
Machine learning for vision
Fall 2015

Roland Memisevic

Lecture 8, February 24, 2015

Roland Memisevic Machine learning for vision

Review of classic (GOF) K -means clustering

x1

x2

I K-means is traditionally a clustering algorithm.
I Learning: Fit K prototypes w k (the rows of some

matrix, W) to training data-points xn.
I Inference: Given a point, find the nearest prototype.

Roland Memisevic Machine learning for vision

Classic K -means clustering
I Define sn as the one-hot encoding of the discrete

variable representing the index of the nearest cluster
center for xn.

I It is also useful to think of a matrix S with entries snk ,
holding the one-hot vectors in its rows.

I Assume we knew the cluster assignments sn for each
point xn.

I The K -means objective function measures the
average distance between points x and their
representatives:

J =
N∑

n=1

K∑

k=1

snk‖xn −w k‖2

Roland Memisevic Machine learning for vision

Classic K -means clustering

I Learning amounts to finding both the prototypes w k

and the assignments sn for each point, so as to
minimize J.

I This seems like a tricky optimization problem,
because the sn are discrete and the w k are
continuous.

I But learning gets easy (on paper) if we decouple
learning the sn from learning the w k .

I In practice, it may be much better not to do this but to
train online instead, as we will see later.

Roland Memisevic Machine learning for vision

Classic K -means clustering

J =
N∑

n=1

K∑

k=1

snk‖xn −w k‖2

Finding the optimal sn
I Given the w k , we can optimize all the sn

independently, because the objective is just the sum
over n.

I But the squared error will be smallest if we set
snk = 1 for whichever w k is closest.

I Formally, to optimize all sn, given the set of w k , set:

snk =

{
1 if k = argminj ‖xn −w j‖2

0 otherwise.

Roland Memisevic Machine learning for vision

Classic K -means clustering

Finding the optimal wk
I Given S, J is a quadratic function of w k which we can

minimize by setting the derivative to zero:

2
N∑

n=1

snk (xn −w k) = 0

I Solving for w k yields:

w k =

∑
n snkxn∑

n snk

I This solution has a simple interpretation: Set w k to
the mean of all points currently assigned to cluster k .

Roland Memisevic Machine learning for vision

Classic K -means clustering

I Learning amounts to iterating inference for the sn,
and adapting the parameters w k until there are no
more changes.

I This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

I But there can be local minima.
I One way to deal with this is to try multiple runs with

different initializations for the parameters wk and to
pick the solution with the lowest final cost.

Roland Memisevic Machine learning for vision

Classic K -means example (K = 2)

this and most of the following images from: (Bishop, 2006)

Roland Memisevic Machine learning for vision

The value of J as learning progresses

Roland Memisevic Machine learning for vision

Classic K -means clustering

end of review

Roland Memisevic Machine learning for vision

K -means inference

I Given the trained model, we can infer the
cluster-center for a new test-data point x not seen
during training, by finding the nearest w k like during
training:

sk (x) =

{
1 if k = argminj ‖xn −w j‖2

0 otherwise.

I The set of all K prototypes w k is called codebook.
I Clustering and K -means are also known as vector

quantization.

Roland Memisevic Machine learning for vision

Why is K -means useful?

I Since K -means “tiles” space into locally constant
regions, an arbitrary non-linear function (up to the
tiling resolution, K) can be represented with a
subsequent linear layer.

I K -means distributes cluster-centers in space, such
that their density is roughly proportional to the data
density.

I So it will resolve high-density regions well, at the cost
of low-density regions.

Roland Memisevic Machine learning for vision

K -means via online learning
I The reconstruction error for training point x may be

written
E(W) =

1
2
(
x −w s(x)

)2

I Its gradient is

∂E(W)

∂w i
= −

(
x −w s(x)

)
δs(x),i

I So we can use the online learning rule:

w s(x) ← w s(x) + η
(
x −w s(x)

)

I (Here, it is easier to think of s(x) as index rather than
one-hot vector.)

Roland Memisevic Machine learning for vision

Geometry of online K -means

x −ws(x)

ws(x)

x

∆ws(x)

I ∆w s(x) = η(x − ws(x))
moves the winning
weight vector towards
the observation.

Roland Memisevic Machine learning for vision

Online K -means and Hebbian learning

I We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning

I To this end write the update as

∆w k = ηδks(x)
(
x −w k

)

where

δks(x) =

{
1 if s(x) = k
0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

I There are two learning terms:

Roland Memisevic Machine learning for vision

K -means and Hebbian learning
1. A Hebbian term:

δks(x)x

2. An “unlearning” term:

−δks(x)w k

I The positive term decreases the energy near the
data.

I The unlearning term increases the energy
everywhere.

I “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.

Roland Memisevic Machine learning for vision

Hebbian K -means in 9 lines of code

import numpy

def kmeans(W, X, numepochs, learningrate=0.01, batchsize=100):

X2 = (X**2).sum(1)[:, None]

for epoch in range(numepochs):

for i in range(0, X.shape[0], batchsize):

D = -2*numpy.dot(W, X[i:i+batchsize,:].T) + (W**2).sum(1)[:, None] + X2[i:i+batchsize].T

S = (D==D.min(0)[None,:]).astype("float").T

W += learningrate * (numpy.dot(S.T, X[i:i+batchsize,:]) - S.sum(0)[:, None] * W)

return W

Roland Memisevic Machine learning for vision

K-means features learned from natural image
patches

Roland Memisevic Machine learning for vision

Self-organizing maps

I We obtain the self-organizing map (SOM) aka
Kohonen network by changing the k-means update
from

∆w k = ηδks(x)
(
x −w k

)

into
∆w k = ηhks(x)

(
x −w k

)

where hkj is some smooth neighborhood function,
that will let hiddens near the winning hidden learn,
too.

I This requires hiddens to be arranged in space in
some way (commonly 2-D).

Roland Memisevic Machine learning for vision

K -means as autoencoder

s = wta(WTx)

x̂ = Ws

xj

x

x̂

x̂j

sk

WT

W

I The cost is
∑

i ‖x i −Wwta
(
WTx i

)
‖2

I wta = “winner takes all”
I Weights are “tied”: Recognition weights are the

transpose of generative weights.

Roland Memisevic Machine learning for vision

The K -means energy function

I We can think of K -means as energy based learning,
if we define the energy function as

E(x) = ‖x −Wwta
(
WTx

)
‖2 = ‖x −w s(x)‖2

I Since far from the cluster-centers the energy goes to
∞, K -means has low energy everywhere else.

I In other words, K -means doesn’t have the capacity to
produce an arbitrary energy surface with low energy
far away from data.

Roland Memisevic Machine learning for vision

The K -means energy function

I If we define the un-normalized probability for a point
as

q(xn) = exp(−E(xn))

we obtain a density model (which is just the
superposition of K bumps).

I So the probability goes to zero far from any cluster
center.

I Unlike RBMs and many probabilistic models, there is
no need to lower density away from the data in this
model: “Negative updates are built in.”

I (LeCun, 2006)

Roland Memisevic Machine learning for vision

Winner-takes-all and lateral interactions
I The winner-takes-all function may be defined as

wta(x) = onehot
(
argmin

k
‖x −w k‖2)

where w k is a column of W .
I The squared distance can be written as

‖x −w k‖2 = xTx + wT
k w k − 2wT

k x

I If all w k have the same norm, inference amounts to
finding the hidden unit which maximizes

wT
k x

which is the usual “simple cell” response plus
competition.

Roland Memisevic Machine learning for vision

Lateral interactions

yj

s
sk

wjk

x

I Since wta is a function of all the hiddens, inference
requires the hiddens to talk to each other.

I This is commonly referred to as lateral interactions.
I To induce competition, the interactions need to be

inhibitory.

Roland Memisevic Machine learning for vision

End-stopping

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)

I For the simple cell in the top middle, a linear model
would predict the bottom right stimulus to give at
least as large a response as the bottom left stimulus.

I But for actual neural responses it may give a weaker
response.

I This effect is known as end-stopping, and it may be
counted as evidence for lateral inhibition.

Roland Memisevic Machine learning for vision

