
Machine learning for vision
Winter 2013

Roland Memisevic

Lecture 4, February 4, 2015

Roland Memisevic Machine learning for vision

Canonical pre-processing
I It is common to perform the following pre-processing

steps before doing any sort of learning on image
patches:

1. DC centering

I(x , y)← I(x , y)− 1
MN

∑

x ′,y ′
I(x ′, y ′)

2. Contrast normalization

I(x , y)← I(x , y)√∑
x ,y I(x , y)2 + ε

3. Whitening (today’s lecture)

Roland Memisevic Machine learning for vision

Canonical pre-processing

I Don’t confuse DC-centering/contrast normalization
with:

1. Mean-centering each pixel.
2. Setting the standard deviation of each pixel to 1.

I But one may do this in addition.
I The difference between these sets of operations is

that they work along a different dimension of the
image data array.

Roland Memisevic Machine learning for vision

The “vision equation”

I The purpose of vision: Infer world properties (or
hidden “causes”), z, from an image, x .

I We can express this with an analysis, inference,

encoder or backward equation:

z = g(x)
I Learning amounts to estimating the parameters of g

from data.

Roland Memisevic Machine learning for vision

Latent variables and generative models

I It is often easier in practice to express down how

images get formed given the causes, leading to the

synthesis, or decoder, or forward equation:

x = f (z)
I It describes how images depend on the state of the

world.
I z is called “latent variable” or “hidden variable”,

because unlike the image, x , we do not observe it.

Roland Memisevic Machine learning for vision

Latent variables and generative models

I To deal with ambiguities and uncertainties, one can

re-phrase this equation as a conditional probability:

x ∼ p(x |z)

in which case analysis follows from Bayes’ rule

p(z|x) = p(x |z)p(z)
p(x)

and requires a prior, p(z), over the latent variables.
I In practice, both probabilistic and non-probabilistic

formulations are common and work well.
Roland Memisevic Machine learning for vision

Manifold learning

x

z

g(x)f (z)

I When the dimensionality of
the latent variables is smaller
than the dimensionality of the
data, then we can think of the
data as being distributed
along some
lower-dimensional manifold in
the dataspace.

I Learning the manifold is also
known as dimensionality
reduction.

I Although this view is
appealing, it has its
limitations.

Roland Memisevic Machine learning for vision

Principal Components Analysis (PCA)
x2

x1

I If we assume the manifold to be linear, learning is
easy and can done in closed form.

I It amounts to finding the latent subspace.
I Inference amounts to projecting data into that

subspace.

Roland Memisevic Machine learning for vision

Principal Components Analysis

I Learning the linear manifold is known as Principal
Components Analysis (PCA).

I There are many equivalent learning criteria leading to
PCA.

I Two of the most well-known are
1. find the subspace in which the projection of the

training data has maximal variance
2. maximize the average distance between the

projections and the original points.

Roland Memisevic Machine learning for vision

Principal Components Analysis

x2

x1

xn

I The variance along the manifold is large.
I The average projection error is small.

Roland Memisevic Machine learning for vision

Principal Components Analysis

x2

x1

xn

I The variance along the manifold is small.
I The average projection error is large.

Roland Memisevic Machine learning for vision

Principal Components Analysis
I To learn a subspace means we need to work under

the assumption that the data is mean-centered:

1
N

N∑

n=1

xn = 0

I To derive PCA, we define an orthonormal basis for
the subspace, consisting of vectors

u1, . . . ,uM

where M is smaller than the dimensionality of the
data.

I PCA amounts to learning this basis.

Roland Memisevic Machine learning for vision

Principal Components Analysis
I It is convenient to stack the basis-vectors

column-wise in matrix U.
I By assuming we already learned the optimal basis,

we can write the forward and backward mappings as:

Projecting data (backward mapping)
I The optimal coefficients that approximate x within the

subspace are given by

z = UTx

Reconstructing data (forward mapping)
I The approximation x̃ of x is given by

x̃ = Uz
(
= UUTx

)

Roland Memisevic Machine learning for vision

Principal Components Analysis
I One way to learn the subspace: minimize the

reconstruction error

E(U) =
∑

n

‖xn −UUTxn‖2

under the constraint UTU = I

I To solve the problem, we stack the data row-wise in
matrix X and rewrite the objective function as a
quadratic form in U:

E(U) = ‖XT −UUTXT‖2
F

= Tr((XT −UUTXT)T(XT −UUTXT))

= Tr(XXT)− Tr(UTXTXU)

= −Tr(UTXTXU) + const

Roland Memisevic Machine learning for vision

Principal Components Analysis
Optimizing quadratic forms

I The maximizer of

Tr(UTAU)

subject to
UTU = I

(where U is D ×M) is given by the matrix whose
columns are the eigenvectors of A corresponding to
the M largest eigenvalues.

I So to find principal components perform an
eigen-decomposition of the data covariance
matrix.

Roland Memisevic Machine learning for vision

Principal Components Analysis

Summary: Computing principal components
1. Mean-center the data.
2. Compute the covariance matrix C = 1

NX
TX.

3. Perform an eigen-decomposition of C.
4. Sort the eigen-vectors according to the size of their

eigenvalues.
5. Stack the leading M eigen-vectors in matrix U.

Roland Memisevic Machine learning for vision

Principal Components Analysis

10 5 0 5 10
x1

6

4

2

0

2

4

6

8

x
2

I A two-dimensional dataset and the two principal
components.

I Projections onto the leading eigenvectors preserve
most of the variability in the data. So PCA performs
lossy compression.

Roland Memisevic Machine learning for vision

Translation invariance 1d

I The covariance between natural image pixels does
not depend (much) on their absolute position.

Roland Memisevic Machine learning for vision

Translation invariance 2d

Roland Memisevic Machine learning for vision

PCA and Fourier analysis 1d
I A (covariance) matrix whose entries are translation

invariant has phasors as eigenvectors:
I The dimension t of the projected phasor (ie.,

covariance matrix times phasor) takes the form:
∑

t ′
cov(t , t ′)eiωt ′

=
∑

t ′
c(t − t ′)eiωt ′

=
∑

z

c(z)eiωte−iωz

=
[∑

z

c(z)e−iωz]eiωt =: λωeiωt

I In fact, this shows that multiplying by the covariance
matrix is a convolution.

Roland Memisevic Machine learning for vision

PCA and Fourier analysis 1d
I Covariance matrices are symmetric (c(z) = c(T − z))
I So the eigenvalues are real:

∑

t ′
cov(t , t ′)eiωt ′

=
[∑

z

c(z)e−iωz]eiωt

=
[
c(0) +

T−1
2∑

z=1

c(z)
(
e−iωz + eiωz)]eiωt

=
[
c(0) + 2

T−1
2∑

z=1

c(z) cos(ωz)
]
eiωt

Roland Memisevic Machine learning for vision

PCA and Fourier analysis 2d

I The same is true in 2d:
I The eigenvectors of an image-covariance matrix that

is (2d)-translation invariant are 2d waves:
∑

x ′,y ′
cov
(
(x , y), (x ′, y ′)

)
ei(ω1x ′+ω2y ′)

=
∑

x ′,y ′
c
(
(x − x ′)2 + (y − y ′)2)ei(ω1x ′+ω2y ′)

=
∑

ξ,η

c(ξ, η)ei(ω1x−ω1ξ+ω2y−ω2η)

=
[∑

ξ,η

c(ξ, η)e−i(ω1ξ+ω2η)
]
ei(ω1x+ω2y)

Roland Memisevic Machine learning for vision

PCA example (first 96 EVs)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Roland Memisevic Machine learning for vision

Dimensionality reduction and anti-aliasing

I Thus, PCA dimensionality reduction is low-pass
filtering.

I Low-pass filtering can be a good idea because:
1. In rectangular images, oblique frequencies are

underrepresented as compared to vertical or
horizontal frequencies.

2. Phase becomes meaningless at the highest
representable frequencies.

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
Roland Memisevic Machine learning for vision

PCA and Whitening
I The components of the features, Z, are uncorrelated

(that is, Z has a diagonal covariance matrix):

1
N

∑

n

znz
T
n =

1
N

∑

n

UTxnx
T
n U

= UT
(1

N

∑

n

xnx
T
n

)
U

= UTCU

= L

where the diagonal matrix L contains the eigenvalues
of C on its diagonal.

I (The last step follows from the eigenvalue definition:
Cui = λiui)

Roland Memisevic Machine learning for vision

PCA and Whitening

I We can obtain the identity as the covariance matrix
for Z, if instead of UT we use the following backward
mapping:

V = L−
1
2UT

I Data with identity covariance matrix is known as
white; multiplying data by V as whitening.

I Whitening may be performed without reducing the
dimensionality.

I This amounts to just rotating the coordinate system of
the data, followed by independently “stretching” or
“squeezing” the dimensions to obtain unit variance in
each.

Roland Memisevic Machine learning for vision

Whitening example

8 6 4 2 0 2 4 6 8
x1

8

6

4

2

0

2

4

6

8

10

x
2

x

Roland Memisevic Machine learning for vision

Whitening example

10 5 0 5 10
z1

10

5

0

5

10

z 2

UTx

Roland Memisevic Machine learning for vision

Whitening example

10 5 0 5 10
z1

10

5

0

5

10

z 2

L−
1

2 UTx

Roland Memisevic Machine learning for vision

ZCA Whitening
I Multiplying whitened data by an orthonormal matrix

leaves the data white (exercise).
I Thus, the whitening matrix V = L−

1
2UT is not the

only whitening matrix. Any matrix AV with
orthonormal A will be one.

I One way to define a canonical whitening matrix is to
choose the symmetric one. To get the symmetric
whitening matrix W pre-multiply V with the
orthonormal matrix U:

W := UV = UL−
1
2UT

I Transforming data with this matrix is known as ZCA
(zero-phase components analysis).

Roland Memisevic Machine learning for vision

Original data

8 6 4 2 0 2 4 6 8
x1

8

6

4

2

0

2

4

6

8

10

x
2

x

Roland Memisevic Machine learning for vision

PCA projection

10 5 0 5 10
z1

10

5

0

5

10

z 2

UTx

Roland Memisevic Machine learning for vision

PCA whitened data

10 5 0 5 10
z1

10

5

0

5

10

z 2

L−
1

2 UTx

Roland Memisevic Machine learning for vision

ZCA whitened data

10 5 0 5 10
r1

10

5

0

5

10

r 2

ULUTx

Roland Memisevic Machine learning for vision

ZCA whitened data and original data

10 5 0 5 10
x1

10

5

0

5

10

x
2

original/ZCA whitened

Roland Memisevic Machine learning for vision

ZCA example (all columns of W)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Roland Memisevic Machine learning for vision

De-whitening

I How to get the original images back from the
whitened images?

I (Pseudo-)invert the whitening matrix:
inverse PCA whitening:

x = V−1z =
(
L

1
2UT

)−1z = UL
1
2 z

inverse ZCA whitening:

x = W−1z =
(
UL−

1
2UT

)−1z = UL
1
2UTz

where L
1
2 is diagonal with

(
L

1
2
)

ii =
√
λi

Roland Memisevic Machine learning for vision

De-whitening

I How to get the original images back from the
whitened images?

I (Pseudo-)invert the whitening matrix:
inverse PCA whitening:

x = V−1z =
(
L

1
2UT

)−1z = UL
1
2 z

inverse ZCA whitening:

x = W−1z =
(
UL−

1
2UT

)−1z = UL
1
2UTz

where L
1
2 is diagonal with

(
L

1
2
)

ii =
√
λi

Roland Memisevic Machine learning for vision

