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Review of classic (GOF) K -means clustering

x1

x2

I K-means is traditionally a clustering algorithm.
I Learning: Fit K prototypes w k (the rows of some

matrix, W ) to training data-points xn.
I Inference: Given a point, find the nearest prototype.
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Classic K -means clustering
I Define sn as the one-hot encoding of the discrete

variable representing the index of the nearest cluster
center for xn.

I It is also useful to think of a matrix S with entries snk ,
holding the one-hot vectors in its rows.

I Assume we knew the cluster assignments sn for each
point xn.

I The K -means objective function measures the
average distance between points x and their
representatives:

J =
N∑

n=1

K∑

k=1

snk‖xn −w k‖2
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Classic K -means clustering

I Learning amounts to finding both the prototypes w k

and the assignments sn for each point, so as to
minimize J.

I This seems like a tricky optimization problem,
because the sn are discrete and the w k are
continuous.

I But learning gets easy (on paper) if we decouple
learning the sn from learning the w k .

I In practice, it may be much better not to do this but to
train online instead, as we will see later.
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Classic K -means clustering

J =
N∑

n=1

K∑

k=1

snk‖xn −w k‖2

Finding the optimal sn
I Given the w k , we can optimize all the sn

independently, because the objective is just the sum
over n.

I But the squared error will be smallest if we set
snk = 1 for whichever w k is closest.

I Formally, to optimize all sn, given the set of w k , set:

snk =

{
1 if k = argminj ‖xn −w j‖2

0 otherwise.
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Classic K -means clustering

Finding the optimal wk
I Given S, J is a quadratic function of w k which we can

minimize by setting the derivative to zero:

2
N∑

n=1

snk (xn −w k ) = 0

I Solving for w k yields:

w k =

∑
n snkxn∑

n snk

I This solution has a simple interpretation: Set w k to
the mean of all points currently assigned to cluster k .
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Classic K -means clustering

I Learning amounts to iterating inference for the sn,
and adapting the parameters w k until there are no
more changes.

I This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

I But there can be local minima.
I One way to deal with this is to try multiple runs with

different initializations for the parameters wk and to
pick the solution with the lowest final cost.
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Classic K -means example (K = 2)

this and most of the following images from: (Bishop, 2006)
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The value of J as learning progresses
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Classic K -means clustering

end of review
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K -means inference

I Given the trained model, we can infer the
cluster-center for a new test-data point x not seen
during training, by finding the nearest w k like during
training:

sk (x) =

{
1 if k = argminj ‖xn −w j‖2

0 otherwise.

I The set of all K prototypes w k is called codebook.
I Clustering and K -means are also known as vector

quantization.
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Why is K -means useful?

I Since K -means “tiles” space into locally constant
regions, an arbitrary non-linear function (up to the
tiling resolution, K ) can be represented with a
subsequent linear layer.

I K -means distributes cluster-centers in space, such
that their density is roughly proportional to the data
density.

I So it will resolve high-density regions well, at the cost
of low-density regions.
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K -means via online learning
I The reconstruction error for training point x may be

written
E(W ) =

1
2
(
x −w s(x)

)2

I Its gradient is

∂E(W )

∂w i
= −

(
x −w s(x)

)
δs(x),i

I So we can use the online learning rule:

w s(x) ← w s(x) + η
(
x −w s(x)

)

I (Here, it is easier to think of s(x) as index rather than
one-hot vector.)
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Geometry of online K -means

x −ws(x)

ws(x)

x

∆ws(x)

I ∆w s(x) = η(x − ws(x))
moves the winning
weight vector towards
the observation.
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Online K -means and Hebbian learning

I We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning

I To this end write the update as

∆w k = ηδks(x)
(
x −w k

)

where

δks(x) =

{
1 if s(x) = k
0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

I There are two learning terms:
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K -means and Hebbian learning
1. A Hebbian term:

δks(x)x

2. An “unlearning” term:

−δks(x)w k

I The positive term decreases the energy near the
data.

I The unlearning term increases the energy
everywhere.

I “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.
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Hebbian K -means in 9 lines of code

import numpy

def kmeans(W, X, numepochs, learningrate=0.01, batchsize=100):

X2 = (X**2).sum(1)[:, None]

for epoch in range(numepochs):

for i in range(0, X.shape[0], batchsize):

D = -2*numpy.dot(W, X[i:i+batchsize,:].T) + (W**2).sum(1)[:, None] + X2[i:i+batchsize].T

S = (D==D.min(0)[None,:]).astype("float").T

W += learningrate * (numpy.dot(S.T, X[i:i+batchsize,:]) - S.sum(0)[:, None] * W)

return W
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K-means features learned from natural image
patches
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Self-organizing maps

I We obtain the self-organizing map (SOM) aka
Kohonen network by changing the k-means update
from

∆w k = ηδks(x)
(
x −w k

)

into
∆w k = ηhks(x)

(
x −w k

)

where hkj is some smooth neighborhood function,
that will let hiddens near the winning hidden learn,
too.

I This requires hiddens to be arranged in space in
some way (commonly 2-D).
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K -means as autoencoder

s = wta(WTx)

x̂ = Ws

xj

x

x̂

x̂j

sk

WT

W

I The cost is
∑

i ‖x i −Wwta
(
WTx i

)
‖2

I wta = “winner takes all”
I Weights are “tied”: Recognition weights are the

transpose of generative weights.
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The K -means energy function

I We can think of K -means as energy based learning,
if we define the energy function as

E(x) = ‖x −Wwta
(
WTx

)
‖2 = ‖x −w s(x)‖2

I Since far from the cluster-centers the energy goes to
∞, K -means has low energy everywhere else.

I In other words, K -means doesn’t have the capacity to
produce an arbitrary energy surface with low energy
far away from data.
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The K -means energy function

I If we define the un-normalized probability for a point
as

q(xn) = exp(−E(xn))

we obtain a density model (which is just the
superposition of K bumps).

I So the probability goes to zero far from any cluster
center.

I Unlike RBMs and many probabilistic models, there is
no need to lower density away from the data in this
model: “Negative updates are built in.”

I (LeCun, 2006)
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Winner-takes-all and lateral interactions
I The winner-takes-all function may be defined as

wta(x) = onehot
(
argmin

k
‖x −w k‖2)

where w k is a column of W .
I The squared distance can be written as

‖x −w k‖2 = xTx + wT
k w k − 2wT

k x

I If all w k have the same norm, inference amounts to
finding the hidden unit which maximizes

wT
k x

which is the usual “simple cell” response plus
competition.
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Lateral interactions

yj

s
sk

wjk

x

I Since wta is a function of all the hiddens, inference
requires the hiddens to talk to each other.

I This is commonly referred to as lateral interactions.
I To induce competition, the interactions need to be

inhibitory.
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End-stopping

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

I For the simple cell in the top middle, a linear model
would predict the bottom right stimulus to give at
least as large a response as the bottom left stimulus.

I But for actual neural responses it may give a weaker
response.

I This effect is known as end-stopping, and it may be
counted as evidence for lateral inhibition.
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