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A neural network with a single hidden layer

I A feed-forward neural net (AKA backprop net)
computes its output layer-by-layer:

yk (x) =
M∑

j=0

w (2)
kj h

( D∑

i=0

w (1)
ji xi

)

this and most of the following images from: (Bishop, 2006)
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A neural network with a single hidden layer

I With explicit bias terms:

yk (x) =
M∑

j=1

w (2)
kj h

( D∑

i=1

w (1)
ji xi + w (1)

j0

)
+ w (2)

k0
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A neural network with a single hidden layer

I In practice, we can add more hidden layers. →
compute derivatives using back-prop.
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Output activation functions

I The last layer determines the functionality of the
network. For example:

I linear outputs + squared error loss = non-linear
regression.

I softmax outputs + log-loss = non-linear logistic
regression.
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Learning arbitrary non-linear functions

I A network with a single hidden layer can model any
non-linear function under fairly mild conditions to
arbitrary accuracy (eg. Funahashi, 1989).

I Unfortunately, the proof relies on using an
exponentially large number of hidden units.

I So the practical relevance of this result is very limited.
I In practice, networks with many layers have proven to

be much more useful.
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Backpropagation

I Define the training cost as the sum over per-example
costs:

E(w) =
N∑

n=1

En(w)

I Now we can compute derivatives ∂En
∂w

individually for
each training case and add them up afterwards.

I Definitions:
I Let aj =

∑
i wjizi be the net input of unit j .

I Let zi be the output of unit i , in other words zi = h(ai).
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Backpropagation

i

j
wji

I We need derivatives of the cost, En, with respect to
each weight wji connecting nodes i and j in the
network.
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Backpropagation

I By the chain-rule of differentiation, we have

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji

I The second factor is easy:

∂aj

∂wji
= zi

And to compute it for all i : Just run the network!
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Backpropagation
I Apply the chain-rule once more to get

∂En

∂aj
=
∑

k

∂En

∂ak

∂ak

∂aj

where the sum is over those units k connected to j .
I Intuitively, this reflects the fact that if we wiggle aj this

will affect the cost function through all the ak .
I With

∂ak

∂aj
= wkjh′(aj)

this simplifies to:

∂En

∂aj
= h′(aj)

∑

k

wkj
∂En

∂ak
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Backpropagation

I Thus, we can use a recursion to compute all ∂En
∂ak

starting at the outputs.
I For squared error (regression), we have

∂

∂ak
En =

∂

∂ak

1
2
‖y(n)(x,w)− t(n)‖2 = y (n)

k − t (n)k

since y (n)
k = a(n)

k in the case of regression.
I Same for classification if we define the log-probability

as softmax and use negative log-probability as the
loss (exercise).
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Backpropagation

I If h is the logistic sigmoid, we have:

h′(aj) = h(aj)(1− h(aj))

So in this case we may use the activations
themselves to compute the derivatives.

I But any activation function that is differentiable
almost everywhere will work.
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Backpropagation

Backpropagation summary (Bishop, page 244):
1. Given input xn, propagate forward to compute

activations for all hiddens zi and outputs.
2. Evaluate En and ∂En

∂ak
for all output units.

3. Compute ∂En
∂ak

recursively for each hidden unit.
4. Compute the derivatives for each wji by multiplying

the appropriate ∂En
∂aj

and zi terms.
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Implementing backprop

I More generally, backprop tells us that it is easy to
compose systems consisting of modules, as long as
the modules provide the following three functions:

I A function fprop() to compute outputs, given inputs
and parameters.

I A function bprop() to compute derivatives of some
function wrt. its inputs, given the derivatives of that
function wrt. its outputs.

I A function grad() to compute derivatives of some
function wrt. its parameters, given inputs and the
derivatives of that function wrt. its outputs.

I Building large complicated systems is then just a
matter of sticking together these modules, and
gradients can be computed fully automatically.
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Implementing backprop
I There are several software packages that implement

backprop.
I theano (http://deeplearning.net/software/theano)

takes the idea to the extreme, by using symbolic
differentiation, so you don’t even need to implement
bprop and grad yourself.
import theano

import theano.tensor as T

x = T.dmatrix("x")

w = T.dmatrix("w")

somefunction = T.dot(w,x).sum()

python_function = theano.function([x,w], somefunction)

python_function(randn(100, 10), randn(10, 100))

derivative = T.grad(somefunction, w)
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theano
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Weight sharing

I A common approach to reducing the number of
model parameters is weight sharing:

I Force different parts of the network to use the same
parameters.

I It is trivial to implement weight sharing using
backprop:

I Just let your modules make use of the same
parameter array.

I Derivatives for these parameters will simply
accumulate.
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Convolutional networks

I Convolutional networks (“conv nets”) are probably the
most common application of weight sharing.

I They are neural networks designed specifically for
visual tasks (though there are examples for conv nets
used in other domains).

I Since structure in images is local and invariant, they
use local receptive fields with weight-sharing.

I This defines a convolution with (flipped) filters which
are learned discriminatively using back-prop.
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Convolutional networks

I Alternating sub-sampling layers are commonly used
to get invariance to small shifts and to reduce the
spatial extent of the representation towards the
higher layers.

I (LeCun et al., 1989)
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Convolutional networks

I Convolutional networks were inspired by Hubel &
Wiesel’s complex/simple cells results.

I There are various related models (but without
back-prop learning): Neocognitron (Fukushima,
1980), HMAX (Riesenhuber & Poggio, 1999)

I A standard reference for conv nets is:
“Gradient-based learning applied to document
recognition.” Y. LeCun, et al. 1998.

I (strangely, that paper introduced another concept
now heavily used in vision: conditional random fields
(CRF))
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Autoencoders

sk

xj

Akj

Wjk

x

r (x)

x̂j

I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress its input.

I Linear autoencoders
implement a variation of PCA
(Baldi, Hornik; 1989)
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Overcomplete autoencoders

xj

Akj

Wjk

x

r (x)

x̂j

sk

I With overcomplete hiddens,
the model can cheat and
learn the identity.

I One solution: Corrupt the
inputs during training, but train
the model to reconstruct the
original, uncorrupted inputs
(Vincent et al. 2008):

cost = ‖r(x + noise)− x‖2
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Denoising autoencoders

no denoising denoising
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Denoising autoencoders

128	
  

Auto-Encoders Learn Salient 
Variations, like a non-linear PCA 

•  Minimizing	
  reconstruc8on	
  error	
  forces	
  to	
  
keep	
  varia8ons	
  along	
  manifold.	
  

•  Regularizer	
  wants	
  to	
  throw	
  away	
  all	
  
varia8ons.	
  

•  With	
  both:	
  keep	
  ONLY	
  sensi8vity	
  to	
  
varia8ons	
  ON	
  the	
  manifold.	
  

(slides by Yoshua Bengio)
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Denoising autoencoders

Contractive Auto-Encoders 

wants	
  contrac8on	
  in	
  all	
  
direc8ons	
  

cannot	
  afford	
  contrac8on	
  in	
  
manifold	
  direc8ons	
  

(Rifai,	
  Vincent,	
  Muller,	
  Glorot,	
  Bengio	
  ICML	
  2011;	
  Rifai,	
  Mesnil,	
  
Vincent,	
  Bengio,	
  Dauphin,	
  Glorot	
  ECML	
  2011;	
  Rifai,	
  Dauphin,	
  
Vincent,	
  Bengio,	
  Muller	
  NIPS	
  2011)	
  

Training	
  criterion:	
  
	
  

If	
  hj=sigmoid(bj+Wj	
  x)	
  
	
  
(dhj(x)/dxi)2	
  =	
  	
  hj2(1-­‐hj)2Wji

2	
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Denoising autoencoders

Denoising auto-encoders 
are also contractive! 
•  Taylor-­‐expand	
  Gaussian	
  corrup8on	
  noise	
  in	
  reconstruc8on	
  

error:	
  

•  Yields	
  a	
  contrac8ve	
  penalty	
  in	
  the	
  reconstruc8on	
  func8on	
  
(instead	
  of	
  encoder)	
  propor8onal	
  to	
  amount	
  of	
  corrup8on	
  noise	
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Contractive AE in theano

.

.

.

hiddens = T.nnet.sigmoid(T.dot(inputs, W) + bhid)

outputs = T.dot(hiddens, W.T) + bvis

cost = T.mean(T.sum(0.5 * ((inputs - outputs)**2), axis=1))

cost += contraction *

T.sum( ((hiddens * (1 - hiddens))**2) * T.sum(W**2, axis=0),

axis=1)

grads = T.grad(cost, params)

.

.

.

Roland Memisevic Machine learning for vision

Sparse autoencoders

I Another way to define an overcomplete autoencoder,
is by forcing hiddens to be sparse.

I This will also let the hidden layer act like a bottleneck.
I For example, to train a linear autoencoder with L1

sparsity term:

minimize
∑

t

‖WWTz t − z t‖2 + λ
∑

t

∑

i

|wT
i z t |

I This can also be viewed as a way to implement ICA
(see lecture 6).

I K -mean clustering can be viewed as a (very) sparse
autoencoder, too.
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Factorial representations

I In K -means clustering, each hidden unit represents a
convex blob in the data-space.

I Thus, hidden units cannot collaborate to define
regions in input space.

I A sparse autoencoder may be viewed as a way to
allow for some collaboration between hiddens.

I The number of “blobs” that a set of hiddens can
represent thus becomes, in principle, exponential in
the number of hiddens involved.

I Codes that can collaborate are commonly called
“factorial”.
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Relationship between encoder and decoder
weights

I Take an autoencoder with “tied weights” (W = AT)
I If the model is defined on whitened data, the decoder

weights (in terms of the original data) will be
smoothed encoder weights (also in terms of the
original data):

I To see this, write the encoder weight sin terms of the
original, unwhitened data as:

s(x) = WTz(x) = WTL−
1
2UTx =: W̄x

and the decoder weights in terms of the original,
unwhitened data as:

x(s) = UL
1
2Ws =: Ās
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Relationship between encoder and decoder
weights

I Now multiply the encoder weights by the data
covariance matrix:

CW̄
T

= CUL−
1
2W

= ULUTUL−
1
2W

= UL
1
2W

= Ā
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Relationship between encoder and decoder
weights
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Autoencoders as dynamical systems

I An autoencoder maps
points x ∈ Rn to
reconstructions
r(x) ∈ Rn.

I This defines a
dynamical system!

I We can plot r(x)− x as
a vector field.

I (Seung, 1998), (Alain,
Bengio; 2013)
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Autoencoders as dynamical systems

I The dynamical systems perspective provides another
explanation for why denoising and contractive training
works:

I Training can be viewed as making training data points
attractive fixed points of the network dynamics.

I (Seung, 1998), (Swersky et al. 2011), (Vincent 2011),
(Alain, Bengio; 2013), (Kamyshanska, Memisevic,
2013)

Roland Memisevic Machine learning for vision

Computing the energy of an autoencoder

I Some dynamical systems can be defined as the
derivative of a scalar function (AKA “scalar field” or
“potential energy”) E(x).

I If such an energy exists, extrema of the scalar field
will be fixed points of the dynamical system, and
running the dynamical system will amount to
performing gradient descent in the energy.

I Which autoencoders have energy functions?
I Answer: Those with tied weights (W = AT)

(Poincare’s Lemma)
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Computing the energy of an autoencoder

I We can compute the energy of these autoencoders
by integration (Kamyshanska, Memisevic; 2013):

E(x) =

∫
(r(x)− x) dx

...

=
∑

k

∫
h(sk ) dsk −

1
2
‖x − br‖2 + const

where br is the vector of (visible) bias terms.
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Computing the energy of an autoencoder

I Computing the energy boils down to the following
recipe:

1. Replace hidden activation function by its
anti-derivative (eg., softplus for sigmoid, half-square
for rectifier, etc.).

2. Sum up these new activations.
3. subtract 1

2‖x − br‖2
I For binary-output models, the last term turns into bT

r x
I For sigmoid hiddens, this recipe comes down to

computing exactly the RBM free energy!
I Potential energies are additive in the hiddens, so it is

in general ICA-like general.
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Examples
Sigmoid activation σ(x) = (1 + exp(−x))−1:

Esigmoid(x) =
∑

k

softplus(sk )− 1
2
‖x − br‖2 + const

⇒ same as the free energy of a binary-Gaussian RBM.

Sigmoid activation (binary inputs):

Esigmoid(x) =
∑

k

softplus(sk ) + bT
r x + const

⇒ same as the free energy of a binary-binary RBM.
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Examples
Hyperbolic tangent activation tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) :

Etanh(x) =
∑

k

log (cosh(sk ))−
1
2
(
x − br

)2
+ const

Linear activation h(s) = s:

Elinear(x) =
1
2
(Wx + bh)

T (Wx + bh)−
1
2
(
x − br

)2
+ const

⇒ the norm of the latent representation, same as PCA generative
classifier

Rectifier hiddens h(x) =

{
0 if x < 0
x else

:

Erelu(x) =
∑

k (sign(sk ) + 1) s2
k
2 − 1

2

(
x − br

)2
+ const
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RBMs are autoencoders
I Minimizing reconstruction error will minimize the

magnitude of the first derivative of the energy at the
data.

I Denoising/contraction penalties will force second
derivatives of the energy (= first derivatives of
r(x)− x) to be negative at the data (because they
force ∂r(x)

∂x to be small).
I This will encourage datapoints to be local minima of

the energy.
I This is exactly what RBM training tries to accomplish.

The only technical difference is that the RBM
optimizes the energy directly (in its positive phase)
and its derivative through sampling, whereas the AE
optimizes only the derivatives, and it does so
analytically.
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