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Sampling a continuous signal
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I Sampling (= A/D conversion)
can be formalized as
multiplication of a continuous
signal by a grid of Dirac deltas
= “Dirac comb”.
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Sampling a continuous signal

The Fourier transform of the Dirac comb with spacing D is
the Dirac comb with spacing 1

D .

I Recall that elementwise multiplication in the time
domain is convolution in the frequency domain.

I Sampling therefore generates replicates of the
original spectrum known as (spectral) alias:
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Sampling generates spectral aliases
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I The spectrum of the digitized signal is the infinite
superposition of translated copies of the original
spectrum.
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Sampling generates spectral aliases

I In theory, we can perfectly undo this effect and
recover the original signal by low-pass filtering, if the
spectral aliases don’t overlap.

I Otherwise, sampling will loose information.
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Sampling theorem and Nyquist frequency

The sampling theorem (wikipedia)
If a function s(t) contains no frequencies higher than D
hertz, it is completely determined by giving its ordinates at
a series of points spaced 1/(2D) seconds apart. The
frequency 1/(2D) is called Nyquist frequency.
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Sampling theorem in 2d

|S( f1, f2)|

f1

f2

2b1

2b2

Roland Memisevic Machine learning for vision

Sampling theorem in 2d
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Aliasing example
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Aliasing in 2d
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Aliasing in 2d
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Aliasing in 2d
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Aliasing in 2d
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Smoothing

I An immediate practical implication of the sampling
theorem:

If you want to subsample an image, do smoothing first.
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Example

example from
http://redwood.berkeley.edu/bruno/psc129/handouts/aliasing.pdf

Roland Memisevic Machine learning for vision



Example

example from
http://redwood.berkeley.edu/bruno/psc129/handouts/aliasing.pdf

Roland Memisevic Machine learning for vision

Example

example from
http://redwood.berkeley.edu/bruno/psc129/handouts/aliasing.pdf

Roland Memisevic Machine learning for vision

Ideal interpolation
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I To generate the original (continuous) signal from the
sampled signal, do low-pass filtering.

I Applying an ideal low-pass filter amounts to
convolving the signal with the Fourier transform of the
box function,

I Thus, ideal interpolation is convolution of the
discrete signal with the sinc-function.

Roland Memisevic Machine learning for vision

DFT leakage

I We can think of the DFT of a finite signal as the DFT
of a periodic signal after multiplying it by a
rectangular window.

I The DFT spectrum you get can be thought of as the
spectrum of the periodic signal convolved with a
sinc-function.

I Because of the zero-crossings of the sinc-function
the convolution will have no effect on signal
components whose frequencies are integer multiples
of the window length.

I For any other components, the convolution will
generate additional components in the spectrum.

I This effect is known as leakage.
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Leakage example
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Leakage example
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Leakage example
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Leakage example
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Windowing

I It is best to think of leakage as leaking into:
frequency components or noise can leak into the
frequency bins that you actually want to detect.

I Leakage cannot be avoided.
I But a window other than the box-window may lead to

different, potentially less undesirable, leakage
properties.

I This may allow us to re-distribute the effect of
leakage across the bins such that it causes the least
harm for the application at hand.
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Leakage with box window
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Leakage with box window
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Leakage with Gaussian window
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Leakage with Gaussian window
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Leakage with small Gaussian window
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Leakage with small Gaussian window
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Windowing and Short Time Fourier Transform

I The Short-Time Fourier Transform (STFT) is an
application of window functions:

I Fourier-transform the signal locally, then view the
resulting set of spectra as a function of time or space.

I In 1d, the result is called spectrogram.
I The choice of window is important for the reasons

just discussed.
I An STFT using a Gaussian window is also called

Gabor transform.
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Gabor features (2d)

I 2d Gabor functions are highly common in visual
recognition tasks.

I They can be defined as the product of two
exponential functions (one for the window, one for the
phasor):

g(K , σ, x0, y0, γ, u, v ,P) =

K exp
(
− 1
σ2 ((x − x0)

2 + γ2(y − y0)
2)
)
·

exp
(
i2π(ux + vy) + P

)

I Many variations are possible (for example, Gabor
filters with oriented rather than axis parallel windows,
etc.).
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Example

Wave:
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Example

Window:
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Example

Gabor feature:
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Frequency channels

I In many applications, local Gabor features are used
as filters, ie. they are scanned across the image.

I This naturally raises the question:
I What is the frequency response of a Gabor filter?

I It is a localized blob in the frequency domain:
I The Fourier transform of a phasor times a Gaussian

will be a delta-peak convolved with a Gaussian.
I Thus, Gabor filters are oriented bandpass filters.
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A spectrogram (top) of an utterance

I (from Bishop, 2006)
I The visual analog of the spectrogram is

3-dimensional feature map.
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The uncertainty principle

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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In 2d: orientation uncertainty

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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