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Canonical pre-processing
I It is common to perform the following pre-processing

steps before doing any sort of learning on image
patches:

1. DC centering

I(x , y)← I(x , y)− 1
MN

∑

x ′,y ′
I(x ′, y ′)

2. Contrast normalization

I(x , y)← I(x , y)√∑
x ,y I(x , y)2 + ε

3. Whitening (today’s lecture)
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Canonical pre-processing

I Don’t confuse DC-centering/contrast normalization
with:

1. Mean-centering each pixel.
2. Setting the standard deviation of each pixel to 1.

I But one may do this in addition.
I The difference between these sets of operations is

that they work along a different dimension of the
image data array.
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The “vision equation”

I The purpose of vision: Infer world properties (or
hidden “causes”), z, from an image, x .

I We can express this with an analysis, inference,

encoder or backward equation:

z = g(x)
I Learning amounts to estimating the parameters of g

from data.
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Latent variables and generative models

I It is often easier in practice to express down how

images get formed given the causes, leading to the

synthesis, or decoder, or forward equation:

x = f (z)
I It describes how images depend on the state of the

world.
I z is called “latent variable” or “hidden variable”,

because unlike the image, x , we do not observe it.
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Latent variables and generative models

I To deal with ambiguities and uncertainties, one can

re-phrase this equation as a conditional probability:

x ∼ p(x |z)

in which case analysis follows from Bayes’ rule

p(z|x) = p(x |z)p(z)
p(x)

and requires a prior, p(z), over the latent variables.
I In practice, both probabilistic and non-probabilistic

formulations are common and work well.
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Manifold learning

x

z

g(x)f (z)

I When the dimensionality of
the latent variables is smaller
than the dimensionality of the
data, then we can think of the
data as being distributed
along some
lower-dimensional manifold in
the dataspace.

I Learning the manifold is also
known as dimensionality
reduction.

I Although this view is
appealing, it has its
limitations.
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Principal Components Analysis (PCA)
x2

x1

I If we assume the manifold to be linear, learning is
easy and can done in closed form.

I It amounts to finding the latent subspace.
I Inference amounts to projecting data into that

subspace.
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Principal Components Analysis

I Learning the linear manifold is known as Principal
Components Analysis (PCA).

I There are many equivalent learning criteria leading to
PCA.

I Two of the most well-known are
1. find the subspace in which the projection of the

training data has maximal variance
2. maximize the average distance between the

projections and the original points.
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Principal Components Analysis

x2

x1

xn

I The variance along the manifold is large.
I The average projection error is small.
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Principal Components Analysis

x2

x1

xn

I The variance along the manifold is small.
I The average projection error is large.
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Principal Components Analysis
I To learn a subspace means we need to work under

the assumption that the data is mean-centered:

1
N

N∑

n=1

xn = 0

I To derive PCA, we define an orthonormal basis for
the subspace, consisting of vectors

u1, . . . ,uM

where M is smaller than the dimensionality of the
data.

I PCA amounts to learning this basis.
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Principal Components Analysis
I It is convenient to stack the basis-vectors

column-wise in matrix U.
I By assuming we already learned the optimal basis,

we can write the forward and backward mappings as:

Projecting data (backward mapping)
I The optimal coefficients that approximate x within the

subspace are given by

z = UTx

Reconstructing data (forward mapping)
I The approximation x̃ of x is given by

x̃ = Uz
(
= UUTx

)
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Principal Components Analysis
I One way to learn the subspace: minimize the

reconstruction error

E(U) =
∑

n

‖xn −UUTxn‖2

under the constraint UTU = I

I To solve the problem, we stack the data row-wise in
matrix X and rewrite the objective function as a
quadratic form in U:

E(U) = ‖XT −UUTXT‖2
F

= Tr((XT −UUTXT)T(XT −UUTXT))

= Tr(XXT)− Tr(UTXTXU)

= −Tr(UTXTXU) + const
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Principal Components Analysis
Optimizing quadratic forms

I The maximizer of

Tr(UTAU)

subject to
UTU = I

(where U is D ×M) is given by the matrix whose
columns are the eigenvectors of A corresponding to
the M largest eigenvalues.

I So to find principal components perform an
eigen-decomposition of the data covariance
matrix.
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Principal Components Analysis

Summary: Computing principal components
1. Mean-center the data.
2. Compute the covariance matrix C = 1

NX
TX.

3. Perform an eigen-decomposition of C.
4. Sort the eigen-vectors according to the size of their

eigenvalues.
5. Stack the leading M eigen-vectors in matrix U.
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Principal Components Analysis
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I A two-dimensional dataset and the two principal
components.

I Projections onto the leading eigenvectors preserve
most of the variability in the data. So PCA performs
lossy compression.
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Translation invariance 1d

I The covariance between natural image pixels does
not depend (much) on their absolute position.
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Translation invariance 2d
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PCA and Fourier analysis 1d
I A (covariance) matrix whose entries are translation

invariant has phasors as eigenvectors:
I The dimension t of the projected phasor (ie.,

covariance matrix times phasor) takes the form:
∑

t ′
cov(t , t ′)eiωt ′

=
∑

t ′
c(t − t ′)eiωt ′

=
∑

z

c(z)eiωte−iωz

=
[∑

z

c(z)e−iωz]eiωt =: λωeiωt

I In fact, this shows that multiplying by the covariance
matrix is a convolution.
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PCA and Fourier analysis 1d
I Covariance matrices are symmetric (c(z) = c(T − z))
I So the eigenvalues are real:

∑

t ′
cov(t , t ′)eiωt ′

=
[∑

z

c(z)e−iωz]eiωt

=
[
c(0) +

T−1
2∑

z=1

c(z)
(
e−iωz + eiωz)]eiωt

=
[
c(0) + 2

T−1
2∑

z=1

c(z) cos(ωz)
]
eiωt
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PCA and Fourier analysis 2d

I The same is true in 2d:
I The eigenvectors of an image-covariance matrix that

is (2d)-translation invariant are 2d waves:
∑

x ′,y ′
cov
(
(x , y), (x ′, y ′)

)
ei(ω1x ′+ω2y ′)

=
∑

x ′,y ′
c
(
(x − x ′)2 + (y − y ′)2)ei(ω1x ′+ω2y ′)

=
∑

ξ,η

c(ξ, η)ei(ω1x−ω1ξ+ω2y−ω2η)

=
[∑

ξ,η

c(ξ, η)e−i(ω1ξ+ω2η)
]
ei(ω1x+ω2y)
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PCA example (first 96 EVs)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Dimensionality reduction and anti-aliasing

I Thus, PCA dimensionality reduction is low-pass
filtering.

I Low-pass filtering can be a good idea because:
1. In rectangular images, oblique frequencies are

underrepresented as compared to vertical or
horizontal frequencies.

2. Phase becomes meaningless at the highest
representable frequencies.

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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PCA and Whitening
I The components of the features, Z, are uncorrelated

(that is, Z has a diagonal covariance matrix):

1
N

∑

n

znz
T
n =

1
N

∑

n

UTxnx
T
n U

= UT
( 1

N

∑

n

xnx
T
n

)
U

= UTCU

= L

where the diagonal matrix L contains the eigenvalues
of C on its diagonal.

I (The last step follows from the eigenvalue definition:
Cui = λiui)

Roland Memisevic Machine learning for vision

PCA and Whitening

I We can obtain the identity as the covariance matrix
for Z, if instead of UT we use the following backward
mapping:

V = L−
1
2UT

I Data with identity covariance matrix is known as
white; multiplying data by V as whitening.

I Whitening may be performed without reducing the
dimensionality.

I This amounts to just rotating the coordinate system of
the data, followed by independently “stretching” or
“squeezing” the dimensions to obtain unit variance in
each.
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Whitening example
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Whitening example
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Whitening example
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ZCA Whitening
I Multiplying whitened data by an orthonormal matrix

leaves the data white (exercise).
I Thus, the whitening matrix V = L−

1
2UT is not the

only whitening matrix. Any matrix AV with
orthonormal A will be one.

I One way to define a canonical whitening matrix is to
choose the symmetric one. To get the symmetric
whitening matrix W pre-multiply V with the
orthonormal matrix U:

W := UV = UL−
1
2UT

I Transforming data with this matrix is known as ZCA
(zero-phase components analysis).
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Original data
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PCA projection
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PCA whitened data
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ZCA whitened data
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ZCA whitened data and original data
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ZCA example (all columns of W)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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De-whitening

I How to get the original images back from the
whitened images?

I (Pseudo-)invert the whitening matrix:
inverse PCA whitening:

x = V−1z =
(
L

1
2UT

)−1z = UL
1
2 z

inverse ZCA whitening:

x = W−1z =
(
UL−

1
2UT

)−1z = UL
1
2UTz

where L
1
2 is diagonal with

(
L

1
2
)

ii =
√
λi
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