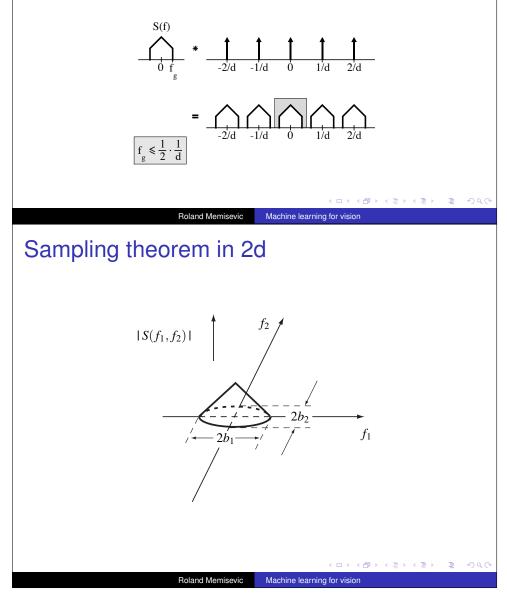


Sampling generates spectral aliases

- In theory, we can perfectly undo this effect and recover the original signal by low-pass filtering, if the spectral aliases don't overlap.
- Otherwise, sampling will loose information.



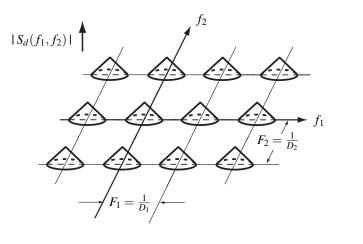
Sampling theorem and Nyquist frequency

The sampling theorem (wikipedia)

If a function s(t) contains no frequencies higher than D hertz, it is completely determined by giving its ordinates at a series of points spaced 1/(2D) seconds apart. The frequency 1/(2D) is called Nyquist frequency.

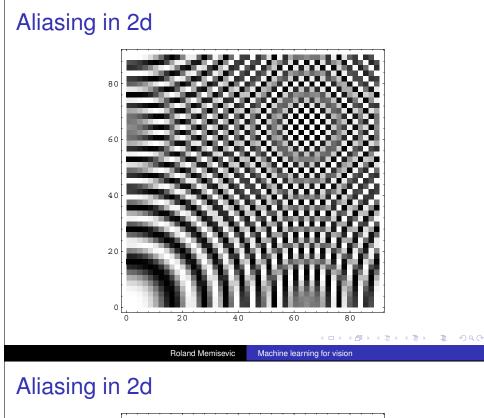
Roland Memisevic Machine learning for vision

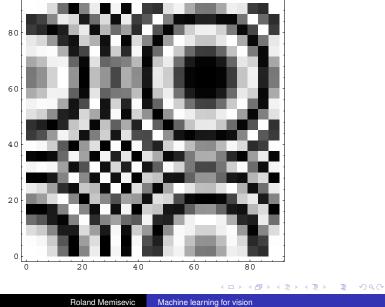
Sampling theorem in 2d



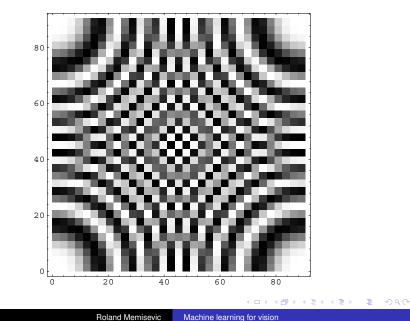
・ロト・国ト・国ト・国ト・国・シック







Aliasing in 2d



Aliasing in 2d

Aliasing in 2d

Machine learning for vision

・ロト・聞ト・思ト・思ト ヨー めへの

Smoothing

An immediate practical implication of the sampling theorem:

Roland Memisevic

If you want to subsample an image, do smoothing first.

Aliasing in 2d

Roland Memisevic

Example

Welcome to Joe's webpage!

subsampling

Machine learning for vision

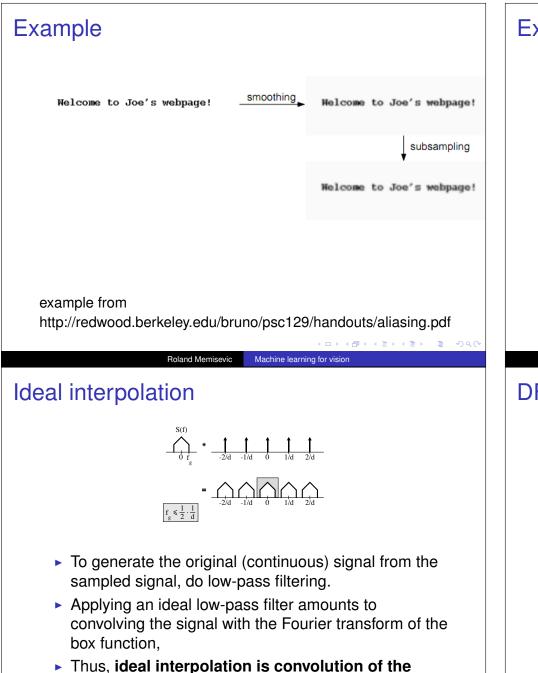
Helcome to doe's velopaget

(ロ) (回) (三) (三) (三) (○) (○)

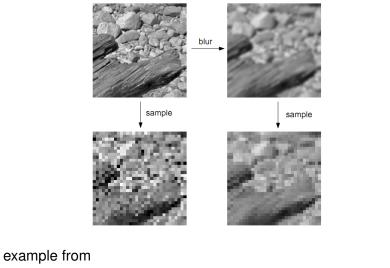
◆□ > ◆□ > ◆三 > ◆三 > ・三 のへの

example from http://redwood.berkeley.edu/bruno/psc129/handouts/aliasing.pdf

・ロト・日本・モート ヨー うへの



Example



http://redwood.berkeley.edu/bruno/psc129/handouts/aliasing.pdf

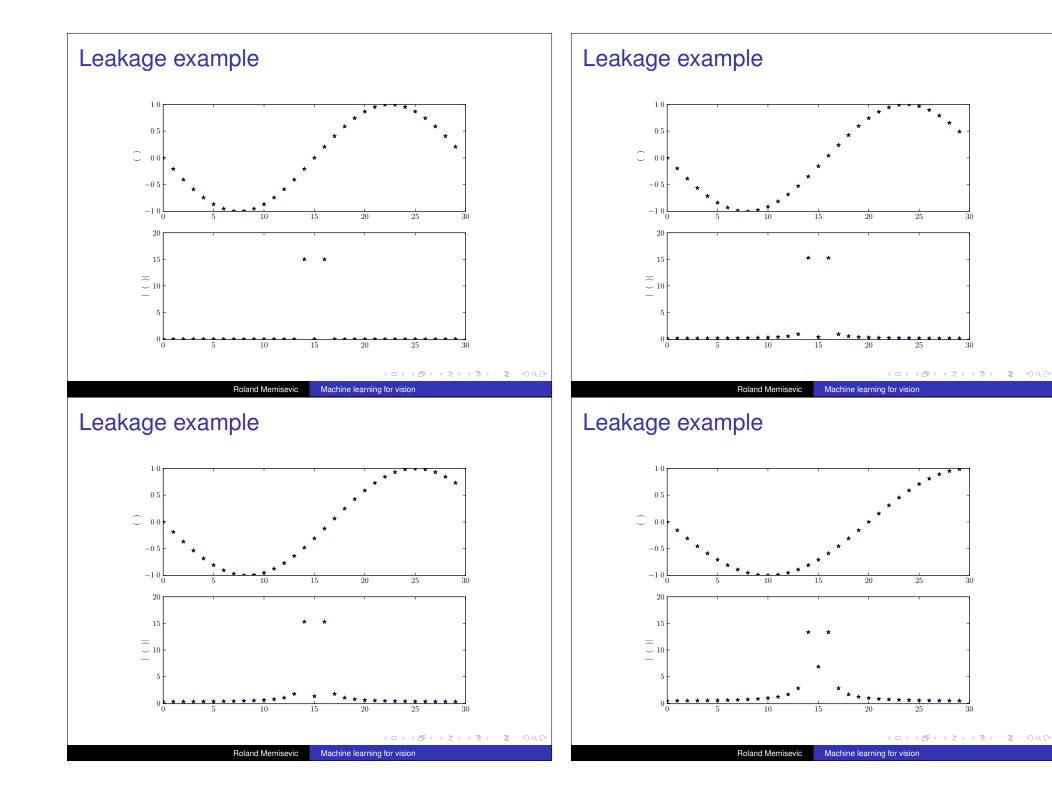
Roland Memisevic Machine learning for vision

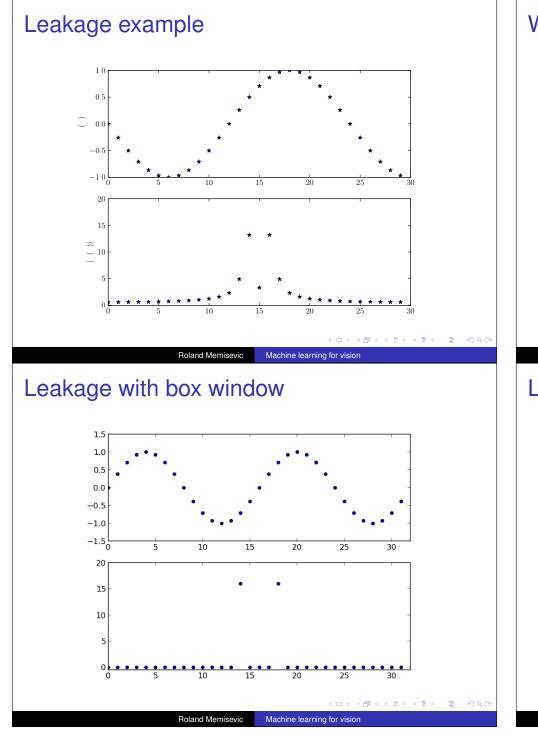
DFT leakage

- We can think of the DFT of a finite signal as the DFT of a periodic signal after multiplying it by a rectangular window.
- The DFT spectrum you get can be thought of as the spectrum of the periodic signal convolved with a sinc-function.
- Because of the zero-crossings of the sinc-function the convolution will have no effect on signal components whose frequencies are integer multiples of the window length.
- For any other components, the convolution will generate additional components in the spectrum.
- This effect is known as **leakage**.

◆□> ◆□> ◆目> ◆目> ◆目> ● ○○

discrete signal with the sinc-function.





Windowing

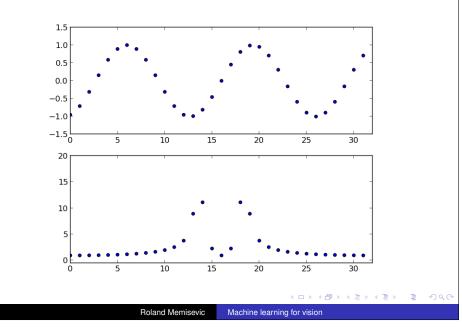
- It is best to think of leakage as *leaking into*: frequency components or noise can leak into the frequency bins that you actually want to detect.
- Leakage cannot be avoided.
- But a window other than the box-window may lead to different, potentially less undesirable, leakage properties.
- This may allow us to re-distribute the effect of leakage across the bins such that it causes the least harm for the application at hand.

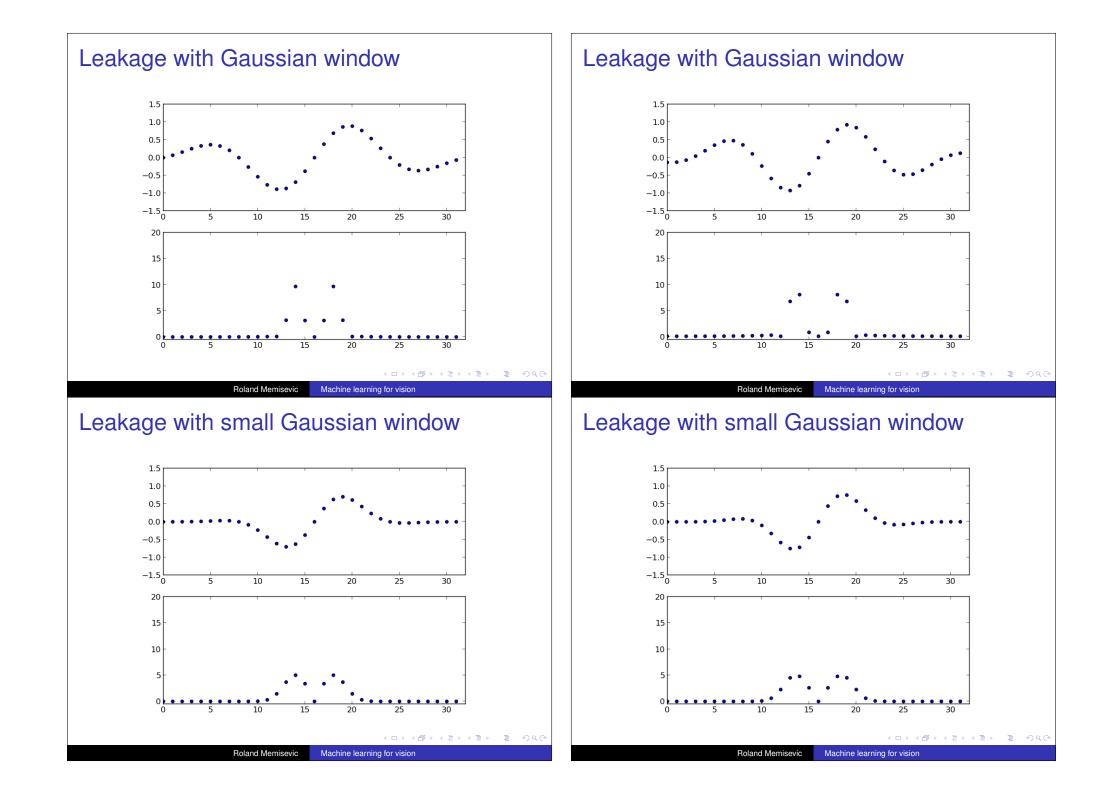
Machine learning for vision

同 ト イヨ ト イヨ ト ヨ うなの

Leakage with box window

Roland Memisevic





Windowing and Short Time Fourier Transform

- The Short-Time Fourier Transform (STFT) is an application of window functions:
- Fourier-transform the signal *locally*, then view the resulting set of spectra as a function of time or space.
- ▶ In 1d, the result is called *spectrogram*.
- The choice of window is important for the reasons just discussed.
- An STFT using a Gaussian window is also called Gabor transform.

Gabor features (2d)

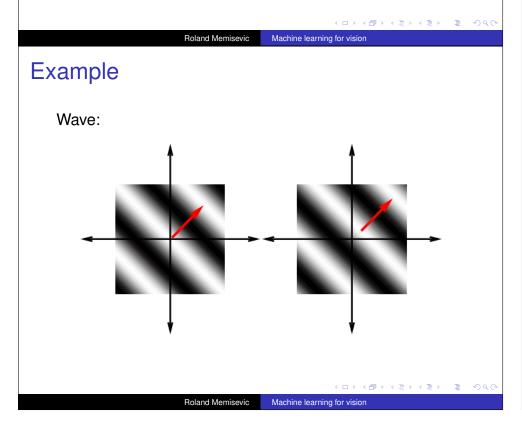
- 2d Gabor functions are highly common in visual recognition tasks.
- They can be defined as the product of two exponential functions (one for the window, one for the phasor):

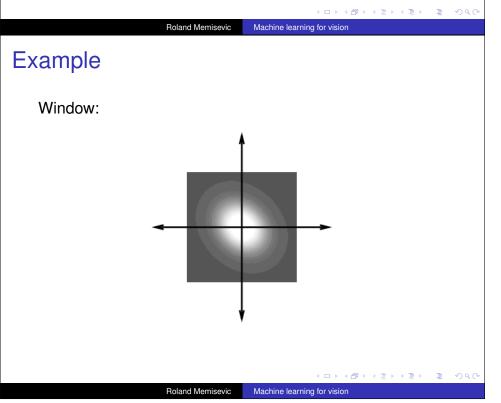
$$g(K, \sigma, x_0, y_0, \gamma, u, v, P) =$$

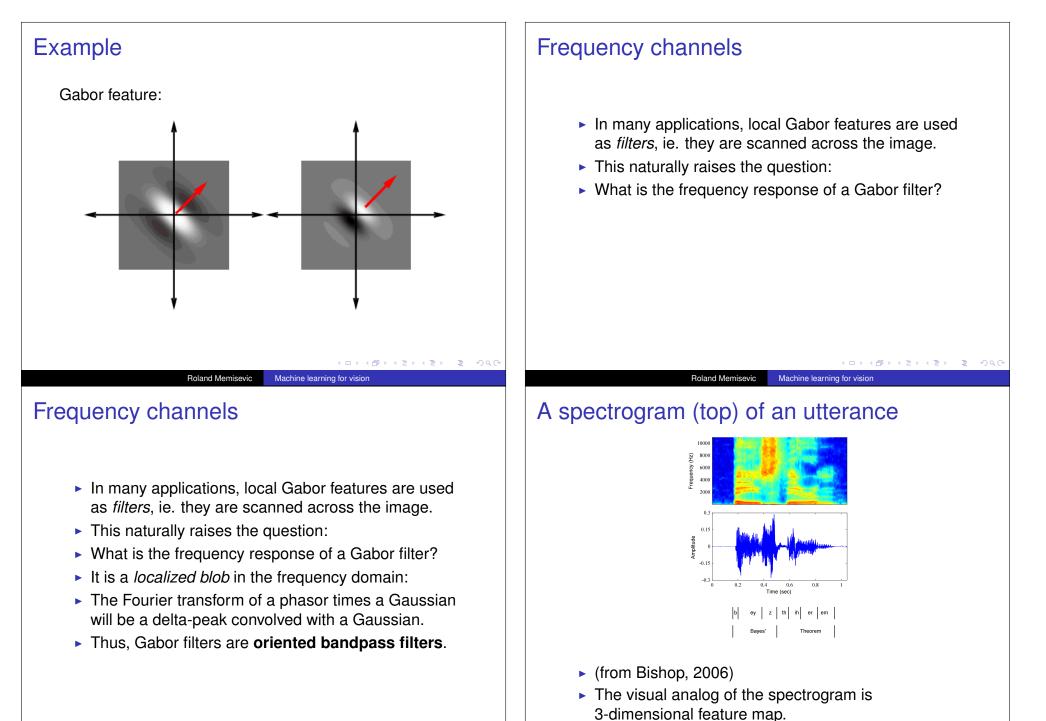
$$K \exp\left(-\frac{1}{\sigma^2}((x - x_0)^2 + \gamma^2(y - y_0)^2)\right) \cdot$$

$$\exp\left(i2\pi(ux + vy) + P\right)$$

 Many variations are possible (for example, Gabor filters with oriented rather than axis parallel windows, etc.).







< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

