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Correlation vs. dependence

Statistical independence implies uncorrelatedness.

Uncorrelatedness does not imply statistical
independence.
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Gaussians and independence

I Spherical Gaussians have independent marginals:
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I So for Gaussian data, whitening will give us the
independent components.

I For non-Gaussian data this is not the case.
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A counter example

I a: Independent variables.
I b: A linear combination: not independent.
I c: After whitening the linear combination: still not

independent.

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Uncorrelatedness is not independence
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I Any orthogonal transformation of white data is white.
I Therefore, PCA and ZCA are just two out of infinitely

many whitening matrices.
I How can we find the matrix that maximizes

independence?
I Since independence implies uncorrelatedness, it

must still be a whitening matrix.
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Independent components analysis

I The ICA generative model: We have independent
“source” variables si , which get mixed to yield the
observed data

x = As

with
p(s1, . . . , sn) =

∏

i

pi(si)

I The corresponding analysis equation is thus

s = WTx

with WT = A−1
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Independent components analysis

I Here, A and W are square matrices. We will later
extend this to over- or undercomplete
representations.

I Multiplying any component si by some scalar will
have no effect if we divide the corresponding Ai by
the same number.

I So we may assume the rows of A to have some fixed
length.

I It turns out that applying the model to already
whitened components, z, (e.g. from PCA or ZCA),
will greatly simplify the learning.
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Maximum likelihood ICA

Densities under linear transformation
Given some random vector s with density ps(s), the
density of

x = Ms

is:

px(x) =
1

|det M |ps(M−1x)
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Maximum likelihood ICA

Densities under linear transformation
Given some random vector s with density ps(s), the
density of

x = Ms

is:
px(x) =

1
|det M |ps(M−1x)
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Maximum likelihood ICA

I For the ICA model, plug in A = W−T for M .
I We have

1
det A

=
1

det W−T =
1

det W−1 = det W

I So we can write

p(x) =
∣∣det W

∣∣p(Wx) =
∣∣det W

∣∣
n∏

i=1

pi
(
wT

i x
)
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Maximum likelihood ICA
I For IID observations, we get the following likelihood:

L(W ) =
T∏

t=1

p(x t) =
T∏

t=1

[∣∣det W
∣∣

n∏

i=1

pi
(
wT

i x t
)]

I The log-likelihood is

log L(W ) = T log
∣∣det W

∣∣+
n∑

i=1

T∑

t=1

log pi
(
wT

i x t
)

I For whitened data, W must be orthonormal, so
∣∣det W

∣∣ = 1

I In that case it is sufficient to maximize
n∑

i=1

T∑

t=1

log pi
(
wT

i z t
)
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Maximum likelihood ICA

I This leads to the constrained optimization problem

minimize
∑

t

∑

i

φ(wT
i z t)

s.t. WTW = I

where −φ(si) = log p(si) is the log-pdf of the
independent sources.

I How to choose φ(si) ?

Roland Memisevic Machine learning for vision



Maximum likelihood for Gaussian sources

I The independent Gaussian is spherically symmetric.
I So rotation (orthogonal W ) will have no effect on the

objective.
I Any non-Gaussian source distribution will.

Roland Memisevic Machine learning for vision

Forms non-Gaussianity

I Three possible forms of non-Gaussianity are
1. Super-Gaussian (= sparsity): Distribution is peaked at

zero (positive kurtosis)
2. Sub-Gaussian: Distribution is “flat” at zero (negative

kurtosis)
3. Skew: Distribution is unsymmetric.

I Of these, super-Gaussianity is generally assumed to
be the best match for (most) image data.

I Sparse representations are beneficial in many ways,
so it is a natural choice of non-Gaussian density also
for practical reasons.
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Gaussian scale mixtures

I A possible explanation for super-Gaussianity in
natural images is that any one feature may occur at
different (brightness-)scales.

I We can model an image patch using a Gaussian gi

whose value is modulated by some independent
scale-variable di :

si = gidi

I This yields a super-Gaussian distribution, because
p(si) will be a superposition of Gaussians each with
different variance.

I In fact, contrast normalization seems to reduce
sparsity (a bit).
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Sparseness
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I Top: Samples from a student-T-distribution (sparse)
I Bottom: Samples from a normal distribution of the

same variance (not sparse).
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Histograms

6 4 2 0 2 4 6
sample

0

50

100

150

200

va
lu

e

histogram sparse distribution

6 4 2 0 2 4 6
sample

0

20

40

60

80

100

va
lu

e

histogram gaussian

Roland Memisevic Machine learning for vision

Sparse does not mean “small values”

I Sparsity should not be confused with “small”.
I A normal distribution may be scaled to take on small

values, too. This doesn’t make it sparse.
I Sparsity should always be thought of as relative to a

given variance.
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Sparse source densities

I A popular choice of sparse source density is the
zero-mean Laplacian:

p(si) =
1

2b
exp

(
− |si |

b
)

I Another, differentiable, one is the log cosh function.
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Sparse coding

I With a Laplacian source density, the optimization
problem becomes

minimize
∑

t

∑

i

|wT
i z t |

s.t. WTW = I

I This can be solved by alternating gradient steps with
projections to enforce the constraint.
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Orthogonality from reconstruction error

I An alternative to solving the constrained optimization
problem is to enforce the orthogonality constraint

W−1 = WT

implicitly.
I By adding a reconstruction term we can encourage

this as follows:

minimize
∑

t

‖WWTz t − z t‖2 + λ
∑

t

∑

i

|wT
i z t |

I Note that we have A = W now.
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Search based inference

I All of the above versions of ICA make use of an
encoder (W ) and decoder (A).

I An alternative formulation one can find in the
literature is to ignore the decoder and to search for
the right s during learning (and inference as well):

minimize
∑

t

‖ATst − z t‖2 +
∑

t

∑

i

|sti |

where the optimization is over A and all the st during
training and over s during inference.
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ICA filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Sparse coding components
(Olshausen/Field)
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Estimating the source densities

I One can estimate the source densities from data as
well.

I It turns out that not all components are sparse.
I The DC component, for example, tends to be

sub-Gaussian.
I So to keep it or not can make a difference in practice!
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Relation between analysis and synthesis
weights

I Since the si are independent and have unit variance,
the covariance matrix, C, over input images can be
written

C = AAT

I From this, and W = A−1, it follows that:

AT = I AT

=
(
A−1A

)
AT

= WT A AT

= WT C

I In other words, synthesis weights, A = CW , are
equal to input covariance times analysis weights!
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Example analysis filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
Roland Memisevic Machine learning for vision

Example synthesis filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Frequency channels

I The emergence of bandpath filters from whitening
shows that 2d Fourier features
(frequencies/orientations) are uncorrelated
components.

I The emergence of Gabor features from ICA shows
that (frequencies/orientations/positions) are
independent components.

I What independence/sparsity adds is locality.
I This suggests that natural images are mainly

invariant to local translations.
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Information theoretic interpretation
I To measure the independence of the sources we can

use mutual information as follows:

MI(s1, . . . , sK )

=

∫

s1,...,sK

p(s1, . . . , sK ) log
p(s1, . . . , sK )

p(s1) · · · p(sK )
ds1 · · · dsK

=
K∑

i=1

H(si)− H(s)

=
K∑

i=1

H(wT
i z)− H(Wz)

I For orthogonal W , the joint entropy is constant.
I So to minimize MI, minimize the entropies of the

individual components.

→ Make them less Gaussian!
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Information theoretic interpretation
I To measure the independence of the sources we can

use mutual information as follows:

MI(s1, . . . , sK )

=

∫

s1,...,sK

p(s1, . . . , sK ) log
p(s1, . . . , sK )

p(s1) · · · p(sK )
ds1 · · · dsK

=
K∑

i=1

H(si)− H(s)

=
K∑

i=1

H(wT
i z)− H(Wz)

I For orthogonal W , the joint entropy is constant.
I So to minimize MI, minimize the entropies of the

individual components. → Make them less Gaussian!
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Infomax ICA
I Yet another information theoretic approach to ICA

can be derived as follows:
I Maximum likelihood (=̂ minimum entropy) under

some density f (x) can also be viewed as maximizing
the derivative of its cumulative distribution
F (x) =

∫
f (x)dx

I But this is equivalent to making the values under the
cumulative distribution more uniform. (Also known as
“maximum spacing” estimation in the literature.)

I To maximize uniformity of F (x) we may maximize the
entropy of the random variable F (x) (=̂ minimize its
likelihood).

I (We can make the same argument for multivariate
data x)
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Infomax ICA
I But F (x) is a deterministic function of x , so we can

write its density as a function of x .
I In particular, the transformation of densities under

non-linear transformations is

pF (F (x)) =
1

|det J(x)|px(x)

where J(x t) is the Jacobian of F (x) at x
I By eliminating terms that do not depend on the

parameters of F , we get the optimization problem:

minimize −
∑

t

log |det J(x t)|

I (Bell, Sejnowski 1997)
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Non-linear correlations, limitations of ICA

I For independent random variables, s1, s2, the
following must be true:

cov
(
f (s1), f (s2)

)
= 0

where f is any non-linear function.
I There are infinitely many f -functions we could choose

from.
I This hints at the fact that a linear ICA transformation

with its n2 parameters may not be able to yield
perfectly independent components.
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Non-linear correlations, limitations of ICA

from: Natural Image Statistics
(Hyvarinen, Hurri, Hoyer; 2009)

I a: f (s) = |s|
I b: f (s) = s2

I c: f (s) = |s| > 1
I d: f (s) = sign(s)
I e: f (s) = s3
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Blind source separation

I A classic application of ICA is separating (unmixing)
audio sources:

I Eg. http://cnl.salk.edu/˜ tewon/Blind/blind audio.html
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