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I Classes:
I Tuesdays 2:30pm-4:30pm Andre-Aisenstadt 1409
I Wednesdays 3:30pm-5:30pm Jean Coutu S1-125

I Instructor:
Roland Memisevic,

3349, Pav. Andre-Aisenstadt
I Office hours:

drop in or by appointment
I Course website:

http://www.iro.umontreal.ca/˜memisevr/teaching/ift6268 2015/index.html
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Objectives

I Learn about the recent advances in data driven
vision.

I Learn how to apply some state-of-the-art learning
and inference techniques in vision tasks.

I Learn about the basics and peculiarities of natural
images statistics.

I (+ Get some ideas about visual information
processing in biological systems.)

Roland Memisevic Machine learning for vision

What this course is about

how many cars in the picture?

I Vision looks easy to
humans.

I It is robust and flexible.
I It runs on fairly

general-purpose
hardware.
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What this course is about

how many cars in the picture?

I Computer vision spent
≈ 50 years trying to
mimic human vision.

I Huge inventory of tools:
edge detectors, corner
detectors, descriptors
(eg. SIFT), optic flow,
hough transform,
projective geometry...

I Unfortunately, it is
difficult to make these
work nicely together.
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What this course is about

how many cars in the picture?

I Huge progress in recent
years, based on a single
simple idea:

I Images are not random.
→ Treat vision as a
statistical inference task.
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A lower bound on the number of all images

I Assume your retina was only
16× 16 pixels large and you could
see only black and white.

I There are still 216∗16 = 2256 possible
images.
(=115792089237316195423570985008687907853269984665640564039

457584007913129639936)

I So there are more tiny binary
images than there are atoms in the
universe.

I And even more large color images.
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An upper bound on the number of images
you will see in your life

I Assume you see 100 images per second, 3600
seconds per hour, 24 hours per day.

I This is < 10 mio images per day, or 3.65 billion
images per year.

I So you will see < 300 billion images in your life and
you had seen < 10 billion images when you turned 3.

I This number is tiny compared to the number of
possible images.

I Yet, at that age you were a champion at recognizing
and reasoning about unfamiliar objects.

I The number of labeled images is of course much
smaller yet.
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Natural images are not random

All natural images

All images

I As compared to the number of possible images, there
is a diminishingly small number of natural images!
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Random images
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Natural images (berkeley database)
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Natural images (grayscale)
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View from information theory

Entropy

block images natural images random images

I The distribution over natural images has low entropy.
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View from information theory

I How many bits will you
need to transmit (or
save) this image?
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View from information theory

I If images are “random”,
you will need 256 bits
on average to transmit
each.
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View from information theory

I If your images are
structured, you will need
much fewer bits.

I For example, what if the
images contain two
square blocks of
random size at random
locations?

I (Hyvarinen et al, 2009)
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View from information theory

I You can transmit the
upper-left corner and
the bottom-right corner
each with 8 bits (4 for
the vertical, 4 for the
horizontal direction),
making it 2× 16 = 32
bits for both squares.

I (It could be more
efficient than that.)
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View from information theory

I Caveat: Neural codes,
ironically, are very
high-dimensional. It is
the entropy of each
individual code element
that is small. This leads
to sparse
representations.
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View from statistics

I Another way to state
that the information
content is small is to say
that there are
dependencies among
the pixels.
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View from statistics

I A common way to
reduce the
dependencies is
Independent
Components Analysis
(ICA)
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View from neuroscience

I Attneave 1954, Barlow 1961
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What visual neurons like to see

I Hubel and Wiesel, 1959
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A very simple neuron abstraction

w

x

y = wTx
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Unsupervised Learning

xj

y = WTx
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Learning criteria

I maximize independence (ica)
I minimize entropy (information theory)
I maximize sparseness (sparse coding)
I maximize probability of the data (eg. boltzmann

machines, mixture models)
I learn to reconstruct from bottleneck (autoencoders,

kmeans)
I supervised learning (eg. learn to classify objects)

Roland Memisevic Machine learning for vision

Learned receptive fields

learned receptive fields real receptive fields
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ImageNet challenge
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ImageNet challenge

I Krizhevsky, et al. 2012
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Convolutional networks

I LeCun et al. 1998
I Fukushima 1980 (without learning)
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Low-level features

I Krizhevsky, et al. 2012
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High-level features

Girshick, Donahue, Darrell, Malik (!); 2014
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Convnet features for generic recognition

non-imagenet classes:

(Donahue et al, 2013)
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GoogLeNet

I exercise in (a) scaling up, (b)
unconventional
neurons/architectures

I wins ImageNet 2014 with 6.66%
top-5 error rate

I vision solved?
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Vision is more than object recognition

how many cars in the picture?
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Vision is more than object recognition

how many cars in the picture?
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There are things images can’t teach you
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There are things images can’t teach you
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There are things images can’t teach you
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There are things images can’t teach you
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There are things (still) images can’t teach you

how many chairs in the picture?
(Buelthoff and Buelthoff, 2003)
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There are things (still) images can’t teach you

how many chairs in the picture?
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A different abstract neuron

x

y

z

I natural way to encode time-series (video), geometry,
invariance
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Activity recognition example

(“Hollywood 2”, Marszałek et al., 2009)

I Convolutional GBM (Taylor et al., 2010)
I hierarchical ISA (Le, et al., 2011)
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Watching videos improves recognition

(”Deep Learning of Invariant Features via Simulated Fixations
in Video”, Zou, et al., 2012)
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Contour coding

I (Hyvarinen et al., 2002)
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Tracking with mocap

(Taylor, et al.; 2010)
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Major conferences and journals

I NIPS: Neural Information Processing Systems
I CVPR: International Conference on Computer Vision

and Pattern Recognition
I ICCV: International Conference on Computer Vision
I ICML: International Conference on Machine Learning
I ECCV: European Conference on Computer Vision

I PAMI: IEEE Transactions on Pattern Analysis and
Machine Intelligence

I Neural Computation
I JMLR: Journal of Machine Learning Research
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Course outline

1. Fourier representations and Gabor features
2. Basic image statistics, aspects of biological vision
3. Feature learning
4. Energy models, motion, invariance
5. Advanced topics, applications, recent work
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Unofficial textbook

Hyvarinen, Hurri, Hoyer: Natural Image Statistics. A
Probabilistic Approach to Early Computational Vision.
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Learning approach

I Readings will be posted and should be read before
each class.

I Lectures will explain and motivate the concepts with
real world examples.

I Student presentations of recent papers to discuss
recent/novel/speculative/applied ideas.

I Several hands-on assignments to get an idea for how
the methods work on actual data.

I Final projects are research based. Eg.
evaluation/comparison of an approach from a recent
paper, prototype/discussion of a new idea or variation
of an existing one.

Roland Memisevic Machine learning for vision

Marking scheme

I readings (10 %)
I participation in class (20 %)
I assignments (30 %)
I term project (40 %)
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Relation to other courses and areas

I Image Processing, Computer Vision: Focus on
data and learning (and bio-inspired as a
consequence).

I Neuroscience: The brain (and neuroscience) is
utterly complex and detailed. We will abstract away a
lot of these details.

I Machine Learning: Images have strong structure.
Black-box classifiers (like SVM) and fully Bayesian /
variational methods not always the best choice.

I Deep Learning: Focus on images (i) to solve vision
tasks, (ii) to study the models. (Eg why do DL models
always learn Fourier transforms in the lowest layer?)
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Tomorrow

I Review of linear algebra, stats, optimization, complex
arithmetic, ...
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