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Classic K -means clustering

x1

x2

I K-means is traditionally a clustering algorithm.
I Learning: Fit K prototypes µk (the rows of some

matrix, W ) to training data-points xn.
I Inference: Given a point, find the nearest prototype.
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Classic K -means clustering
I Define sn as the one-hot encoding of the discrete

variable representing the index of the nearest cluster
center for xn.

I It is also useful to think of a matrix S with entries snk ,
holding the one-hot vectors in its rows.

I Assume we knew the cluster assignments sn for each
point xn.

I The K -means objective function measures the
average distance between points x and their
representatives:

J =
N∑

n=1

K∑

k=1

snk‖xn − µk‖2
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Classic K -means clustering

I Learning amounts to finding both the prototypes µk

and the assignments sn for each point, so as to
minimize J.

I This seems like a tricky optimization problem,
because the sn are discrete and the µk are
continuous.

I But learning gets easy if we decouple learning the sn

from learning the µk .
I This gives rise to a block coordinate-descent method,

which is a special case of the EM-algorithm for
training mixtures of Gaussians.
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Classic K -means clustering

J =
N∑

n=1

K∑

k=1

snk‖xn − µk‖2

Finding the optimal sn
I Given the µk , we can optimize all the sn

independently, because the objective is just the sum
over n.

I But the squared error will be smallest if we set
snk = 1 for whichever µk is closest.

I Formally, to optimize all sn, given the set of µk , set:

snk =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.
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Classic K -means clustering

Finding the optimal µk
I Given S, J is a quadratic function of µk which we can

minimize by setting the derivative to zero:

2
N∑

n=1

snk (xn − µk ) = 0

I Solving for µk yields:

µk =

∑
n snkxn∑

n snk

I This solution has a simple interpretation: Set µk to
the mean of all points currently assigned to cluster k .
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Classic K -means clustering

I Learning amounts to iterating inference for the sn,
and adapting the parameters µk until there are no
more changes.

I This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

I But there can be local minima.
I One way to deal with this is to try multiple runs with

different initializations for the parameters µk and to
pick the solution with the lowest final cost.
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Classic K -means example (K = 2)

this and most of the following images from: (Bishop, 2006)

Roland Memisevic Machine learning for vision



The value of J as learning progresses
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K -means inference

I Given the trained model, we can infer the
cluster-center for a new test-data point x not seen
during training, by finding the nearest µk like during
training:

sk (x) =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.

I The set of all K prototypes µk is called codebook.
I Clustering and K -means are also known as vector

quantization.
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K -means

The probably most important property of K -means is that
it distributes cluster-centers in space, such that the cluster
center density is roughly proportional to the data density.

So it will resolve high-density regions well, at the cost of
low-density regions.
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K -means via online learning
I The reconstruction error for training point x may be

written
E(W ) =

1
2
(
x −w s(x)

)2

I Its gradient is

∂E(W )

∂w i
= −

(
x −w s(x)

)
δs(x),i

I So we can use the online learning rule:

w s(x) ← w s(x) + η
(
x −w s(x)

)

I (Here, it is easier to think of s(x) as index rather than
one-hot vector.)
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Geometry of online K -means

x −ws(x)

ws(x)

x

∆ws(x)

I ∆w s(x) = η(x − ws(x))
moves the winning
weight vector towards
the observation.
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Online K -means and Hebbian learning

I We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning

I To this end write the update as

∆w k = ηδks(x)
(
x −w k

)

where

δks(x) =

{
1 if s(x) = k
0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

I There are two learning terms:
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K -means and Hebbian learning
1. A Hebbian term:

δks(x)x

2. An “unlearning” term:

−δks(x)w k

I The positive term decreases the energy near the
data.

I The unlearning term increases the energy
everywhere.

I “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.
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Hebbian K -means in 9 lines of code

import numpy

def kmeans(W, X, numepochs, learningrate=0.01, batchsize=100):

X2 = (X**2).sum(1)[:, None]

for epoch in range(numepochs):

for i in range(0, X.shape[0], batchsize):

D = -2*numpy.dot(W, X[i:i+batchsize,:].T) + (W**2).sum(1)[:, None] + X2[i:i+batchsize].T

S = (D==D.min(0)[None,:]).astype("float").T

W += learningrate * (numpy.dot(S.T, X[i:i+batchsize,:]) - S.sum(0)[:, None] * W)

return W
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K-means features learned from natural image
patches
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Self-organizing maps

I We obtain the self-organizing map (SOM) aka
Kohonen network by changing the k-means update
from

∆w k = ηδks(x)
(
x −w k

)

into
∆w k = ηhks(x)

(
x −w k

)

where hkj is some smooth neighborhood function,
that will let hiddens near the winning hidden learn,
too.

I This requires hiddens to be arranged in space in
some way (commonly 2-D).
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K -means as autoencoder

s = wta(WTx)

x = Ws

xj

x

x̂

x̂j

sk

WT

W

I E =
∑

i ‖x i −Wwta
(
WTx i

)
‖2

I wta = “winner takes all”
I Weights are “tied”: Recognition weights are the

transpose of generative weights.
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The K -means energy function

I We can think of K -means as an instance of energy
based learning, by defining the energy function

E(x) = ‖x −Wwta
(
WTx

)
‖2 = ‖x −w s(x)‖2

I Since far from the cluster-centers the energy goes to
∞, K -means has then low energy everywhere.

I In other words, K -means simply doesn’t have the
capacity to produce an arbitrary energy surface with
low energy far away from data.
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The K -means energy function

I If we define the unnormalized probability for a point
as

q(xn) = exp(−E(xn))

we obtain a density model which is just the
superposition of K bumps.

I So the probability goes to zero far from any cluster
center.

I Unlike RBMs and many other probabilistic models,
there is no need to lower density away from the data
in this model. Instead, the density will be low “by
design”.

I (LeCun, 2006)
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Winner-takes-all and lateral interactions
I The winner-takes-all function may be defined as

wta(x) = onehot
(
argmin

k
‖x −w k‖2)

where w k is a column of W .
I The squared distance can be written as

‖x −w k‖2 = xTx + wT
k w k − 2wT

k x

I If all w k have the same norm, inference amounts to
finding the hidden which maximizes

wT
k x

which is the usual “simple cell” response.
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Lateral interactions

yj

s
sk

wjk

x

I Since wta is a function of all the hiddens, inference
requires the hiddens to talk to each other.

I This is commonly referred to as lateral interactions.
I Typically, the interactions take the form of lateral

inhibition.
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End-stopping

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

I For the simple cell in the top middle, a linear model
would predict the bottom right stimulus to give at
least as large a response as the bottom left stimulus.

I But for actual neural responses it may give a weaker
response.

I This effect is known as end-stopping, and it may be
counted as evidence for lateral inhibition.
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Gaussian mixture models

I If we add prior probabilities πk for each cluster and
interpret each cluster as a Gaussian with its own
variance, we get the Mixture of Gaussians:

p(x) =
∑

k

πkp(x |k) =
∑

k

πkN (x |µk ,Σk )
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Gaussian mixture models

Gaussian fit to some data. Gaussian mixture fit to the data.
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Gaussian mixture models

p(x) =
∑

k

πkN (x |µk ,Σk )

I For p(x) to be a probability distribution, we need∑
k πk = 1 and πk > 0 ∀k

I Thus, we may interpret the πk as probabilities
themselves.

I This motivates introducing latent variables s and
re-writing the model, equivalently, in terms of two
distributions p(s) and p(s|x):
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Gaussian mixture models

p(x) =
∑

s

p(s)p(x |s)

where

p(s) =
K∏

k=1

πsk
k

is a discrete distribution (s is in one-hot encoding), and

p(x |sk = 1) = N (x |µk ,Σk )

is a conditional Gaussian distribution.
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Gaussian mixture models
I The model is a generative model, where we first draw

a mixture component from a discrete distribution, and
then we draw the observation from a Gaussian,
whose parameters depend on the component.

I To compute how likely a given observation xn is to
come from a particular mixture component, use
Bayes’ rule:

p(sn|xn) =
p(xn|sn)p(sn)∑
sn

p(xn|sn)p(sn)

I p(snk = 1|xn) is called responsibility of mixture
component k .

I The Gaussian mixture is like a “soft” version of
K -means.
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The EM algorithm
I Mixture models are usually trained using the EM

algorithm (though one could use gradient descent).
I Given training data {xn}, we can write

L :=
∑

n

log p(xn) =
∑

n

log
∑

sn

p(xn|sn)p(sn)

=
∑

n

log
∑

sn

q(sn)
p(xn|sn)p(sn)

q(sn)

≥
∑

n

∑

sn

q(sn) log
p(xn|sn)p(sn)

q(sn)

:= L

where we use Jensen‘s inequality:
log
∑

i aibi ≥
∑

i ai log bi if ∀i : ai > 0 and
∑

i ai = 1
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The EM algorithm
I Instead of optimizing L, we will now optimize the

lower bound L with respect to both the original
parameters and the newly introduced auxiliary
variables q(s).

I To avoid clutter, it is convenient write this as

L =
∑

nk

qnk log p(xn|sn = k)p(sn = k)−
∑

nk

qnk log qnk

using the abbreviation qnk = q(sn = k)
I The first term of L is the expectation of log p(xn,sn)

with respect to q(sn). It is commonly referred to as
“expected complete log-likelihood”.

I This is the only term that depends on the model
parameters.

I For learning, set derivatives to zero:
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The EM algorithm
I We have

∂L
∂µk

=
∑

n

qnkΣk (xn − µk ) = 0

⇔ µk =

∑
n qnkxn∑

n qnk

I Similarly, one can derive

Σk =

∑
n qnk (xn − µk )(xn − µk )T∑

n qnk

and
πk = p(sk ) =

∑
n qnk

N
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The EM algorithm

I But what about the auxiliary variables qnk?
I We rewrite L once more in a different way:

L =
∑

n

∑

sn

q(sn) log
p(xn|sn)p(sn)

q(sn)

=
∑

n

∑

sn

q(sn) log
p(sn|xn)p(xn)

q(sn)

=
∑

n

∑

sn

q(sn) log
p(sn|xn)

q(sn)
+
∑

n

∑

sn

q(sn) log p(xn)

= −
∑

n

KL ( q(sn) || p(sn|xn) ) + L
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The EM algorithm

I Since the KL divergence is non-negative, setting
q(sn) = p(sn|xn) will make the bound L on L tight!

I But p(sn|xn) is easy to compute, using Bayes’ rule.
I We already know how to optimize L with respect to

the model parameters. So we can repeatedly
compute (by inferring qnk ), and then optimize, a tight
lower bound on L.
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EM algorithm summary

1. E-step: Evaluate the posteriors p(sn|xn).
2. M-step: Optimize L with respect to the model

parameters, keeping q(sn) = p(sn|xn) fixed.

I The E-step computes the expected complete
log-likelihood. It amounts to evaluating the
responsibilities p(sn|xn) for each point.

I The M-step maximizes the expected complete
log-likelihood. In a Gaussian mixture, this amounts to
setting parameters to responsibility-weighted sums.
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EM optimizes a sequence of lower bounds
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Example: Training a Gaussian mixture with
EM
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EM algorithm comments

I The EM algorithm can be applied to many latent
variable models, not just mixtures of Gaussians.

I The E-step and the M-step have to be derived
individually for each model, but the view from the
lower bound L of the log-likelihood is always the
same.

I One of the first models that deployed EM was the
Hidden Markov Model.

I For many other models, computing p(s|x) is not
tractable. In this case, it is still common to deploy a
variation of EM, where we only improve the
KL-divergence in the E-step rather than finding the
exact posterior.
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