib = re^{i\varphi} \]

\[a = r \cos(\varphi) \]

\[b = r \sin(\varphi) \]

\[r = |c| = \sqrt{a^2 + b^2} \]

\[\varphi = \arg(c) = \tan\left(\frac{b}{a}\right) \]

▶ Addition is the same like for 2d vectors.

▶ Multiplication is standard arithmetic in the polar representation:

\[c_1 \cdot c_2 = r_1 e^{i(\varphi_1)} \cdot r_2 e^{i(\varphi_2)} = r_1 \cdot r_2 \cdot e^{i(\varphi_1 + \varphi_2)} \]

Thus, multiplication is **stretching + rotation**.

▶ Multiplying a complex number by a number \(c \) of length 1.0, ie.

\[c = e^{i\alpha} \]

is rotation by \(\alpha \) degrees counter clock-wise around the origin.

▶ The signal \(\exp(i \omega t) \) is therefore a unit-vector running counter clock-wise around the unit circle.
Digression: Complex numbers

- Other useful equations:
 - Conjugation is reflection at the real axis:
 \[\bar{c} = a - ib = r \exp(-i\phi) \]
 - It follows that \(\bar{c}c = |c|^2 \) and \(\frac{1}{2}(c + \bar{c}) = \text{real}(c) \)
 - The standard inner product uses conjugation:
 \[\langle \bar{c}, d \rangle = \sum_i \bar{c}_i d_i \]
 - Why? Because now \(\langle \bar{c}, c \rangle = ||c||^2 \)
 - In practice, use the function \(\text{atan2}() \) to compute the \(\text{atan} \) for polar representations.

Sine and cosine from two phasors

- Euler’s formula allows us to extract sine and cosine from the phasor:
 \[
 \cos \varphi = \frac{1}{2} e^{i\varphi} + \frac{1}{2} e^{-i\varphi} \\
 \sin \varphi = \frac{1}{2i} e^{i\varphi} - \frac{1}{2i} e^{-i\varphi} = -\frac{i}{2} e^{i\varphi} + \frac{i}{2} e^{-i\varphi}
 \]

 - To derive these formulas one can use:
 \[e^{i\varphi} + e^{-i\varphi} = 2 \cos \varphi \]
 and
 \[e^{i\varphi} - e^{-i\varphi} = 2i \sin \varphi \]
 - One can also think of this as a way to transform to Cartesian coordinates.
Phasors and shift (1d)

Phasors are eigenfunctions of translation

\[p(t - z) = e^{i\omega (t - z)} = e^{i\omega t} e^{-i\omega z} = e^{-i\omega z} p(t) \]

- Thus, translating a (1-d) phasor is equal to multiplying it by the constant: \(e^{-i\omega z} \)
- This constant depends on (i) the frequency of the phasor, and (ii) the amount of shift.
- Now recall that we can think of convolution as computing a linear combination of translated copies of the signal:

Phasors and convolution (1d)

Phasors are eigenfunctions of convolution

\[p(t) \ast h = \sum_{z=-\infty}^{\infty} h(z) p(t - z) = e^{i\omega t} \left(\sum_{z=-\infty}^{\infty} h(z) e^{-i\omega z} \right) \]

\[= H(\omega) p(t) \]

- The constant depends on the frequency of the phasor.

The complex number \(H(\omega) \) is called frequency response of the filter.
- Its absolute value \(|H(\omega)| \) is called amplitude response.
- Its phase \(\text{arg} H(\omega) \) is called phase response.

Recall that multiplication for complex numbers is stretching + rotation.
- It follows that convolution can change phase and amplitude of a phasor but not its frequency.
- Convolving with the filter \(h(t) \) turns the phasor \(p(t) = \exp(i\omega t) \) into:

\[H(\omega) \exp (i\omega t) = |H(\omega)| \exp (i\omega t + \text{arg} H(\omega)) \]
Signals as superpositions of phasors (1d)

- The fact that phasors are well-behaved wrt. convolution suggests writing a signal as a superposition of phasors.
- That way we can characterize the effect of a filter by just looking at the phasors (which differ by frequency).
- For signals that are finite (in other words, usual vectors) this is straightforward, because we can construct an orthonormal basis from phasors as follows:

An orthogonal basis from phasors (1d)

- Define T discrete phasor signals of length T with frequencies $k = 0, \ldots, T - 1$ as:
 \[p_k(t) = e^{\frac{2\pi i}{T} kt} \quad t = 0, \ldots, T - 1 \]
- These phasors form an orthonormal basis wrt. the complex inner product:
 \[\langle p_k(t), p_l(t) \rangle = \sum_t e^{\frac{2\pi i}{T} kt} e^{-\frac{2\pi i}{T} lt} = T \delta_{kl} \]
- So the coefficients that allow us to represent a signal $s(t)$ in this basis are simply
 \[S(k) = \frac{1}{T} \langle s(t), p_k(t) \rangle \]

Discrete Fourier Transform (1d)

- Discrete Fourier Transform (DFT) 1d
 \[S(k) = \sum_{t=0}^{T-1} s(t) e^{-i \frac{2\pi}{T} kt} \quad k = 0, \ldots, T - 1 \]
- Inverse discrete Fourier Transform 1d
 \[s(t) = \frac{1}{T} \sum_{k=0}^{T-1} S(k) e^{i \frac{2\pi}{T} kt} \quad t = 0, \ldots, T - 1 \]

- Most practical implementations of the DFT use the Fast Fourier Transform (FFT) to compute the coefficients. Accordingly, most libraries are named “FFT” not “DFT”.
- One can generalize the DFT to continuous periodic functions (“Fourier Series”).
- One can generalize further to (non-periodic) square-integrable functions (“Fourier Transform”).
Fourier Transform

\[S(f) := \int_{-\infty}^{\infty} s(t)e^{-i2\pi ft} \, dt \]

\[s(t) := \int_{-\infty}^{\infty} S(f)e^{i2\pi ft} \, df \]

- Alternative definitions, which use non-normalized frequencies \(\omega = 2\pi f \), can be found frequently, too.

Spectrum

- The complex function \(S(\omega) \) is called the **spectrum** of the signal.
- \(|S(\omega)| \) is called **amplitude spectrum**.
- \(\text{arg} S(\omega) \) is called **phase spectrum**.

- The frequency response of a filter is thus the spectrum of the impulse response.
- The spectrum \(S(\omega) \) is a set of coefficients that we need to apply to the phasors of corresponding frequency to get back the signal.
- It determines the strength of each phasor (via \(|S(\omega)|\)) and the phase of each phasor (via \(\text{arg} S(\omega)\)).

Fourier Analysis Zoo

- For discrete time signals, we have
 \[\exp(i\omega t) = \exp(i(\omega + 2\pi)t) \]
 and thus
 \[S(\omega + 2\pi) = S(\omega) \]
- For discrete signals, we therefore need to define \(S(\omega) \) only for \(-\pi \leq \omega \leq \pi\).
- In practice, it is common to think of **periodic** as **finite** and vice versa.