
Machine learning for vision
Fall 2013

Roland Memisevic

Lecture 1, September 17, 2013

Roland Memisevic Machine learning for vision

Translation invariance and locality

I Almost all structure in natural
images is position-invariant
and local. This has several
practical consequences:

I Almost all low-level vision
operations will be based on
small patches.

I The universal mathematical
framework for understanding
the structure in images is the
Fourier transform.

Roland Memisevic Machine learning for vision

Ways to represent an image

I as a matrix (or tensor for multi-channel images such
as color images)

I as a sequence of gray-values or colors
(“vectorization”, “serialization”)

I as a vector equipped with operations from linear
algebra (a point in “pixel space”)

I as a sequence of features computed from the image

I It is common to jump back-and-forth between these
representations.

I For matrix representations, it can be convenient to
use negative indexes, so that the origin is in the
center of the image.

Roland Memisevic Machine learning for vision

Linear features
I One of the simplest and most common operations on

a vectorized image is linear projection:

wTx =
∑

i

wixi

or, if images are matrices:

=
∞∑

x∗=−∞

∞∑

y∗=−∞
W (x∗, y∗)I(x∗, y∗)

I The resulting scalar will be large if x is similar to w
I w is called “feature”, “filter”, or “mask”
I Features can be defined by hand or learned from

data.

Roland Memisevic Machine learning for vision

Filtering
I We define “filtering” as scanning a linear feature W

across the image:

O(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
W (x∗, y∗)I(x + x∗, y + y∗)

which yields feature map where structure similar to
W is enhanced.

I Almost every recognition system makes use of this.
I Feature maps may be multidimensional if we apply

multiple filters on the same image.
I Usually the features are a much smaller than the

image, and both can be thought of as padded with
zeros on all sides.

I Of course, one can do the same for 1-d signals.

Roland Memisevic Machine learning for vision

Filtering

Roland Memisevic Machine learning for vision

Example: two feature maps from edge filters

linear filter linear filter (a non-linear combination)

Roland Memisevic Machine learning for vision

How to deal with the boundaries

I There are several things one can do at the
boundaries:

1. Make the output smaller than the original image
2. Assume that the image is padded with zeros
3. “wrap-around”: Think of image as being periodic

I All of these can be found in practice, depending on
application, preferences, etc.

Roland Memisevic Machine learning for vision

Filtering the impulse

I What happens if we filter the impulse image

δ(x , y) =

{
1, if x = 0 and y = 0,
0, otherwise

with some filter mask W (x , y) ?

I The output image will show the flipped feature in the
center:

O(x , y) = W (−x ,−y)

I hmmm... can we get rid of the flipping?
I Yes, flip the image or the mask when computing the

inner product...:

Roland Memisevic Machine learning for vision

Filtering the impulse

I What happens if we filter the impulse image

δ(x , y) =

{
1, if x = 0 and y = 0,
0, otherwise

with some filter mask W (x , y) ?
I The output image will show the flipped feature in the

center:
O(x , y) = W (−x ,−y)

I hmmm... can we get rid of the flipping?
I Yes, flip the image or the mask when computing the

inner product...:

Roland Memisevic Machine learning for vision

Convolution
I The convolution of two images is defined by

I1(x , y)∗I2(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
I1(x−x∗, y−y∗)I2(x∗, y∗)

I Typically (not always), one image will be a feature
vector h(x , y):

I(x , y) ∗ h(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
I(x − x∗, y − y∗)h(x∗, y∗)

I In 1-d:

s(y) ∗ h(y) =
∞∑

y∗=−∞
s(y − y∗)h(y∗)

Roland Memisevic Machine learning for vision

Properties of convolution

I commutative:

s(x , y) ∗ h(x , y) = h(x , y) ∗ s(x , y)

I associative:
(

s(x , y)∗h1(x , y)
)
∗h2(x , y) = s(x , y)∗

(
h1(x , y)∗h2(x , y)

)

I distributive:

s(x , y)∗
(

h1(x , y)+h2(x , y)
)
= s(x , y)∗h1(x , y)+s(x , y)∗h2(x , y)

I These are properties of products.

Roland Memisevic Machine learning for vision

Convolution as superposition, impulse
response

I One usually thinks of convolution as scanning a
(flipped) filter across the image.

I One can also think of convolution as computing a
weighted sum over translated copies of the image.

I The (flipped) filter entries are then the weights in the
combination.

I The impulse response of a filter is defined as the
result of convolving the filter with the impulse image.

Roland Memisevic Machine learning for vision

Continuous convolution

I In continuous domains, replace the sum with an
integral:

s(x , y)∗h(x , y) =
∫∫ ∞

−∞
s(x , y)·h(x−x∗, y−y∗) dx∗ dy∗

I Caveat: To get a sensible impulse response, the
impulse signal needs to integrate to one. But at the
same time it has to be equal to zero everywhere
except at the origin.

I Solution: The Dirac delta.

Roland Memisevic Machine learning for vision

One-d convolution according to Wikipedia

Roland Memisevic Machine learning for vision

Finite convolution

I In practice, almost all filters that we need to deal with
are finite.

I So we may write

(
I ∗ h

)
m,n =

K
2∑

k=−K
2

R
2∑

r=−R
2

h(k , r)I(m − k ,n − r)

I For images of size M × N this takes MNKR
operations.

I K and R are usually much smaller than M and N.

Roland Memisevic Machine learning for vision

Separability

M
g(m,n)

1
G2

G

G1

Nn

m

1

I An image I(m,n) is called
separable, if there exist 1d
signals I1, I2 with

I(m,n) = I1(m)I2(n)

I In vector notation:

I = I1IT2

I Filters can be separable, too.

Roland Memisevic Machine learning for vision

Convolution and separability

I If the filter h is separable, we have:
(
I ∗ h

)
m,n =

∑

k

∑

r

h(k , r)s(m − k ,n − r)

=
∑

k

∑

r

h1(k)h2(r)s(m − k ,n − r)

=
∑

k

h1(k)
∑

r

h2(r)s(m − k ,n − r)

︸ ︷︷ ︸
=:a(m−k ,n)

I We can pre-compute a(·, ·) using MNR operations.
I Given a(·, ·) the result takes only MNK operations.
I This makes MN(R + K) in total.

Roland Memisevic Machine learning for vision

Separable/non separable example

x

y

x

y

separable not separable

Roland Memisevic Machine learning for vision

LTI Systems

I Convolution amounts to applying a single linear
transformation everywhere. This makes it a

Linear Time-Invariant system (LTI System)
I (note: “time”, for us, usually means space)
I LTI system is aka Linear Shift-Invariant system (LSI

System)
I A system is a function that takes a signal as input and

outputs a new signal.
I There are many dimensions along which one can

charaterize systems: causality, finite vs. infinite
impulse response (FIR vs. IIR filter), stability (eg.
“BIBO”), ...

Roland Memisevic Machine learning for vision

Sine and cosine

I Two signals which (if combined into one) are
intimately related to LTI systems are the sine and the
cosine-signal:

sc(x ;A, ω, ϕ) = A cos (ωx + ϕ)

ss(x ;A, ω, ϕ) = A sin (ωx + ϕ)

I ω is called (“angular”) frequency; ϕ is called phase.
I Its reciprocal is called wavelength.

Roland Memisevic Machine learning for vision

Digression: Complex numbers
I Complex numbers are “2d-vectors” with some special

arithmetic, most of which are due to Euler’s formula:

eiϕ = cosϕ+ i sinϕ
I Most applications rely on jumping back-and-forth

between cartesian and polar coordinates:

Re

Im

ϕ

r

c = a+ ib = reiϕ

b

a

a = r cos (ϕ)

b = r sin (ϕ)

r = |c| =
√

a2 + b2

ϕ = arg(c) = atan
(b

a
)

Roland Memisevic Machine learning for vision

Digression: Complex numbers

I Addition is the same like for 2d vectors.
I Multiplication is standard arithmetic in the polar

representation:

c1 · c2 = r1ei(ϕ1) · r2ei(ϕ2) = r1 · r2 · ei(ϕ1+ϕ2)

Thus, multiplication is stretching + rotation.
I Multiplying a complex number by a number c of

length 1.0, ie.
c = eiα

is rotation by α degrees counter clock-wise around
the origin.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

1−1

− j

j

cos(ϕ)

sin(ϕ)

ϕ

I The signal exp(iωt) is therefore a unit-vector running
counter clock-wise around the unit circle.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

I Other useful equations:
I Conjugation is reflection at the real axis:

c̄ = a− ib = r exp(−iϕ)

I It follows that c̄c = |c|2 and 1
2(c̄ + c) = real(c)

I The standard inner product uses conjugation:

〈
~c, ~d

〉
=
∑

i

c̄idi

I Why? Because now
〈
~c,~c

〉
= ||~c||2

I In practice, use the function atan2() to compute the
atan for polar representations.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

eiπ + 1 = 0

— End of digression —

Roland Memisevic Machine learning for vision

The phasor

The phasor is the complex valued signal

p(t) = exp
(
iωt
)

I The phasor is the central object of interest in signal
processing. It combines sine and cosine into a single,
complex valued signal.

I t can be continuous or discrete.

Roland Memisevic Machine learning for vision

Sine and cosine from two phasors
I Euler’s formula allows us to extract sine and cosine

from the phasor:

cosϕ =
1
2

eiϕ +
1
2

e−iϕ

sinϕ =
1
2i

eiϕ − 1
2i

e−iϕ = − i
2

eiϕ +
i
2

e−iϕ

I To derive these formulas one can use:

eiϕ + e−iϕ = 2 cosϕ

and
eiϕ − e−iϕ = 2i sinϕ

I One can also think of this as a way to transform to
Cartesian coordinates.

Roland Memisevic Machine learning for vision

Phasors and shift (1d)
Phasors are eigenfunctions of translation

p(t−z) = eiω(t−z) = eiωte−iωz = e−iωzp(t)

I Thus, translating a (1-d) phasor is equal to
multiplying it by the constant: e−iωz

I This constant depends on (i) the frequency of the
phasor, and (ii) the amount of shift.

I Now recall that we can think of convolution as
computing a linear combination of translated copies
of the signal:

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)
Phasors are eigenfunctions of convolution

p(t) ∗ h =
∞∑

z=−∞
h(z)p(t − z)

=
(∞∑

z=−∞
h(z)e−iωz

)
eiωt

=: H(ω)p(t)

I The constant depends on the frequency of the
phasor.

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)

I The complex number H(ω) is called frequency
response of the filter.

I Its absolute value |H(ω)| is called amplitude
response.

I Its phase arg H(ω) is called phase response.

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)

I Recall that multiplication for complex numbers is
stretching + rotation.

I It follows that convolution can change phase and
amplitude of a phasor but not its frequency.

I Convolving with the filter h(t) turns the phasor
p(t) = exp(iωt) into:

H(ω)exp
(
iωt
)
= |H(ω)|exp

(
iωt + argH(ω)

)

Roland Memisevic Machine learning for vision

Signals as superpositions of phasors (1d)

I The fact that phasors are well-behaved wrt.
convolution suggests writing a signal as a
superposition of phasors.

I That way we can characterize the effect of a filter by
just looking at the phasors (which differ by
frequency).

I For signals that are finite (in other words, usual
vectors) this is straightforward, because we can
construct an orthonormal basis from phasors as
follows:

Roland Memisevic Machine learning for vision

An orthogonal basis from phasors (1d)
I Define T discrete phasor signals of length T with

frequencies k = 0, . . . ,T − 1 as:

pk(t) = e
2πi
T kt t = 0, . . . ,T − 1

I These phasors form an orthonormal basis wrt. the
complex inner product:

〈
pk(t),pl(t)

〉
=
∑

t

e
2πi
T kte−

2πi
T lt = T δkl

I So the coefficients that allow us to represent a signal
s(t) in this basis are simply

S(k) =
1
T
〈
s(t),pk(t)

〉

Roland Memisevic Machine learning for vision

Discrete Fourier Transform (1d)

Discrete Fourier Transform (DFT) 1d

S(k) =
T−1∑

t=0

s(t)e−i 2π
T kt k = 0, . . . ,T − 1

Inverse discrete Fourier Transform 1d

s(t) =
1
T

T−1∑

k=0

S(k)ei 2π
T tk t = 0, . . . ,T − 1

Roland Memisevic Machine learning for vision

Discrete Fourier Transform (1d)

I Most practical implementations of the DFT use the
Fast Fourier Transform (FFT) to compute the
coefficients. Accordingly, most libraries are named
“FFT” not “DFT”.

I One can generalize the DFT to continuous periodic
functions (“Fourier Series”).

I One can generalize further to (non-periodic)
square-integrable functions (“Fourier Transform”).

Roland Memisevic Machine learning for vision

Fouriertransform

Fouriertransform

S(f) :=
∫ ∞

−∞
s(t)e−i2πft dt

Inverse Fouriertransform

s(t) :=
∫ ∞

−∞
S(f)ei2πft df

I Alternative definitions, which use non-normalized
frequencies ω = 2πf , can be found frequently, too.

Roland Memisevic Machine learning for vision

Spectrum

I The complex function S(ω) is called the spectrum of
the signal.

I |S(ω)| is called amplitude spectrum.
I arg S(ω) is called phase spectrum.

I The frequency response of a filter is thus the
spectrum of the impulse response.

I The spectrum S(ω) is a set of coefficients that we
need to apply to the phasors of corresponding
frequency to get back the signal.

I It determines the strength of each phasor (via |S(ω)|)
and the phase of each phasor (via arg S(ω)).

Roland Memisevic Machine learning for vision

Discrete = finite = periodic

I For discrete time signals, we have

exp (iωt) = exp (i(ω + 2π)t)

and thus
S(ω + 2π) = S(ω)

I For discrete signals, we therefore need to define S(ω)
only for −π ≤ ω ≤ π

I In practice, it is common to think of periodic as finite
and vice versa.

Roland Memisevic Machine learning for vision

Fourier analysis zoo

signal continuous signal discrete
spectrum
continuous

Fourier transform Discrete Time
Fourier Transform
(DTFT): spectrum is
periodic

spectrum
discrete

Fourier series:
signal is periodic

Discrete Fourier
Transform
(DFT/FFT): spec-
trum and signal are
both periodic/ discrete
/ finite

“finite”==“periodic”

Roland Memisevic Machine learning for vision

