
Machine learning for vision
Winter 2015

Roland Memisevic

Lecture 7, February 18, 2015

Roland Memisevic Machine learning for vision

Neurons

pictures taken from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Neurons
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Visual processing
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Visual processing

I Photo receptors. Mainly:
I Rods (> 108)
I Cones (≈ 6 · 106, most in fovea)

I → Retinal ganglion cells
I Multiple different types (≈ 1.5 · 106 in total)

I → Optic nerve
I → Lateral geniculate nucleus (LGN)
I → Visual Cortex

I Ventral stream (V1→ V2→ V4)
I Dorsal stream (V1→ V2→ MT)
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Spikes and firing rate

I Neurons communicate information via series of
action potentials travelling along the axon.

I The firing rate depends on the total input collected
from other neurons via its dendrites.

I Action potentials and firing rates are complex
chemical processes.

I They can be modeled with differential equations
whose solutions yield highly idealized models of the
depency of firing rate on total input.
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Spikes and firing rate

I This makes it possible to abstract away the spikes
and think of real numbers being sent along wires.

I Because of phenomena like refractory periods firing
rates saturate at a maximum value.

I Some neurons have non-zero minimum firing rate
called spontaneous firing rate.

I The input collected from other neurons depends on
synaptic efficacies, which can be modeled as a
weighted sum.

Roland Memisevic Machine learning for vision

Idealized input-output behaviour

I Together this yields the
common idealized
input-output model

output = sigmoid
(
wTx

)

=
1

1 + exp(−wTx)

I Other sigmoidal functions can
be used.

I (Or completely other
non-linearities...)
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Idealized input-output behaviour

I The use of an element-wise
nonlinearity which is applied
to a linear combination of
inputs is sometimes referred
to as linear/nonlinear model.

I It is the building block of most
practical neural network
models.

I And it is key to building
multi-layer systems.
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Hebbian learning

I The fact that synaptic efficacies can change is the
basis for learning.

I The most famous learning rule is Hebbian learning,
introduced by Donalb Hebb in 1949:
“When an axon of cell A is near enough to excite cell
B and repeatedly or persistently takes part in firing it,
some growth process or metabolic change takes
place in one or both cells such that A’s efficiency, as
one of the cells firing B, is increased.”

I ”Fire together, wire together”.
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Hebbian learning

I Hebbian learning is local so it doesn’t need
information to travel far to perform weight updates.

I Interestingly, Hebbian-type local learning rules (with
some simple twists) can implement most of the
modules needed in visual recognition, such as:

I Linear regression
I Logistic regression
I PCA
I Sparse coding, feature learning
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PCA via Hebbian learning
I Hebbian learning with linear neurons:

w ← w + η(wTx)x

I Average weight change:
〈

∆w
〉

=
〈
η(wTx)x

〉

=
〈
ηxxTw

〉

= ηCw

where C is the covariance matrix of x .
I Weight dynamics as differential equation:

dw
dt

= ηCw

I Solution:
w(t) = eηCtw(0)
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PCA via Hebbian learning
I Consider discrete time for simplicity (but this works

analogously for continuous time):
I Write w(t) as a linear combination of eigenvectors of

C:

w(t) =
D∑

k=1

ak (t)v k

I Repeated multiplication of w(0) by C yields

w(t) = C · · · Cw(0) = C tw(0)

= C t
∑

k

ak (0)vk

=
∑

k

ak (0)C tv k

=
∑

k

ak (0)λt
kv k
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PCA via Hebbian learning

I Assume λ1 > . . . > λD

I We get

w(t) =
D∑

k=1

ak (0)λt
kv k

= λt
1

[
a1(0)v1 +

D∑

k=2

ak (0)
(λk

λ1

)t
vk
]

→ a1(0)λt
1v1 for large t

I So
lim

t→∞
w(t)

‖w(t)‖ = v1
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PCA via Hebbian learning

I “But ‖w‖ will grow.”
Solution: Renormalize after every step (eg. Oja’s
rule).

I “What about the other eigenvectors v2, . . . ,vD?”
Solution: Orthogonalize after each step (eg. Sanger’s
rule).
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Receptive fields
I The firing rate of a neuron can be highly selective wrt.

the input.
I The set of stimuli parameters that make a neuron fire

is called receptive field.
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Receptive fields

I a: Typical receptive fields of retinal ganglion cells and
of cells in LGN.

I b: Typical receptive fields of cells in V1. These are
also known as simple cells.
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Receptive fields
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Receptive fields
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Retinotopy

I The receptive fields of neighboring neurons in LGN
and V1 tend to cover neighboring areas of the visual
field.

I This is known as retinotopic organization.
I It means that their joint responses yield the “visual

analog of an STFT”.
I A convolution layer could be used to simulate this

(But this is not the only organizing principle that can
be found in visual cortex.)
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Gabor filter response

I The response map is
the visual analog of an
STFT.

I (a) input image, (b,c)
filters, (d,e) response
maps, (e) amplitude
map (more on this later).
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Introspective evidence for frequency
channels
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Gabor filter response

I To compute local
Fourier amplitudes (the
spectrogram, (f)) it is
necessary to sum over
the squares of two filter
responses.

I In practice, this requires
convolving the image
with a non-linear
function.
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Complex cells

I There do seem to be cells in V1 whose responses
are phase independent. They are called complex
cells (also proposed by Hubel and Wiesel)

I A simple mathematical model for these (called
“energy mechanism”) is to sum over squared
simple-cell responses.

I A Fourier feature pair with 90 deg phase difference is
known as quadrature pair. (Better than saying
“sin/cos”, because phasors in the Fourier expansion
may have arbitrary different phase.)
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Receptive fields
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Topography

I Another organizing principle, besides retinotopy, is
spatial organization according to frequency and
orientation of filters.

I This is often called topographic organization
I The phase of the filters, in contrast, is random.
I All attempts to model topography seem to require

complex cell like mechanisms.
I Topographic organization is ubiquitous across the

cortex.
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Topography (synthetic)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Topography (synthetic)

(a) x-position, (b) y-position,
(c) orientation, (d) frequency,
(e) phase

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Saccades

(Wikipedia)
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