Machine learning for vision
Fall 2013

Roland Memisevic

Lecture 11, November 28, 2013

Classification

O

X y

» Classification: Given input x, predict label y

Roland Memisevic Machine learning for vision

Other ML

v

Bayesian inference
Manifold learning
Kernel methods
Graphical models
Structured prediction

v

v

v

v

Structured prediction

O — 00000

y

» Structured prediction: Given input x, predict label
vector y

Roland Memisevic Machine learning for vision

rhino/hippo

polar bear
water
snow
vegetation
ground

sky

vegetation
road marking
road surface
building
street object

car

Structured prediction

O — 00000

Roland Memisevic

Roland Memisevic

y

» Structured prediction: Given input x, predict label
vector y

» Naive solution: Predict each component
independently

Machine learning for vision

Machine learning for vision

Structured prediction

o — OOO00O0

» Structured prediction: Given input x, predict label
vector y

» Naive solution: Predict each component
independently

» Better: Assume correlations between some labels.

Linear classification with joint features

» To deal with structured outputs, it is convenient to
re-formulate the classification task using a joint
feature representation as follows:

f(x) = argmax w'o(x,y)
y

where ¢(x, y) is a feature vector for a class/input
combination.

> Learning: minimize ; >, loss'(w) + | w2
» We can treat standard classification in this
framework, too.

Roland Memisevic Machine learning for vision

Logistic regression

» Logistic regression minimizes the “log-loss”:

loss'(w) = log Z exp (w'o(x',y)) —who(x', y')
y

» This is just the log-probability over labels given
inputs, defined as a softmax.

Perceptron

» Perceptrons learn by performing the updates
w=w+n(o(x,y) - ¢(x,9))
where 7 is a learning rate and

y = argmax WTgb(Xi, %
y

Roland Memisevic Machine learning for vision

Support vector machines

» SVMs minimize the “hinge-loss”:

loss' (W) = max (Wiop(x',y)+1-14,,)) —wlo(x',y')

Roland Memisevic Machine learning for vision

Kernels

» Linear models can be turned into non-linear models
using kernels.
» Recipe:
1. Reformulate learning equations to use only inner
products between data examples

o(xi, i) b(X}, ¥))

and inference equations to use inner products
between a test case (¢(x, y)) and training examples:

o(x;,y) o(x. y)

2. Replace each inner product by a positive definite
kernel function

k(o(Xi, ¥i), (X, ¥;))

Roland Memisevic Machine learning for vision

Kernels

» One way to define positive definite kernel is to say
that any matrix K with entries
Ki = k(o(xi, ¥,), (X;, y;)) will be positive definite (for
all possible input pairs ¢(x;, ¥,), o(Xi, ¥;)

» It is guaranteed (Mercer’s theorem) that the kernel
function corresponds to an inner product in some
vector space.

» We don’t care what this space is. But if it is
non-linearly related to the inputs, we will have done
non-linear feature extraction implicitly.

Roland Memisevic

Machine learning for vision

Kernels

» A convex problem can be solved by alternatively
solving its dual, which in this case is:

T 7 T r i
max 50 Koz+Xa K5+ZH(&)

s.t. a;zo Vi, y; Za;:1 Vi
y

where Kj = ¢(x, yi)* ¢(x;, ;) contains all inner
products between training cases.

» We may now replace the inner products by a positive
definite kernel function k(¢(x;, yi), ¢(x;, y;)), because
it is guaranteed to correspond to an inner product in
some space.

» The catch: This yields a batch learning method with
complexity quadratic in the number of training cases.

Roland Memisevic Machine learning for vision

Kernels

» There are two standard ways to get the inner-product
representation:

» The representer theorem: Use the fact that the
learning solution can only be a weighted
superposition of training examples (why?)

» Convex duality: Re-formulate the problem as a
constrained convex program. For example, for logistic
regression, we can write the optimization problem:

, A i
Wi e Y e(s)

’ i y
st. g =wio(xy)—wio(x'y) Viy

Structured prediction

» Instead of scalar labels y, consider label vectors y.
Everything else stays the same:

v

f(x) = argmax w'¢(x, y)
y

v

hinge loss — > “structured SVM”
log loss — > “conditional random field”
perceptron rule — > “structured perceptron”

But learning and inference can be intractable,
because the logsumexp (for logreg) or the argmax
(for SVM, perceptron) is over exponentially many y

v

v

v

Roland Memisevic Machine learning for vision

Feature decompositions

» To regain tractability, decompose the features as
S(X,¥) =D d(X.Ys)
S

where s indexes a clique in some graph defined over
y.
» If the graph is a tree, we can tractably compute

f(x) = argmax w’ Z o(X,¥s)
y S

as well as logsumexp’s, using variations of the
distributive law:

Feature decompositions

» The same idea will work not just for chains but for any
label vectors structured as tree.

» The generalization to trees is called belief
propagation. It amounts to interpreting the
intermediate computations as “messages” that are
sent from node to node.

» For non-tree structures (eg. MRF), we can still sent
around messages (pretending that this makes
sense), and hope the values converge. Surprisingly
they often do. This is called loopy belief propagation.

» Many other techniques for approximate inference
have been developed in recent years.

Roland Memisevic Machine learning for vision

Feature decompositions
» Consider, for example, the chain structure

gb(X, ys) = ¢(X7ytayt+1)

arg max w73 0(x.)
y)

e argmaXWTZ¢(XaYtaYI+1)
Y15 ¥T t

= argmax...argmax w' Z o(X, ¥t, Yir1)
n yr t

= argmax W' ¢(X,y1,¥2) + ...+ argmax ¢(X, yr_1,y7)
Y1 yr

» — > Do the argmax (or logsumexp) using dynamic
programming

Example: Conditional Random Fields

exp(w’o(x,y))

PYIXi W) = 5

v

(LeCun et al 1998, Lafferty et al. 2001).

The clique-wise potentials ¢(x, y,) may be
complicated non-linear functions, such as neural
networks.

Learning in that case combines belief propagation
and back-propagation.

This is possible, because these two don't interfere:

v

v

v

Roland Memisevic Machine learning for vision

Example: Conditional Random Fields

exp(w’o(x,y))

p(y|x; w) = Zx w)

» Derivative wrt. to some parameter 0:

dlogp(ylx) 19(X.¥) W' Y)
=Wl — ZP y|x)
_WTZa¢xys TZD_V| M

» Now think of each ¢(x, y) as a separate neural network
that is indexed by y !

» The networks may share weights (which is trivial to
implement)

Kernels

» Like in the scalar label case, we can re-formulate the
problem as a constrained convex program:

. A i
min - SIwl+) log} exp(s))
’ i y

st. g =wo(xiy)—w'o(x'y) Viy
with dual
1 7 T
max —zca Ko+ G K5+ZH

s.t. 04;,20 Vi, y; Za;,:1 Vi
y

Roland Memisevic Machine learning for vision

Cost-augmented inference

» “argmax”-models may have an advantage over
conditional random fields, because they allows us to
insert more complicated cost functions into the
inference:
loss'(w) = max (W’ ¢(x', y) + cost(y, ¥'))) —wTo(x", y')

y

where cost(y, ¥'), like the features, has to decompose

in some way to be tractable.

Kernels

» For vector y this is a problem with exponentially
many constraints.

» But there are ways to solve it (eg. “cutting plane
method”).

» Unfortunately, these methods come with quadratic
complexity in the number of training case and
quadratic complexity in the number of joint clique
instantiations.

» So it seems hopeless to make them work on large
datasets.

Roland Memisevic Machine learning for vision

Output representation learning

© — OO0O00O0

» A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

Output representation learning

000
O — Q0000

» A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

» (...and potentially the dependence of the features
themselves on the inputs, which would require 3-way
connections)

Roland Memisevic Machine learning for vision

Output representation learning
Q00

O — 00000

y

» A possible alternative to complicated graphical
models on the outputs is to use feature learning on
the outputs themselves.

Feature learning MRFs

» MRFs defined via feature learning have been getting
quite popular in vision, because they perform very
well in denoising and inpainting tasks.

» For example, Fields of Experts (Roth & Black), which
are convolutional RBMs.

» The free energy itself is a sum over the individual
clique free energies, and it can be written as a
convolution.

» Same for the derivative of the free energy wrt. the
input image. (What is it ?!1?)

» So it is easy to optimize it to perform inference.

Roland Memisevic Machine learning for vision

Feature learning MRFs Other stuff

v

Saliency, attention
Other modalities
Figure 4. Denoising results. (a) Original noiseless image. (b) Image with additive Gaussian noise (¢ = 25); PSNR = 20.29dB. (c)

Dcnoéscd .imugc us?ng a Field of Expf:ﬂS: P,SNR, = 28.72dB. (d) Denoised image using the approach from [20]; PSNR = 28.90dB. (e) G eo m etry (n Ot m u Ch | ear n i n g I bUt SO m e Starti ng n OW
Denoised image using standard non-linear diffusion; PSNR = 27.18dB. Wlth Co m p I eX Cel |S)

3d models, shape
models of humans, MOCAP

v

v

v

EI
I/
"3

W
| ©

Figure 6. Inpainting with a Field of Experts. (a) Original image with overlaid text. (b) Inpainting result from diffusion using the FoE
prior. (¢) Close-up comparison between a (left), b (middle), and the results from [3] (right).

Roland Memisevic Machine learning for vision Roland Memisevic Machine learning for vision

