
Machine learning for vision
Fall 2013

Roland Memisevic

Lecture 11, November 28, 2013

Roland Memisevic Machine learning for vision

Other ML

I Bayesian inference
I Manifold learning
I Kernel methods
I Graphical models
I Structured prediction

Roland Memisevic Machine learning for vision

Classification

yx

I Classification: Given input x , predict label y

Roland Memisevic Machine learning for vision

Structured prediction

x y

I Structured prediction: Given input x , predict label
vector y

I Naive solution: Predict each component
independently

I Better: Assume correlations between some labels.

Roland Memisevic Machine learning for vision



Structured prediction

x y

I Structured prediction: Given input x , predict label
vector y

I Naive solution: Predict each component
independently

I Better: Assume correlations between some labels.

Roland Memisevic Machine learning for vision

Structured prediction

x y

I Structured prediction: Given input x , predict label
vector y

I Naive solution: Predict each component
independently

I Better: Assume correlations between some labels.

Roland Memisevic Machine learning for vision

Example: scene parsing

Roland Memisevic Machine learning for vision

Linear classification with joint features

I To deal with structured outputs, it is convenient to
re-formulate the classification task using a joint
feature representation as follows:

f (x) = argmax
y

wTφ(x , y)

where φ(x , y) is a feature vector for a class/input
combination.

I Learning: minimize 1
N

∑
i loss

i(w) + λ‖w‖2

I We can treat standard classification in this
framework, too.

Roland Memisevic Machine learning for vision



Logistic regression

I Logistic regression minimizes the “log-loss”:

lossi(w) = log
∑

y

exp
(
wTφ(x i , y)

)
−wTφ(x i , y i)

I This is just the log-probability over labels given
inputs, defined as a softmax.

Roland Memisevic Machine learning for vision

Support vector machines

I SVMs minimize the “hinge-loss”:

lossi(w) = max
y

(
wTφ(x i , y) + 1− δy ,y i )

)
−wTφ(x i , y i)

Roland Memisevic Machine learning for vision

Perceptron

I Perceptrons learn by performing the updates

w = w + η
(
φ(x , y i)− φ(x , ŷ)

)

where η is a learning rate and

ŷ = argmax
y

wTφ(x i , y)

Roland Memisevic Machine learning for vision

Kernels
I Linear models can be turned into non-linear models

using kernels.
I Recipe:

1. Reformulate learning equations to use only inner
products between data examples

φ(x i , yi)
Tφ(x j , yj)

and inference equations to use inner products
between a test case (φ(x , y)) and training examples:

φ(x i , yi)
Tφ(x , y)

2. Replace each inner product by a positive definite
kernel function

k(φ(x i ,y i), φ(x j ,y j))

Roland Memisevic Machine learning for vision



Kernels

I One way to define positive definite kernel is to say
that any matrix K with entries
Kij = k(φ(x i ,y i), φ(x j ,y j)) will be positive definite (for
all possible input pairs φ(x i ,y i), φ(x i ,y i)

I It is guaranteed (Mercer’s theorem) that the kernel
function corresponds to an inner product in some
vector space.

I We don’t care what this space is. But if it is
non-linearly related to the inputs, we will have done
non-linear feature extraction implicitly.

Roland Memisevic Machine learning for vision

Kernels

I There are two standard ways to get the inner-product
representation:

I The representer theorem: Use the fact that the
learning solution can only be a weighted
superposition of training examples (why?)

I Convex duality: Re-formulate the problem as a
constrained convex program. For example, for logistic
regression, we can write the optimization problem:

min
w ,ξ

λ

2
‖w‖2 +

∑

i

log
∑

y

exp(ξ i
y)

s.t. ξ i
y = wTφ(x i ; y)−wTφ(x i ; y i) ∀i , y

Roland Memisevic Machine learning for vision

Kernels
I A convex problem can be solved by alternatively

solving its dual, which in this case is:

max
α

− 1
2λ
αT Kα +

1
λ
αT K δ +

∑

i

H(αi)

s.t. αi
y ≥ 0 ∀i , y ;

∑

y

αi
y = 1 ∀i

where Kij = φ(x i , yi)
Tφ(x j , yj) contains all inner

products between training cases.
I We may now replace the inner products by a positive

definite kernel function k(φ(x i , yi), φ(x j , yj)), because
it is guaranteed to correspond to an inner product in
some space.

I The catch: This yields a batch learning method with
complexity quadratic in the number of training cases.

Roland Memisevic Machine learning for vision

Structured prediction

I Instead of scalar labels y , consider label vectors y .
I Everything else stays the same:

f (x) = argmax
y

wTφ(x ,y)

I hinge loss − > “structured SVM”
I log loss − > “conditional random field”
I perceptron rule − > “structured perceptron”
I But learning and inference can be intractable,

because the logsumexp (for logreg) or the argmax
(for SVM, perceptron) is over exponentially many y

Roland Memisevic Machine learning for vision



Feature decompositions

I To regain tractability, decompose the features as

φ(x ,y) =
∑

s

φ(x ,ys)

where s indexes a clique in some graph defined over
y .

I If the graph is a tree, we can tractably compute

f (x) = argmax
y

wT
∑

s

φ(x ,ys)

as well as logsumexp’s, using variations of the
distributive law:

Roland Memisevic Machine learning for vision

Feature decompositions
I Consider, for example, the chain structure

φ(x ,ys) = φ(x , yt , yt+1)

f (x) = argmax
y

wT
∑

s

φ(x ,ys)

= argmax
y1,...,yT

wT
∑

t

φ(x , yt , yt+1)

= argmax
y1

. . . argmax
yT

wT
∑

t

φ(x , yt , yt+1)

= argmax
y1

wTφ(x , y1, y2) + . . .+ argmax
yT

φ(x , yT−1, yT )

I − > Do the argmax (or logsumexp) using dynamic
programming

Roland Memisevic Machine learning for vision

Feature decompositions

I The same idea will work not just for chains but for any
label vectors structured as tree.

I The generalization to trees is called belief
propagation. It amounts to interpreting the
intermediate computations as “messages” that are
sent from node to node.

I For non-tree structures (eg. MRF), we can still sent
around messages (pretending that this makes
sense), and hope the values converge. Surprisingly
they often do. This is called loopy belief propagation.

I Many other techniques for approximate inference
have been developed in recent years.

Roland Memisevic Machine learning for vision

Example: Conditional Random Fields

p(y |x ;w) =
1

Z (x ;w)
exp(wTφ(x ,y))

I (LeCun et al 1998, Lafferty et al. 2001).
I The clique-wise potentials φ(x ,ys) may be

complicated non-linear functions, such as neural
networks.

I Learning in that case combines belief propagation
and back-propagation.

I This is possible, because these two don’t interfere:

Roland Memisevic Machine learning for vision



Example: Conditional Random Fields

p(y |x ;w) =
1

Z (x ;w)
exp(wTφ(x ,y))

I Derivative wrt. to some parameter θ:

∂ log p(y |x)
∂θ

= wT∂φ(x ,y)
∂θ

− wT
∑

y
p(y |x)∂φ(x ,y)

∂θ

= wT
∑

s

∂φ(x ,ys)

∂θ
− wT

∑

y
p(y |x)∂

∑
s φ(x ,ys)

∂θ

I Now think of each φ(x ,ys) as a separate neural network
that is indexed by ys !

I The networks may share weights (which is trivial to
implement)

Roland Memisevic Machine learning for vision

Cost-augmented inference

I “argmax”-models may have an advantage over
conditional random fields, because they allows us to
insert more complicated cost functions into the
inference:

lossi(w) = max
y

(
wTφ(x i ,y) + cost(y ,y i))

)
−wTφ(x i ,y i)

where cost(y ,y i), like the features, has to decompose
in some way to be tractable.

Roland Memisevic Machine learning for vision

Kernels
I Like in the scalar label case, we can re-formulate the

problem as a constrained convex program:

min
w ,ξ

λ

2
‖w‖2 +

∑

i

log
∑

y

exp(ξ i
y)

s.t. ξ i
y = wTφ(x i ;y)−wTφ(x i ;y i) ∀i ,y

with dual

max
α

− 1
2λ
αT Kα +

1
λ
αT K δ +

∑

i

H(αi)

s.t. αi
y ≥ 0 ∀i ,y ;

∑

y

αi
y = 1 ∀i

Roland Memisevic Machine learning for vision

Kernels

I For vector y this is a problem with exponentially
many constraints.

I But there are ways to solve it (eg. “cutting plane
method”).

I Unfortunately, these methods come with quadratic
complexity in the number of training case and
quadratic complexity in the number of joint clique
instantiations.

I So it seems hopeless to make them work on large
datasets.

Roland Memisevic Machine learning for vision



Output representation learning

x y

I A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

I (...and potentially the dependence of the features
themselves on the inputs, which would require 3-way
connections)

Roland Memisevic Machine learning for vision

Output representation learning

x y

h

I A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

I (...and potentially the dependence of the features
themselves on the inputs, which would require 3-way
connections)

Roland Memisevic Machine learning for vision

Output representation learning

x y

h

I A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

I (...and potentially the dependence of the features
themselves on the inputs, which would require 3-way
connections)

Roland Memisevic Machine learning for vision

Feature learning MRFs

I MRFs defined via feature learning have been getting
quite popular in vision, because they perform very
well in denoising and inpainting tasks.

I For example, Fields of Experts (Roth & Black), which
are convolutional RBMs.

I The free energy itself is a sum over the individual
clique free energies, and it can be written as a
convolution.

I Same for the derivative of the free energy wrt. the
input image. (What is it ?!?)

I So it is easy to optimize it to perform inference.

Roland Memisevic Machine learning for vision



Feature learning MRFs

Roland Memisevic Machine learning for vision

Other stuff

I Saliency, attention
I Other modalities
I Geometry (not much learning, but some starting now

with complex cells)
I 3d models, shape
I models of humans, MOCAP

Roland Memisevic Machine learning for vision


