
Machine learning for vision
Fall 2013

Roland Memisevic

Lecture 9, October 29, 2013

Roland Memisevic Machine learning for vision

Classic K -means clustering

x1

x2

I K-means is traditionally a clustering algorithm.
I Learning: Fit K prototypes µk (the rows of some

matrix, W) to training data-points xn.
I Inference: Given a point, find the nearest prototype.

Roland Memisevic Machine learning for vision

Classic K -means clustering
I Define sn as the one-hot encoding of the discrete

variable representing the index of the nearest cluster
center for xn.

I It is also useful to think of a matrix S with entries snk ,
holding the one-hot vectors in its rows.

I Assume we knew the cluster assignments sn for each
point xn.

I The K -means objective function measures the
average distance between points x and their
representatives:

J =
N∑

n=1

K∑

k=1

snk‖xn − µk‖2

Roland Memisevic Machine learning for vision

Classic K -means clustering

I Learning amounts to finding both the prototypes µk

and the assignments sn for each point, so as to
minimize J.

I This seems like a tricky optimization problem,
because the sn are discrete and the µk are
continuous.

I But learning gets easy if we decouple learning the sn

from learning the µk .
I This gives rise to a block coordinate-descent method,

which is a special case of the EM-algorithm for
training mixtures of Gaussians.

Roland Memisevic Machine learning for vision

Classic K -means clustering

J =
N∑

n=1

K∑

k=1

snk‖xn − µk‖2

Finding the optimal sn
I Given the µk , we can optimize all the sn

independently, because the objective is just the sum
over n.

I But the squared error will be smallest if we set
snk = 1 for whichever µk is closest.

I Formally, to optimize all sn, given the set of µk , set:

snk =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.

Roland Memisevic Machine learning for vision

Classic K -means clustering

Finding the optimal µk
I Given S, J is a quadratic function of µk which we can

minimize by setting the derivative to zero:

2
N∑

n=1

snk (xn − µk) = 0

I Solving for µk yields:

µk =

∑
n snkxn∑

n snk

I This solution has a simple interpretation: Set µk to
the mean of all points currently assigned to cluster k .

Roland Memisevic Machine learning for vision

Classic K -means clustering

I Learning amounts to iterating inference for the sn,
and adapting the parameters µk until there are no
more changes.

I This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

I But there can be local minima.
I One way to deal with this is to try multiple runs with

different initializations for the parameters µk and to
pick the solution with the lowest final cost.

Roland Memisevic Machine learning for vision

Classic K -means example (K = 2)

this and most of the following images from: (Bishop, 2006)

Roland Memisevic Machine learning for vision

The value of J as learning progresses

Roland Memisevic Machine learning for vision

K -means inference

I Given the trained model, we can infer the
cluster-center for a new test-data point x not seen
during training, by finding the nearest µk like during
training:

sk (x) =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.

I The set of all K prototypes µk is called codebook.
I Clustering and K -means are also known as vector

quantization.

Roland Memisevic Machine learning for vision

K -means

The probably most important property of K -means is that
it distributes cluster-centers in space, such that the cluster
center density is roughly proportional to the data density.

So it will resolve high-density regions well, at the cost of
low-density regions.

Roland Memisevic Machine learning for vision

K -means via online learning
I The reconstruction error for training point x may be

written
E(W) =

1
2
(
x −w s(x)

)2

I Its gradient is

∂E(W)

∂w i
= −

(
x −w s(x)

)
δs(x),i

I So we can use the online learning rule:

w s(x) ← w s(x) + η
(
x −w s(x)

)

I (Here, it is easier to think of s(x) as index rather than
one-hot vector.)

Roland Memisevic Machine learning for vision

Geometry of online K -means

x −ws(x)

ws(x)

x

∆ws(x)

I ∆w s(x) = η(x − ws(x))
moves the winning
weight vector towards
the observation.

Roland Memisevic Machine learning for vision

Online K -means and Hebbian learning

I We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning

I To this end write the update as

∆w k = ηδks(x)
(
x −w k

)

where

δks(x) =

{
1 if s(x) = k
0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

I There are two learning terms:

Roland Memisevic Machine learning for vision

K -means and Hebbian learning
1. A Hebbian term:

δks(x)x

2. An “unlearning” term:

−δks(x)w k

I The positive term decreases the energy near the
data.

I The unlearning term increases the energy
everywhere.

I “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.

Roland Memisevic Machine learning for vision

Hebbian K -means in 9 lines of code

import numpy

def kmeans(W, X, numepochs, learningrate=0.01, batchsize=100):

X2 = (X**2).sum(1)[:, None]

for epoch in range(numepochs):

for i in range(0, X.shape[0], batchsize):

D = -2*numpy.dot(W, X[i:i+batchsize,:].T) + (W**2).sum(1)[:, None] + X2[i:i+batchsize].T

S = (D==D.min(0)[None,:]).astype("float").T

W += learningrate * (numpy.dot(S.T, X[i:i+batchsize,:]) - S.sum(0)[:, None] * W)

return W

Roland Memisevic Machine learning for vision

K-means features learned from natural image
patches

Roland Memisevic Machine learning for vision

Self-organizing maps

I We obtain the self-organizing map (SOM) aka
Kohonen network by changing the k-means update
from

∆w k = ηδks(x)
(
x −w k

)

into
∆w k = ηhks(x)

(
x −w k

)

where hkj is some smooth neighborhood function,
that will let hiddens near the winning hidden learn,
too.

I This requires hiddens to be arranged in space in
some way (commonly 2-D).

Roland Memisevic Machine learning for vision

K -means as autoencoder

s = wta(WTx)

x = Ws

xj

x

x̂

x̂j

sk

WT

W

I E =
∑

i ‖x i −Wwta
(
WTx i

)
‖2

I wta = “winner takes all”
I Weights are “tied”: Recognition weights are the

transpose of generative weights.

Roland Memisevic Machine learning for vision

The K -means energy function

I We can think of K -means as an instance of energy
based learning, by defining the energy function

E(x) = ‖x −Wwta
(
WTx

)
‖2 = ‖x −w s(x)‖2

I Since far from the cluster-centers the energy goes to
∞, K -means has then low energy everywhere.

I In other words, K -means simply doesn’t have the
capacity to produce an arbitrary energy surface with
low energy far away from data.

Roland Memisevic Machine learning for vision

The K -means energy function

I If we define the unnormalized probability for a point
as

q(xn) = exp(−E(xn))

we obtain a density model which is just the
superposition of K bumps.

I So the probability goes to zero far from any cluster
center.

I Unlike RBMs and many other probabilistic models,
there is no need to lower density away from the data
in this model. Instead, the density will be low “by
design”.

I (LeCun, 2006)

Roland Memisevic Machine learning for vision

Winner-takes-all and lateral interactions
I The winner-takes-all function may be defined as

wta(x) = onehot
(
argmin

k
‖x −w k‖2)

where w k is a column of W .
I The squared distance can be written as

‖x −w k‖2 = xTx + wT
k w k − 2wT

k x

I If all w k have the same norm, inference amounts to
finding the hidden which maximizes

wT
k x

which is the usual “simple cell” response.

Roland Memisevic Machine learning for vision

Lateral interactions

yj

s
sk

wjk

x

I Since wta is a function of all the hiddens, inference
requires the hiddens to talk to each other.

I This is commonly referred to as lateral interactions.
I Typically, the interactions take the form of lateral

inhibition.

Roland Memisevic Machine learning for vision

End-stopping

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

I For the simple cell in the top middle, a linear model
would predict the bottom right stimulus to give at
least as large a response as the bottom left stimulus.

I But for actual neural responses it may give a weaker
response.

I This effect is known as end-stopping, and it may be
counted as evidence for lateral inhibition.

Roland Memisevic Machine learning for vision

Gaussian mixture models

I If we add prior probabilities πk for each cluster and
interpret each cluster as a Gaussian with its own
variance, we get the Mixture of Gaussians:

p(x) =
∑

k

πkp(x |k) =
∑

k

πkN (x |µk ,Σk)

Roland Memisevic Machine learning for vision

Gaussian mixture models

Gaussian fit to some data. Gaussian mixture fit to the data.

Roland Memisevic Machine learning for vision

Gaussian mixture models

p(x) =
∑

k

πkN (x |µk ,Σk)

I For p(x) to be a probability distribution, we need∑
k πk = 1 and πk > 0 ∀k

I Thus, we may interpret the πk as probabilities
themselves.

I This motivates introducing latent variables s and
re-writing the model, equivalently, in terms of two
distributions p(s) and p(s|x):

Roland Memisevic Machine learning for vision

Gaussian mixture models

p(x) =
∑

s

p(s)p(x |s)

where

p(s) =
K∏

k=1

πsk
k

is a discrete distribution (s is in one-hot encoding), and

p(x |sk = 1) = N (x |µk ,Σk)

is a conditional Gaussian distribution.

Roland Memisevic Machine learning for vision

Gaussian mixture models
I The model is a generative model, where we first draw

a mixture component from a discrete distribution, and
then we draw the observation from a Gaussian,
whose parameters depend on the component.

I To compute how likely a given observation xn is to
come from a particular mixture component, use
Bayes’ rule:

p(sn|xn) =
p(xn|sn)p(sn)∑
sn

p(xn|sn)p(sn)

I p(snk = 1|xn) is called responsibility of mixture
component k .

I The Gaussian mixture is like a “soft” version of
K -means.

Roland Memisevic Machine learning for vision

The EM algorithm
I Mixture models are usually trained using the EM

algorithm (though one could use gradient descent).
I Given training data {xn}, we can write

L :=
∑

n

log p(xn) =
∑

n

log
∑

sn

p(xn|sn)p(sn)

=
∑

n

log
∑

sn

q(sn)
p(xn|sn)p(sn)

q(sn)

≥
∑

n

∑

sn

q(sn) log
p(xn|sn)p(sn)

q(sn)

:= L

where we use Jensen‘s inequality:
log
∑

i aibi ≥
∑

i ai log bi if ∀i : ai > 0 and
∑

i ai = 1

Roland Memisevic Machine learning for vision

The EM algorithm
I Instead of optimizing L, we will now optimize the

lower bound L with respect to both the original
parameters and the newly introduced auxiliary
variables q(s).

I To avoid clutter, it is convenient write this as

L =
∑

nk

qnk log p(xn|sn = k)p(sn = k)−
∑

nk

qnk log qnk

using the abbreviation qnk = q(sn = k)
I The first term of L is the expectation of log p(xn,sn)

with respect to q(sn). It is commonly referred to as
“expected complete log-likelihood”.

I This is the only term that depends on the model
parameters.

I For learning, set derivatives to zero:

Roland Memisevic Machine learning for vision

The EM algorithm
I We have

∂L
∂µk

=
∑

n

qnkΣk (xn − µk) = 0

⇔ µk =

∑
n qnkxn∑

n qnk

I Similarly, one can derive

Σk =

∑
n qnk (xn − µk)(xn − µk)T∑

n qnk

and
πk = p(sk) =

∑
n qnk

N

Roland Memisevic Machine learning for vision

The EM algorithm

I But what about the auxiliary variables qnk?
I We rewrite L once more in a different way:

L =
∑

n

∑

sn

q(sn) log
p(xn|sn)p(sn)

q(sn)

=
∑

n

∑

sn

q(sn) log
p(sn|xn)p(xn)

q(sn)

=
∑

n

∑

sn

q(sn) log
p(sn|xn)

q(sn)
+
∑

n

∑

sn

q(sn) log p(xn)

= −
∑

n

KL (q(sn) || p(sn|xn)) + L

Roland Memisevic Machine learning for vision

The EM algorithm

I Since the KL divergence is non-negative, setting
q(sn) = p(sn|xn) will make the bound L on L tight!

I But p(sn|xn) is easy to compute, using Bayes’ rule.
I We already know how to optimize L with respect to

the model parameters. So we can repeatedly
compute (by inferring qnk), and then optimize, a tight
lower bound on L.

Roland Memisevic Machine learning for vision

EM algorithm summary

1. E-step: Evaluate the posteriors p(sn|xn).
2. M-step: Optimize L with respect to the model

parameters, keeping q(sn) = p(sn|xn) fixed.

I The E-step computes the expected complete
log-likelihood. It amounts to evaluating the
responsibilities p(sn|xn) for each point.

I The M-step maximizes the expected complete
log-likelihood. In a Gaussian mixture, this amounts to
setting parameters to responsibility-weighted sums.

Roland Memisevic Machine learning for vision

EM optimizes a sequence of lower bounds

Roland Memisevic Machine learning for vision

Example: Training a Gaussian mixture with
EM

Roland Memisevic Machine learning for vision

EM algorithm comments

I The EM algorithm can be applied to many latent
variable models, not just mixtures of Gaussians.

I The E-step and the M-step have to be derived
individually for each model, but the view from the
lower bound L of the log-likelihood is always the
same.

I One of the first models that deployed EM was the
Hidden Markov Model.

I For many other models, computing p(s|x) is not
tractable. In this case, it is still common to deploy a
variation of EM, where we only improve the
KL-divergence in the E-step rather than finding the
exact posterior.

Roland Memisevic Machine learning for vision

