
Machine learning for vision
Hiver 2015

Roland Memisevic

Lecture 1

Roland Memisevic Machine learning for vision

Translation invariance and locality

I Almost all structure in natural
images is position-invariant
and local. This has several
practical consequences:

I Almost all low-level vision
operations will be based on
small patches.

I The universal mathematical
framework for
understanding the structure
in images is the Fourier
transform.

Roland Memisevic Machine learning for vision

Ways to represent an image

I as a matrix (or tensor for multi-channel images such
as color images)

I as a sequence of gray-values or colors
(“vectorization”, “serialization”)

I as a vector equipped with operations from linear
algebra (a point in “pixel space”)

I as a sequence of features computed from the image

I It is common to jump back-and-forth between these
representations.

I For matrix representations, it can be convenient to
use negative indexes, so that the origin is in the
center of the image.

Roland Memisevic Machine learning for vision

Linear features
I One of the simplest and most common operations on

a vectorized image is linear projection:

wTx =
∑

i

wixi

or, if images are matrices:

=
∞∑

x∗=−∞

∞∑

y∗=−∞
W (x∗, y∗)I(x∗, y∗)

I The resulting scalar will be large if x is similar to w
I w is called “feature”, “filter”, or “mask”
I Features can be defined by hand or learned from

data.

Roland Memisevic Machine learning for vision

Filtering
I We define “filtering” as scanning a linear feature W

across the image:

O(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
W (x∗, y∗)I(x + x∗, y + y∗)

which yields feature map where structure similar to
W is enhanced.

I Almost every recognition system makes use of this.
I Feature maps may be multidimensional if we apply

multiple filters on the same image.
I Usually the features are a much smaller than the

image, and both can be thought of as padded with
zeros on all sides.

I Of course, one can do the same for 1-d signals.

Roland Memisevic Machine learning for vision

Filtering

Roland Memisevic Machine learning for vision

Example: two feature maps from edge filters

linear filter linear filter (a non-linear combination)

Roland Memisevic Machine learning for vision

How to deal with the boundaries

I There are several things one can do at the
boundaries:

1. Make the output smaller than the original image
2. Assume that the image is padded with zeros
3. “wrap-around”: Think of image as being periodic

I All of these can be found in practice, depending on
application, preferences, etc.

Roland Memisevic Machine learning for vision

Filtering the impulse

I What happens if we filter the impulse image

δ(x , y) =

{
1, if x = 0 and y = 0,
0, otherwise

with some filter mask W (x , y) ?

I The output image will show the flipped feature in the
center:

O(x , y) = W (−x ,−y)

I hmmm... can we get rid of the flipping?
I Yes, flip the image or the mask when computing the

inner product...:

Roland Memisevic Machine learning for vision

Filtering the impulse

I What happens if we filter the impulse image

δ(x , y) =

{
1, if x = 0 and y = 0,
0, otherwise

with some filter mask W (x , y) ?
I The output image will show the flipped feature in the

center:
O(x , y) = W (−x ,−y)

I hmmm... can we get rid of the flipping?
I Yes, flip the image or the mask when computing the

inner product...:

Roland Memisevic Machine learning for vision

Convolution
I The convolution of two images is defined by

I1(x , y)∗I2(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
I1(x−x∗, y−y∗)I2(x∗, y∗)

I Typically (not always), one image will be a feature
vector h(x , y):

I(x , y) ∗ h(x , y) =
∞∑

x∗=−∞

∞∑

y∗=−∞
I(x − x∗, y − y∗)h(x∗, y∗)

I In 1-d:

s(y) ∗ h(y) =
∞∑

y∗=−∞
s(y − y∗)h(y∗)

Roland Memisevic Machine learning for vision

Properties of convolution

I commutative:

s(x , y) ∗ h(x , y) = h(x , y) ∗ s(x , y)

I associative:
(

s(x , y)∗h1(x , y)
)
∗h2(x , y) = s(x , y)∗

(
h1(x , y)∗h2(x , y)

)

I distributive:

s(x , y)∗
(

h1(x , y)+h2(x , y)
)
= s(x , y)∗h1(x , y)+s(x , y)∗h2(x , y)

I These are properties of products.

Roland Memisevic Machine learning for vision

Convolution as superposition, impulse
response

I One usually thinks of convolution as scanning a
(flipped) filter across the image.

I One can also think of convolution as computing a
weighted sum over translated copies of the image.

I The (flipped) filter entries are then the weights in the
combination.

I The impulse response of a filter is defined as the
result of convolving the filter with the impulse image.

Roland Memisevic Machine learning for vision

Continuous convolution

I In continuous domains, replace the sum with an
integral:

s(x , y)∗h(x , y) =
∫∫ ∞

−∞
s(x∗, y∗)·h(x−x∗, y−y∗) dx∗ dy∗

I Caveat: To get a sensible impulse response, the
impulse signal needs to integrate to one. But at the
same time it has to be equal to zero everywhere
except at the origin.

I Solution: The Dirac delta.

Roland Memisevic Machine learning for vision

One-d convolution according to Wikipedia

Roland Memisevic Machine learning for vision

Finite convolution

I In practice, almost all filters that we need to deal with
are finite.

I So we may write

(
I ∗ h

)
m,n =

K
2∑

k=−K
2

R
2∑

r=−R
2

h(k , r)I(m − k ,n − r)

I For images of size M × N this takes MNKR
operations.

I K and R are usually much smaller than M and N.

Roland Memisevic Machine learning for vision

Separability

M
g(m,n)

1
G2

G

G1

Nn

m

1

I An image I(m,n) is called
separable, if there exist 1d
signals I1, I2 with

I(m,n) = I1(m)I2(n)

I In vector notation:

I = I1IT2

I Filters can be separable, too.

Roland Memisevic Machine learning for vision

Convolution and separability

I If the filter h is separable, we have:
(
I ∗ h

)
m,n =

∑

k

∑

r

h(k , r)s(m − k ,n − r)

=
∑

k

∑

r

h1(k)h2(r)s(m − k ,n − r)

=
∑

k

h1(k)
∑

r

h2(r)s(m − k ,n − r)

︸ ︷︷ ︸
=:a(m−k ,n)

I We can pre-compute a(·, ·) using MNR operations.
I Given a(·, ·) the result takes only MNK operations.
I This makes MN(R + K) in total.

Roland Memisevic Machine learning for vision

Separable/non separable example

x

y

x

y

separable not separable

Roland Memisevic Machine learning for vision

LTI Systems

I Convolution amounts to applying a single linear
transformation everywhere. This makes it a

Linear Time-Invariant system (LTI System)
I (note: “time”, for us, usually means space)
I LTI system is aka Linear Shift-Invariant system (LSI

System)
I A system is a function that takes a signal as input and

outputs a new signal.
I There are many dimensions along which one can

charaterize systems: causality, finite vs. infinite
impulse response (FIR vs. IIR filter), stability (eg.
“BIBO”), ...

Roland Memisevic Machine learning for vision

Sine and cosine

I Two signals which (if combined into one) are
intimately related to LTI systems are the sine and the
cosine-signal:

sc(x ;A, ω, ϕ) = A cos (ωx + ϕ)

ss(x ;A, ω, ϕ) = A sin (ωx + ϕ)

I ω is called (“angular”) frequency; its reciprocal is
called wavelength; ϕ is called phase.

Roland Memisevic Machine learning for vision

Digression: Complex numbers
I Complex numbers are “2d-vectors” with some special

arithmetic, most of which related to Euler’s formula:

eiϕ = cosϕ+ i sinϕ
I Most applications rely on jumping back-and-forth

between cartesian and polar coordinates:

Re

Im

ϕ

r

c = a+ ib = reiϕ

b

a

a = r cos (ϕ)

b = r sin (ϕ)

r = |c| =
√

a2 + b2

ϕ = arg(c) = atan
(b

a
)

Roland Memisevic Machine learning for vision

Digression: Complex numbers

I Addition is the same as for 2d vectors.
I Multiplication is standard arithmetic in the polar

representation:

c1 · c2 = r1ei(ϕ1) · r2ei(ϕ2) = r1 · r2 · ei(ϕ1+ϕ2)

Thus, multiplication is stretching + rotation.
I Multiplying a number by a complex number c of

length 1.0,
c = eiα,

amounts to rotating the number by α degrees counter
clock-wise around the origin.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

1−1

− j

j

cos(ϕ)

sin(ϕ)

ϕ

I The signal exp(iωt) is therefore a unit-vector running
counter clock-wise around the unit circle.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

I Other useful equations:
I Conjugation is reflection at the real axis:

c̄ = a− ib = r exp(−iϕ)

I It follows that c̄c = |c|2 and 1
2(c̄ + c) = real(c)

I The standard inner product uses conjugation:

〈
~c, ~d

〉
=
∑

i

c̄idi

I Why? Because now
〈
~c,~c

〉
= ||~c||2

I In practice, use the function atan2() to compute the
atan for polar representations.

Roland Memisevic Machine learning for vision

Digression: Complex numbers

eiπ + 1 = 0

— End of digression —

Roland Memisevic Machine learning for vision

The phasor

The phasor is the complex valued signal

p(t) = exp
(
iωt
)

I The phasor is the central object of interest in signal
processing. It combines sine and cosine into a single,
complex valued signal.

I t can be continuous or discrete.

Roland Memisevic Machine learning for vision

Sine and cosine from two phasors
I Euler’s formula allows us to express sine and cosine

with phasors:

cosϕ =
1
2

eiϕ +
1
2

e−iϕ

sinϕ =
1
2i

eiϕ − 1
2i

e−iϕ = − i
2

eiϕ +
i
2

e−iϕ

I To derive these formulas one can use:

eiϕ + e−iϕ = 2 cosϕ

and
eiϕ − e−iϕ = 2i sinϕ

I One can think of this as a way to transform to
Cartesian coordinates.

Roland Memisevic Machine learning for vision

Phasors and shift (1d)
Phasors are eigenfunctions of translation

p(t−z) = eiω(t−z) = eiωte−iωz = e−iωzp(t)

I Thus, translating a (1-d) phasor is equal to
multiplying it by the constant: e−iωz

I This constant depends on (i) the frequency of the
phasor, and (ii) the amount of shift.

I Now recall that we can think of convolution as
computing a linear combination of translated copies
of the signal:

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)
Phasors are eigenfunctions of convolution

p ∗ h =
∞∑

z=−∞
h(z)p(t − z)

=
(∞∑

z=−∞
h(z)e−iωz

)
eiωt

=: H(ω)p

I The constant depends on the frequency of the
phasor.

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)

I The complex number H(ω) is called frequency
response of the filter.

I Its absolute value |H(ω)| is called amplitude
response.

I Its phase arg H(ω) is called phase response.

Roland Memisevic Machine learning for vision

Phasors and convolution (1d)

I Recall that multiplication for complex numbers is
stretching + rotation.

I It follows that convolution can change phase and
amplitude of a phasor but not its frequency.

I Convolving with the filter h(t) turns the phasor
p(t) = exp(iωt) into:

H(ω)exp
(
iωt
)
= |H(ω)|exp

(
iωt + argH(ω)

)

Roland Memisevic Machine learning for vision

Signals as superpositions of phasors (1d)

I The fact that phasors are well-behaved wrt.
convolution suggests writing a signal as a
superposition of phasors.

I That way we can characterize the effect of a filter by
just looking at the phasors (which differ by
frequency).

I For signals that are finite (in other words, usual
vectors) this is straightforward, because we can
construct an orthonormal basis from phasors as
follows:

Roland Memisevic Machine learning for vision

An orthogonal basis from phasors (1d)
I Define T discrete phasor signals of length T with

frequencies k = 0, . . . ,T − 1 as:

pk(t) = e
2πi
T kt t = 0, . . . ,T − 1

I These phasors form an orthonormal basis wrt. the
complex inner product:

〈
pk(t),pl(t)

〉
=
∑

t

e
2πi
T kte−

2πi
T lt = T δkl

I So the coefficients that allow us to represent a signal
s(t) in this basis are simply

S(k) =
1
T
〈
s(t),pk(t)

〉

Roland Memisevic Machine learning for vision

Discrete Fourier Transform (1d)

Discrete Fourier Transform (DFT) 1d

S(k) =
T−1∑

t=0

s(t)e−i 2π
T kt k = 0, . . . ,T − 1

Inverse discrete Fourier Transform 1d

s(t) =
1
T

T−1∑

k=0

S(k)ei 2π
T tk t = 0, . . . ,T − 1

Roland Memisevic Machine learning for vision

Discrete Fourier Transform (1d)

I Most practical implementations of the DFT use the
Fast Fourier Transform (FFT) to compute the
coefficients. Accordingly, most libraries are named
“FFT” not “DFT”.

I One can generalize the DFT to continuous periodic
functions (“Fourier Series”).

I One can generalize further to (non-periodic)
square-integrable functions (“Fourier Transform”).

Roland Memisevic Machine learning for vision

Spectrum

I The complex function S(ω) is called the spectrum of
the signal.

I |S(ω)| is called amplitude spectrum.
I arg S(ω) is called phase spectrum.

I It follows that the frequency response of a filter is the
spectrum of the impulse response.

I The spectrum S(ω) is a set of coefficients that we
need to apply to the phasors of corresponding
frequency to get back the signal.

I It determines the strength of each phasor (via |S(ω)|)
and the phase of each phasor (via arg S(ω)).

Roland Memisevic Machine learning for vision

Discrete = finite = periodic

I For discrete time signals, we have

exp (iωt) = exp (i(ω + 2π)t)

and thus
S(ω + 2π) = S(ω)

I Discrete signals have a periodic spectrum.
I We need to know S(ω) only for −π ≤ ω ≤ π.
I The converse is true, too: periodic signals have

discrete spectrum.
I In practice, it is common to think of periodic as finite.

Roland Memisevic Machine learning for vision

Fourier analysis zoo

signal continuous signal discrete
spectrum
continuous

Fourier transform Discrete Time
Fourier Transform
(DTFT): spectrum is
periodic

spectrum
discrete

Fourier series:
signal is periodic

Discrete Fourier
Transform
(DFT/FFT): spec-
trum and signal are
both periodic/ discrete
/ finite

“finite”==“periodic”

Roland Memisevic Machine learning for vision

