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Overcomplete codes

I V1 increases the dimensionality of the representation
as compared to the retinal representation (by a factor
of 25 or so).

I (If sparseness is a good thing, then this is probably
not surprising.)

I If we want to turn the ICA model into such an
overcomplete model we will need to make W
rectangular.

I Recall the definition of the ICA log likelihood:

log L(w1, . . . ,wn) = T log
∣∣det W

∣∣+
n∑

i=1

T∑

t=1

log pi
(
wT

i x t
)
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Overcomplete codes
I The determinant is not defined for rectangular W .
I But why is |det W | there anyway?
I Because it is the normalizing constant that allows

us to express densities over x using the linearly
transformed WTx .

px(x) =
1

Z (W )
ps
(
WTx

)

Z (W ) =

∫

x
ps(WTx) dx

I This suggests dealing with overcomplete W by trying
to optimizing Z (W ) directly.

I Unfortunately, it will be hard to compute in general.
I Z (W ) is also called partition function.
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Overcomplete codes

I This also allows us to define the density of images in
a more general way.

I A common general formulation, retaining
independence of the hiddens, is:

p(x) =
1

Z (W )
exp

( n∑

i=1

Gi(wT
i x)
)

Z (W ) =

∫

x

n∏

i=1

exp
(
Gi(wT

i x)
)
dx

where Gi are any non-linear functions.
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Markov Random Fields

I We may now define the model convolutionally, by
scanning small filters across a larger image.

I Define fine filters to have the shape of image
patches, and write:

log p(W1, . . . ,Wn)

=
∑

x ,y

n∑

i=1

G
(∑

ξ,η

wξ,ηI(x + ξ, y + η)
)
− log Z (W1, . . . ,Wn)

I (eg. Roth & Black, 2005)
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Overcomplete codes

I Bad news I: In general, we cannot compute the
log-likelihood, nor its derivative.

I Bad news II: In the absence of a computable partition
function, we cannot evaluate probabilities for
test-data, either.
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Overcomplete codes

I Good news I: In practice we often care only about
computing features wT

i x for test-data.
I Good news II: We can still compare the probabilities

between points x i ,x j , because Z (W ) does not
depend on x .

I Good news III: We can do approximate maximum
likelihood training, which often works just as well in
practice.
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Energy based models
I To get insights into the learning problem, it is useful

to rewrite the probability of data in an even more
general form:

p(x ;W ) =
1

Z (W )
q(x ;W )

with log-probability

log p(x ;W ) = log q(x ;W )− log
∫

x
q(x ;W ) dx

I We can think of q(x) as an unnormalized (“pre-”)
probability.

I Usually, q(x) =
∏n

i=1 exp
(
Gi(wT

i x)
)
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Energy based models
I For a set of IID points, x i , the log-likelihood and its

derivative take the form:

L(W ) =
∑

i

log p(x i ;W )

=
∑

i

log q(x i ;W )− N log
∫

x
q(x ;W ) dx

∂L(W )

∂W
=
∑

i

∂ log q(x i ;W )

∂W
− N

Z (W )

∫

x

∂q(x ;W )

∂W
dx

I Intuitively, what does maximizing these two terms do
with the model?

Maximum likelihood learning increases q(x ;W ) at the
data points, and it decreases q(x ;W ) everywhere.
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Energy based models

I Decreasing q(x ;W ), and thereby p(x ;W ), ensures
that we get a normalized probability distribution.
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Energy based models

I This view is even more liberating than replacing the
determinant with Z (W ):

I In high-dimensional spaces, it can be easy to push
down probabilities near the data and to ignore what’s
happening far away.

I This will be OK, if all we will ever see are points from
high-density regions.

I Technically, the pushing-down can be done by
sampling from the model distribution. This is
inefficient in high-dimensional spaces. Solution:
Sample only near the data.

I “Contrastive divergence” (Hinton, 2002)
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Energy based models

I We may eliminate the partition function altogether
and define the model as an “energy landscape” that
we form through learning.

I This gives us even more freedom in devising
schemes that push or pull on the energy landscape.

I (LeCun, et al. 2006):
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Energy based models

I It is common to define energies as −q(x ;W ), in
which case we want to minimize energy near the
data.

I Energy based models can be used in a variety of
tasks, but for feature learning, they practically always
involve hidden variables, which are connected to
pixels in a bi-partite graph.

I In other words, most feature learning models are
based on a variation of the linear encoder/decoder
equations.

I Pushing up the energy away from the data typically
translates into a capacity constraint on the hiddens.
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Feature learning and bi-partite networks

s = WTx

xj

s
sk

wjk

x

I PCA is a special case with linear dependencies and
low-dimensional s

I ICA is a special case with linear dependencies and
sparse s
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