
Machine learning for vision
Fall 2013

Roland Memisevic

Lecture 10, November 5, 2013

Roland Memisevic Machine learning for vision

A neural network with a single hidden layer

I A feed-forward neural net (AKA backprop net)
computes its output layer-by-layer:

yk (x) =
M∑

j=0

w (2)
kj h

(D∑

i=0

w (1)
ji xi

)

this and most of the following images from: (Bishop, 2006)
Roland Memisevic Machine learning for vision

A neural network with a single hidden layer

I With explicit bias terms:

yk (x) =
M∑

j=1

w (2)
kj h

(D∑

i=1

w (1)
ji xi + w (1)

j0

)
+ w (2)

k0

Roland Memisevic Machine learning for vision

A neural network with a single hidden layer

I In practice, we can add more hidden layers. →
compute derivatives using back-prop.

Roland Memisevic Machine learning for vision

Output activation functions

I The last layer determines the functionality of the
network. For example:

I linear outputs + squared error loss = non-linear
regression.

I softmax outputs + log-loss = non-linear logistic
regression.

Roland Memisevic Machine learning for vision

Learning arbitrary non-linear functions

I A network with a single hidden layer can model any
non-linear function under fairly mild conditions to
arbitrary accuracy (eg. Funahashi, 1989).

I Unfortunately, the proof relies on using an
exponentially large number of hidden units.

I So the practical relevance of this result is very limited.
I In practice, networks with many layers have proven to

be much more useful.

Roland Memisevic Machine learning for vision

Backpropagation

I Define the training cost as the sum over per-example
costs:

E(w) =
N∑

n=1

En(w)

I Now we can compute derivatives ∂En
∂w

individually for
each training case and add them up afterwards.

I Definitions:
I Let aj =

∑
i wjizi be the net input of unit j .

I Let zi be the output of unit i , in other words zi = h(ai).

Roland Memisevic Machine learning for vision

Backpropagation

i

j
wji

I We need derivatives of the cost, En, with respect to
each weight wji connecting nodes i and j in the
network.

Roland Memisevic Machine learning for vision

Backpropagation

I By the chain-rule of differentiation, we have

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji

I The second factor is easy:

∂aj

∂wji
= zi

And to compute it for all i : Just run the network!

Roland Memisevic Machine learning for vision

Backpropagation
I Apply the chain-rule once more to get

∂En

∂aj
=
∑

k

∂En

∂ak

∂ak

∂aj

where the sum is over those units k connected to j .
I Intuitively, this reflects the fact that if we wiggle aj this

will affect the cost function through all the ak .
I With

∂ak

∂aj
= wkjh′(aj)

this simplifies to:

∂En

∂aj
= h′(aj)

∑

k

wkj
∂En

∂ak

Roland Memisevic Machine learning for vision

Backpropagation

I Thus, we can use a recursion to compute all ∂En
∂ak

starting at the outputs.
I For squared error (regression), we have

∂

∂ak
En =

∂

∂ak

1
2
‖y(n)(x,w)− t(n)‖2 = y (n)

k − t (n)k

since y (n)
k = a(n)

k in the case of regression.
I Same for classification if we define the log-probability

as softmax and use negative log-probability as the
loss (exercise).

Roland Memisevic Machine learning for vision

Backpropagation

I If h is the logistic sigmoid, we have:

h′(aj) = h(aj)(1− h(aj))

So in this case we may use the activations
themselves to compute the derivatives.

I But any activation function that is differentiable
almost everywhere will work.

Roland Memisevic Machine learning for vision

Backpropagation

Backpropagation summary (Bishop, page 244):
1. Given input xn, propagate forward to compute

activations for all hiddens zi and outputs.
2. Evaluate En and ∂En

∂ak
for all output units.

3. Compute ∂En
∂ak

recursively for each hidden unit.
4. Compute the derivatives for each wji by multiplying

the appropriate ∂En
∂aj

and zi terms.

Roland Memisevic Machine learning for vision

Implementing backprop

I More generally, backprop tells us that it is easy to
compose systems consisting of modules, as long as
the modules provide the following three functions:

I A function fprop() to compute outputs, given inputs
and parameters.

I A function bprop() to compute derivatives of some
function wrt. its inputs, given the derivatives of that
function wrt. its outputs.

I A function grad() to compute derivatives of some
function wrt. its parameters, given inputs and the
derivatives of that function wrt. its outputs.

I Building large complicated systems is then just a
matter of sticking together these modules, and
gradients can be computed fully automatically.

Roland Memisevic Machine learning for vision

Implementing backprop
I There are several software packages that implement

backprop.
I theano (http://deeplearning.net/software/theano)

takes the idea to the extreme, by using symbolic
differentiation, so you don’t even need to implement
bprop and grad yourself.
import theano

import theano.tensor as T

x = T.dmatrix("x")

w = T.dmatrix("w")

somefunction = T.dot(w,x).sum()

python_function = theano.function([x,w], somefunction)

python_function(randn(100, 10), randn(10, 100))

derivative = T.grad(somefunction, w)

Roland Memisevic Machine learning for vision

theano

Roland Memisevic Machine learning for vision

Weight sharing

I A common approach to reducing the number of
model parameters is weight sharing:

I Force different parts of the network to use the same
parameters.

I It is trivial to implement weight sharing using
backprop:

I Just let your modules make use of the same
parameter array.

I Derivatives for these parameters will simply
accumulate.

Roland Memisevic Machine learning for vision

Convolutional networks

I Convolutional networks (“conv nets”) are probably the
most common application of weight sharing.

I They are neural networks designed specifically for
visual tasks (though there are examples for conv nets
used in other domains).

I Since structure in images is local and invariant, they
use local receptive fields with weight-sharing.

I This defines a convolution with (flipped) filters which
are learned discriminatively using back-prop.

Roland Memisevic Machine learning for vision

Convolutional networks

I Alternating sub-sampling layers are commonly used
to get invariance to small shifts and to reduce the
spatial extent of the representation towards the
higher layers.

I (LeCun et al., 1989)

Roland Memisevic Machine learning for vision

Convolutional networks

I Convolutional networks were inspired by Hubel &
Wiesel’s complex/simple cells results.

I There are various related models (but without
back-prop learning): Neocognitron (Fukushima,
1980), HMAX (Riesenhuber & Poggio, 1999)

I A standard reference for conv nets is:
“Gradient-based learning applied to document
recognition.” Y. LeCun, et al. 1998.

I (strangely, that paper introduced another concept
now heavily used in vision: conditional random fields
(CRF))

Roland Memisevic Machine learning for vision

Autoencoders

sk

xj

Akj

Wjk

x

r (x)

x̂j

I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress its input.

I Linear autoencoders
implement a variation of PCA
(Baldi, Hornik; 1989)

Roland Memisevic Machine learning for vision

Overcomplete autoencoders

xj

Akj

Wjk

x

r (x)

x̂j

sk

I With overcomplete hiddens,
the model can cheat and
learn the identity.

I One solution: Corrupt the
inputs during training, but train
the model to reconstruct the
original, uncorrupted inputs
(Vincent et al. 2008):

cost = ‖r(x + noise)− x‖2

Roland Memisevic Machine learning for vision

Denoising autoencoders

no denoising denoising

Roland Memisevic Machine learning for vision

Denoising autoencoders

128	

Auto-Encoders Learn Salient
Variations, like a non-linear PCA

•  Minimizing	
 reconstruc8on	
 error	
 forces	
 to	

keep	
 varia8ons	
 along	
 manifold.	

•  Regularizer	
 wants	
 to	
 throw	
 away	
 all	

varia8ons.	

•  With	
 both:	
 keep	
 ONLY	
 sensi8vity	
 to	

varia8ons	
 ON	
 the	
 manifold.	

(slides by Yoshua Bengio)
Roland Memisevic Machine learning for vision

Denoising autoencoders

Contractive Auto-Encoders

wants	
 contrac8on	
 in	
 all	

direc8ons	

cannot	
 afford	
 contrac8on	
 in	

manifold	
 direc8ons	

(Rifai,	
 Vincent,	
 Muller,	
 Glorot,	
 Bengio	
 ICML	
 2011;	
 Rifai,	
 Mesnil,	

Vincent,	
 Bengio,	
 Dauphin,	
 Glorot	
 ECML	
 2011;	
 Rifai,	
 Dauphin,	

Vincent,	
 Bengio,	
 Muller	
 NIPS	
 2011)	

Training	
 criterion:	

	

If	
 hj=sigmoid(bj+Wj	
 x)	

	

(dhj(x)/dxi)2	
 =	
 	
 hj2(1-­‐hj)2Wji

2	

Roland Memisevic Machine learning for vision

Denoising autoencoders

Denoising auto-encoders
are also contractive!
•  Taylor-­‐expand	
 Gaussian	
 corrup8on	
 noise	
 in	
 reconstruc8on	

error:	

•  Yields	
 a	
 contrac8ve	
 penalty	
 in	
 the	
 reconstruc8on	
 func8on	

(instead	
 of	
 encoder)	
 propor8onal	
 to	
 amount	
 of	
 corrup8on	
 noise	

137	
 Roland Memisevic Machine learning for vision

Contractive AE in theano

.

.

.

hiddens = T.nnet.sigmoid(T.dot(inputs, W) + bhid)

outputs = T.dot(hiddens, W.T) + bvis

cost = T.mean(T.sum(0.5 * ((inputs - outputs)**2), axis=1))

cost += contraction *

T.sum(((hiddens * (1 - hiddens))**2) * T.sum(W**2, axis=0),

axis=1)

grads = T.grad(cost, params)

.

.

.

Roland Memisevic Machine learning for vision

Sparse autoencoders

I Another way to define an overcomplete autoencoder,
is by forcing hiddens to be sparse.

I This will also let the hidden layer act like a bottleneck.
I For example, to train a linear autoencoder with L1

sparsity term:

minimize
∑

t

‖WWTz t − z t‖2 + λ
∑

t

∑

i

|wT
i z t |

I This can also be viewed as a way to implement ICA
(see lecture 6).

I K -mean clustering can be viewed as a (very) sparse
autoencoder, too.

Roland Memisevic Machine learning for vision

Factorial representations

I In K -means clustering, each hidden unit represents a
convex blob in the data-space.

I Thus, hidden units cannot collaborate to define
regions in input space.

I A sparse autoencoder may be viewed as a way to
allow for some collaboration between hiddens.

I The number of “blobs” that a set of hiddens can
represent thus becomes, in principle, exponential in
the number of hiddens involved.

I Codes that can collaborate are commonly called
“factorial”.

Roland Memisevic Machine learning for vision

Relationship between encoder and decoder
weights

I Take an autoencoder with “tied weights” (W = AT)
I If the model is defined on whitened data, the decoder

weights (in terms of the original data) will be
smoothed encoder weights (also in terms of the
original data):

I To see this, write the encoder weight sin terms of the
original, unwhitened data as:

s(x) = WTz(x) = WTL−
1
2UTx =: W̄x

and the decoder weights in terms of the original,
unwhitened data as:

x(s) = UL
1
2Ws =: Ās

Roland Memisevic Machine learning for vision

Relationship between encoder and decoder
weights

I Now multiply the encoder weights by the data
covariance matrix:

CW̄
T

= CUL−
1
2W

= ULUTUL−
1
2W

= UL
1
2W

= Ā

Roland Memisevic Machine learning for vision

Relationship between encoder and decoder
weights

Roland Memisevic Machine learning for vision

Autoencoders as dynamical systems

I An autoencoder maps
points x ∈ Rn to
reconstructions
r(x) ∈ Rn.

I This defines a
dynamical system!

I We can plot r(x)− x as
a vector field.

I (Seung, 1998), (Alain,
Bengio; 2013)

Roland Memisevic Machine learning for vision

Autoencoders as dynamical systems

I The dynamical systems perspective provides another
explanation for why denoising and contractive training
works:

I Training can be viewed as making training data points
attractive fixed points of the network dynamics.

I (Seung, 1998), (Swersky et al. 2011), (Vincent 2011),
(Alain, Bengio; 2013), (Kamyshanska, Memisevic,
2013)

Roland Memisevic Machine learning for vision

Computing the energy of an autoencoder

I Some dynamical systems can be defined as the
derivative of a scalar function (AKA “scalar field” or
“potential energy”) E(x).

I If such an energy exists, extrema of the scalar field
will be fixed points of the dynamical system, and
running the dynamical system will amount to
performing gradient descent in the energy.

I Which autoencoders have energy functions?
I Answer: Those with tied weights (W = AT)

(Poincare’s Lemma)

Roland Memisevic Machine learning for vision

Computing the energy of an autoencoder

I We can compute the energy of these autoencoders
by integration (Kamyshanska, Memisevic; 2013):

E(x) =

∫
(r(x)− x) dx

...

=
∑

k

∫
h(sk) dsk −

1
2
‖x − br‖2 + const

where br is the vector of (visible) bias terms.

Roland Memisevic Machine learning for vision

Computing the energy of an autoencoder

I Computing the energy boils down to the following
recipe:

1. Replace hidden activation function by its
anti-derivative (eg., softplus for sigmoid, half-square
for rectifier, etc.).

2. Sum up these new activations.
3. subtract 1

2‖x − br‖2
I For binary-output models, the last term turns into bT

r x
I For sigmoid hiddens, this recipe comes down to

computing exactly the RBM free energy!
I Potential energies are additive in the hiddens, so it is

in general ICA-like general.

Roland Memisevic Machine learning for vision

Examples
Sigmoid activation σ(x) = (1 + exp(−x))−1:

Esigmoid(x) =
∑

k

softplus(sk)− 1
2
‖x − br‖2 + const

⇒ same as the free energy of a binary-Gaussian RBM.

Sigmoid activation (binary inputs):

Esigmoid(x) =
∑

k

softplus(sk) + bT
r x + const

⇒ same as the free energy of a binary-binary RBM.

Roland Memisevic Machine learning for vision

Examples
Hyperbolic tangent activation tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) :

Etanh(x) =
∑

k

log (cosh(sk))−
1
2
(
x − br

)2
+ const

Linear activation h(s) = s:

Elinear(x) =
1
2
(Wx + bh)

T (Wx + bh)−
1
2
(
x − br

)2
+ const

⇒ the norm of the latent representation, same as PCA generative
classifier

Rectifier hiddens h(x) =

{
0 if x < 0
x else

:

Erelu(x) =
∑

k (sign(sk) + 1) s2
k
2 − 1

2

(
x − br

)2
+ const

Roland Memisevic Machine learning for vision

RBMs are autoencoders
I Minimizing reconstruction error will minimize the

magnitude of the first derivative of the energy at the
data.

I Denoising/contraction penalties will force second
derivatives of the energy (= first derivatives of
r(x)− x) to be negative at the data (because they
force ∂r(x)

∂x to be small).
I This will encourage datapoints to be local minima of

the energy.
I This is exactly what RBM training tries to accomplish.

The only technical difference is that the RBM
optimizes the energy directly (in its positive phase)
and its derivative through sampling, whereas the AE
optimizes only the derivatives, and it does so
analytically.

Roland Memisevic Machine learning for vision

