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Overcomplete codes

I In area V1, the dimensionality of the retinal
representation gets increased (by a factor of 25 or
so).

I (If sparseness is a good thing, then this is probably
not surprising.)

I If we want to turn the ICA model into such an
overcomplete model we will need to make W
rectangular.

I Recall the definition of the ICA log likelihood:

log L(w1, . . . ,wn) = T log
∣∣det W

∣∣+
n∑

i=1

T∑

t=1

log pi
(
wT

i x t
)
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Overcomplete codes
I The determinant is not defined for rectangular W .
I But why is |det W | there anyway?
I Because it is the normalizing constant that allows

us to express densities over x using the linearly
transformed WTx .

px(x) =
1

Z (W )
ps
(
WTx

)

Z (W ) =

∫

x
ps(WTx) dx

I This suggests dealing with overcomplete W by trying
to optimize Z (W ) directly.

I Unfortunately, it will be hard to compute in general.
I Z (W ) is also called partition function.
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Overcomplete codes

I This also allows us to define the density of images in
a more general way.

I A general formulation, retaining independence of the
hiddens, is

p(x) =
1

Z (W )
exp

( n∑

i=1

G(wT
i x)
)

Z (W ) =

∫

x

n∏

i=1

exp
(
G(wT

i x)
)
dx

where G is a non-linear function.
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Markov Random Fields

I A separate advantage is that we may now define the
model convolutionally, by scanning small filters
across a larger image:

log p(x)

=
∑

x ,y

∑

i

G
(∑

ξ,η

w i
ξ,ηI(x + ξ, y + η)

)
− log Z

I This is known as field-of-experts (Roth & Black,
2005).
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Overcomplete codes

I Bad news: For most models, we cannot compute the
(log-)likelihood, nor its derivative.

I Good news (I): We can still compare the probabilities
between observations x i ,x j , because Z (W ) does not
depend on x .

I Good news (II): We can do approximate maximum
likelihood training, which often seems to work just as
well in practice.

I Good news (III): In practice, we usually need the
features wT

i x for test-data not probabilities.
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Energy based models
I To gain intuitive insights into the learning problem, it

can be useful to rewrite the probability of data in an
even more general form:

p(x ;W ) =
1

Z (W )
q(x ;W ) , Z (W ) =

∫

x
q(x ;W ) dx

with the log-likelihood

log p(x ;W ) = log q(x ;W )− log
∫

x
q(x ;W ) dx

I We can think of q(x) as an unnormalized (“pre-”)
probability.

I Usually, q(x) =
∏n

i=1 exp
(
G(wT

i x)
)
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Energy based models
I For a set of IID points, x i , the log-likelihood and its

derivative can be written

L(W ) =
∑

i

log p(x i ;W )

=
∑

i

log q(x i ;W )− N log
∫

x
q(x ;W ) dx

∂L(W )

∂W
=
∑

i

∂ log q(x i ;W )

∂W
− N

Z (W )

∫

x

∂q(x ;W )

∂W
dx

I Intuitively, what does maximizing these two terms do
with the model?

Maximum likelihood learning will increase q(x ;W ) at the
data points, and decrease q(x ;W ) everywhere.
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Energy based models
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Energy based models

I Decreasing q(x ;W ), and thereby p(x ;W ), ensures
that we get a normalized probability distribution.
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Energy based models, contrastive divergence

I This view is even more liberating than replacing the
determinant with Z (W ):

I In high-dimensional spaces, pushing down
probabilities near the data may be good enough if
pushing down everywhere is to expensive.

I This will be OK, if all we will ever see are test-cases
from high-density regions.

I Technically, the pushing-down terms can also be
derived by sampling from the model distribution, and
restricting the sampling region to the vicinity of
training examples is an approximation known as
“contrastive divergence” (Hinton, 2002)
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Energy based models, non-probabilistic

I We may eliminate the partition function altogether
and define the model as an “energy landscape” that
we form through learning.

I This gives us even more freedom in devising
schemes that push or pull on the energy landscape.

I (LeCun, et al. 2006)
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Energy based models, comments

I In practice, it is common to define energies as
−q(x ;W ), in which case we want to minimize energy
near the data.

I For feature learning energy-based models practically
always contain hidden variables that are connected to
pixels in a bi-partite graph.

I In other words, most feature learning models are
based on a variation of the linear encoder/decoder
equations.

I The effect of pushing down (or up) the energy away
from the data usually corresponds to (and is the
result of) a capacity constraint on the hiddens.
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Feature learning and bi-partite networks

s = WTx

xj

s
sk

wjk

x

I PCA is a special case with linear dependencies and
low-dimensional s

I ICA is a special case with linear dependencies and
sparse s

I Other special cases: restricted Boltzmann machines,
autoencoder networks, sparse coding, k-means
clustering
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