Correlation vs. dependence

Statistical independence implies uncorrelatedness.

Uncorrelatedness does not imply statistical independence.

Gaussians and independence

- Spherical Gaussians have independent marginals:
 \[p(x_1, \ldots, x_n) = \frac{1}{(2\pi)^{\frac{n}{2}}} \exp \left(-\frac{1}{2} \|x\|^2 \right) \]
 \[= \prod_i \frac{1}{\sqrt{2\pi}} \exp \left(-\frac{1}{2} x_i^2 \right) \]

- So for Gaussian data, whitening will give us the independent components.
- For non-Gaussian data this is not the case.

A counter example

- a: Independent variables.
- b: A linear combination: not independent.
- c: After whitening the linear combination: still not independent.

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
Uncorrelatedness is not independence

- Any orthogonal transformation of white data is white.
- Therefore, PCA and ZCA are just two out of infinitely many whitening matrices.
- How can we find the matrix that maximizes independence?
- Since independence implies uncorrelatedness, it must still be a whitening matrix.

Independent components analysis

- Here, \(A \) and \(W \) are square matrices. We will later extend this to over- or undercomplete representations.
- Multiplying any component \(s_i \) by some scalar will have no effect if we divide the corresponding \(A_i \) by the same number.
- So we may assume the rows of \(A \) to have some fixed length.
- Applying the model to already whitened components, \(z \), (e.g. from PCA or ZCA), will greatly simplify learning because it allows us to search for \(A \) among orthogonal matrices.

Independent components analysis

- The ICA generative model: We have independent “source” variables \(s_i \), which get mixed to yield the observed data
 \[x = As \]
 with
 \[p(s_1, \ldots, s_n) = \prod_i p_i(s_i) \]
- The corresponding analysis equation is thus
 \[s = W^T x \]
 with \(W^T = A^{-1} \)

Maximum likelihood ICA

Densities under linear transformation

Given some random vector \(s \) with density \(p_s(s) \), the density of
\[x = Ms \]
is:
Maximum likelihood ICA

Densities under linear transformation

Given some random vector s with density $p_s(s)$, the density of

$$x = Ms$$

is:

$$p_x(x) = \frac{1}{|\det M|} p_s(M^{-1}x)$$

Roland Memisevic
Machine learning for vision

Maximum likelihood ICA

▶ For IID observations, we get the following likelihood:

$$L(W) = \prod_{t=1}^{T} p(x_t) = \prod_{t=1}^{T} |\det W| \prod_{i=1}^{n} p_i(w_i^T x_t)$$

▶ The log-likelihood is

$$\log L(W) = T \log |\det W| + \sum_{i=1}^{n} \sum_{t=1}^{T} \log p_i(w_i^T x_t)$$

▶ For whitened data, W must be orthonormal, so

$$|\det W| = 1$$

▶ In that case it is sufficient to maximize

$$\sum_{i=1}^{n} \sum_{t=1}^{T} \log p_i(w_i^T z_t)$$

where $-\phi(s_i) = \log p(s_i)$ is the log-pdf of the independent sources.

▶ How to choose $\phi(s_i)$?

Roland Memisevic
Machine learning for vision
Maximum likelihood for Gaussian sources

- The independent Gaussian is spherically symmetric.
- So rotation (orthogonal W) will have no effect on the objective.
- Any non-Gaussian source distribution will.

Forms non-Gaussianity

- Three possible forms of non-Gaussianity are
 1. Super-Gaussian (= sparsity): Distribution is peaked at zero (positive kurtosis)
 2. Sub-Gaussian: Distribution is “flat” at zero (negative kurtosis)
 3. Skew: Distribution is unsymmetric.
- Of these, super-Gaussianity is generally assumed to be the best match for (most) image data.
- Sparse representations are beneficial in many ways, so it is a natural choice of non-Gaussian density also for practical reasons.

Gaussian scale mixtures

- A possible explanation for super-Gaussianity in natural images is that any one feature may occur at different (brightness-)scales.
- We can model an image patch using a Gaussian g_i whose value is modulated by some independent scale-variable d_i:
 $$s_i = g_i d_i$$
- This yields a super-Gaussian distribution, because $p(s_i)$ will be a superposition of Gaussians each with different variance.
- In fact, contrast normalization seems to reduce sparsity (a bit).

Sparseness

- Top: Samples from a student-T-distribution (sparse)
- Bottom: Samples from a normal distribution of the same variance (not sparse).
Sparse does not mean “small values”

- Sparsity should not be confused with “small”.
- A normal distribution may be scaled to take on small values, too. This doesn’t make it sparse.
- Sparsity should always be thought of as relative to a given variance.

Sparse source densities

- A popular choice of sparse source density is the zero-mean Laplacian:
 \[p(s_i) = \frac{1}{2b} \exp\left(- \frac{|s_i|}{b} \right) \]
- Another, differentiable, one is the log cosh function.

Sparse coding

- With a Laplacian source density, the optimization problem becomes
 \[\text{minimize} \quad \sum_t \sum_i |w_i^T z_t| \]
 \[\text{s.t.} \quad W^T W = I \]
- This can be solved by alternating gradient steps with projections to enforce the constraint.
Orthogonality from reconstruction error

- An alternative to solving the constrained optimization problem is to enforce the orthogonality constraint
 \[W^{-1} = W^T \]
 implicitly.
- By adding a reconstruction term we can encourage this as follows:
 \[
 \text{minimize} \quad \sum_t \| W W^T z_t - z_t \|_2^2 + \lambda \sum_t \sum_i |w_i^T z_t |
 \]
- Note that we have \(A = W \) now.

Search based inference

- All of the above versions of ICA make use of an encoder \(W \) and decoder \(A \).
- An alternative formulation one can find in the literature is to ignore the decoder and to search for the right \(s \) during learning (and inference as well):
 \[
 \text{minimize} \quad \sum_t \| A^T s_t - z_t \|_2^2 + \sum_t \sum_i |s_i|
 \]
 where the optimization is over \(A \) and all the \(s_t \) during training and over \(s \) during inference.

ICA filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Sparse coding components
(Olshausen/Field)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
Estimating the source densities

One can estimate the source densities from data as well.

It turns out that not all components are sparse.

The DC component, for example, tends to be sub-Gaussian.

So to keep it or not can make a difference in practice!

Roland Memisevic
Machine learning for vision

Relation between analysis and synthesis weights

- Since the s_i are independent and have unit variance, the covariance matrix, C, over input images can be written
 \[C = AA^T \]

- From this, and $W = A^{-1}$, it follows that:
 \[
 A^T = IA^T \\
 = (A^{-1}A) A^T \\
 = W^T A A^T \\
 = W^T C
 \]

- In other words, synthesis weights, $A = CW$, are equal to input covariance times analysis weights!

Roland Memisevic
Machine learning for vision

Example analysis filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

Example synthesis filters

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
Frequency channels

- The emergence of bandpath filters from whitening shows that 2d Fourier features (frequencies/orientations) are uncorrelated components.
- The emergence of Gabor features from ICA shows that (frequencies/orientations/positions) are independent components.
- What independence/sparsity adds is locality.
- This suggests that natural images are mainly invariant to local translations.

Information theoretic interpretation

- To measure the independence of the sources we can use mutual information as follows:
 \[
 \text{MI}(s_1, \ldots, s_K) = \int_{s_1, \ldots, s_K} \frac{p(s_1, \ldots, s_K)}{p(s_1) \cdots p(s_K)} \log \frac{p(s_1, \ldots, s_K)}{p(s_1) \cdots p(s_K)} \, ds_1 \cdots ds_K \\
 = \sum_{i=1}^{K} H(s_i) - H(s) \\
 = \sum_{i=1}^{K} H(w_i^T z) - H(Wz)
 \]
- For orthogonal \(W \), the joint entropy is constant.
- So to minimize MI, minimize the entropies of the individual components.

Infomax ICA

- Yet another information theoretic approach to ICA can be derived as follows:
- Maximum likelihood (\(\hat{\theta} = \text{minimum entropy} \)) under some density \(f(x) \) can also be viewed as maximizing the derivative of its cumulative distribution \(F(x) = \int f(x) \, dx \)
- But this is equivalent to making the values under the cumulative distribution more uniform. (Also known as “maximum spacing” estimation in the literature.)
- To maximize uniformity of \(F(x) \) we may maximize the entropy of the random variable \(F(x) \) (\(\hat{\theta} = \text{minimize its likelihood} \)).
- (We can make the same argument for multivariate data \(x \))
Infomax ICA

- But $F(x)$ is a deterministic function of x, so we can write its density as a function of x.
- In particular, the transformation of densities under non-linear transformations is

$$p_F(F(x)) = \frac{1}{|\det J(x)|} p_x(x)$$

where $J(x_t)$ is the Jacobian of $F(x)$ at x.
- By eliminating terms that do not depend on the parameters of F, we get the optimization problem:

$$\text{minimize} - \sum_t \log |\det J(x_t)|$$

(Bell, Sejnowski 1997)

Non-linear correlations, limitations of ICA

- For independent random variables, s_1, s_2, the following must be true:

$$\text{cov}(f(s_1), f(s_2)) = 0$$

where f is any non-linear function.
- There are infinitely many f-functions we could choose from.
- This hints at the fact that a linear ICA transformation with its n^2 parameters may not be able to yield perfectly independent components.

Blind source separation

- A classic application of ICA is separating (unmixing) audio sources:

Non-linear correlations, limitations of ICA from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

- a: $f(s) = |s|$
- b: $f(s) = s^2$
- c: $f(s) = |s| > 1$
- d: $f(s) = \text{sign}(s)$
- e: $f(s) = s^3$