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The XOR problem

(picture adapted from Bishop 2006)
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“It’s the features, stupid”
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“It’s the features, stupid”

The common vision pipeline (prior 2012)
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local

descriptor.
4. Combine the descriptors into a representation for the

image. Roland Memisevic Machine learning for vision
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“It’s the features, stupid”
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I This creates a representation that even a linear
classifier can deal with.
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What do good features look like?

I There are many incarnations: SIFT, HOG, GIST,
SURF, ...

I Common to all is that they summarize local oriented
structure, followed by several stages of non-linear
processing.
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Neural networks

I Neural networks can in principle perform the same
computation – if the weights are set appropriately.

I Finding the right weigts is slow in principle, but
trivially parallelizable.

(picture adapted from Bishop 2006)
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Back-prop
I It is easy to compute derivatives if the network is

composed of modules that provide the following three
functions:

I A function fprop() to compute outputs, given inputs
and parameters.

I A function bprop() to compute derivatives of some
function wrt. its inputs, given the derivatives of that
function wrt. its outputs.

I A function grad() to compute derivatives of some
function wrt. its parameters, given inputs and the
derivatives of that function wrt. its outputs.

I This is based of the chain-rule of differentiation, but it
is better than using the chain rule “on paper”,
because the computation of derivatives can now be
automated.
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A neural network with a single hidden layer

I A feed-forward neural net (AKA backprop net)
computes its output layer-by-layer:

yk (x) =
M∑

j=0

w (2)
kj h

( D∑

i=0

w (1)
ji xi

)

this and most of the following images from: (Bishop, 2006)

Roland Memisevic Machine learning for vision



A neural network with a single hidden layer

I With explicit bias terms:

yk (x) =
M∑

j=1

w (2)
kj h

( D∑

i=1

w (1)
ji xi + w (1)

j0

)
+ w (2)

k0
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Output activation functions

I The last layer determines the functionality of the
network. For example:

I linear outputs + squared error loss = non-linear
regression

I softmax outputs + log-loss = non-linear logistic
regression

Roland Memisevic Machine learning for vision

Backpropagation in detail

I Define the training cost as the sum over per-example
costs:

E(w) =
N∑

n=1

En(w)

I Now we can compute derivatives ∂En
∂w

individually for
each training case and add them up afterwards.

I Definitions:
I Let aj =

∑
i wjizi be the net input of unit j .

I Let zi be the output of unit i , in other words zi = h(ai).
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Backpropagation in detail

i

j
wji

I We need derivatives of the cost, En, with respect to
each weight wji connecting nodes i and j in the
network.

Roland Memisevic Machine learning for vision



Backpropagation in detail

I By the chain-rule of differentiation, we have

∂En

∂wji
=
∂En

∂aj

∂aj

∂wji

I The second factor is easy:

∂aj

∂wji
= zi

And to compute it for all i : Just run the network!
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Backpropagation in detail
I Apply the chain-rule once more to get

∂En

∂aj
=
∑

k

∂En

∂ak

∂ak

∂aj

where the sum is over those units k connected to j .
I Intuitively, this reflects the fact that if we wiggle aj this

will affect the cost function through all the ak .
I With

∂ak

∂aj
= wkjh′(aj)

this simplifies to:

∂En

∂aj
= h′(aj)

∑

k

wkj
∂En

∂ak
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Backpropagation in detail

I Thus, we can use a recursion to compute all ∂En
∂ak

starting at the outputs.
I For squared error (regression), we have

∂

∂ak
En =

∂

∂ak

1
2
‖y(n)(x,w)− t(n)‖2 = y (n)

k − t (n)k

since y (n)
k = a(n)

k in the case of regression.
I Same for classification if we define the log-probability

as softmax and use negative log-probability as the
loss (exercise).
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Backpropagation in detail

I If h is the logistic sigmoid, we have:

h′(aj) = h(aj)(1− h(aj))

So in this case we may use the activations
themselves to compute the derivatives.

I But any activation function that is differentiable
almost everywhere will work.
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Backpropagation in detail

Backpropagation summary (Bishop, page 244):
1. Given input xn, propagate forward to compute

activations for all hiddens zi and outputs.
2. Evaluate En and ∂En

∂ak
for all output units.

3. Compute ∂En
∂ak

recursively for each hidden unit.
4. Compute the derivatives for each wji by multiplying

the appropriate ∂En
∂aj

and zi terms.
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Learning arbitrary non-linear functions

I A network with a single hidden layer can model any
non-linear function under fairly mild conditions to
arbitrary accuracy (eg. Funahashi, 1989).

I Unfortunately, the proof relies on using an
exponentially large number of hidden units.

I So the practical relevance of this result is very limited.
I In practice, networks with many layers have proven to

be much more useful.
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Implementing backprop
I There are several software packages that implement

backprop.
I theano (http://deeplearning.net/software/theano)

takes the idea to the extreme, by using symbolic
differentiation, so you don’t even need to implement
bprop and grad yourself.
import theano

import theano.tensor as T

x = T.dmatrix("x")

w = T.dmatrix("w")

somefunction = T.dot(w,x).sum()

python_function = theano.function([x,w], somefunction)

python_function(randn(100, 10), randn(10, 100))

derivative = T.grad(somefunction, w)
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theano
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Weight sharing

I A common approach to reducing the number of
model parameters is weight sharing:

I Force different parts of the network to use the same
parameters.

I It is trivial to implement weight sharing using
backprop:

I Just let your modules make use of the same
parameter array.

I Derivatives for these parameters will simply
accumulate.
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Convolutional networks

I Convolutional networks (“conv nets”) are probably the
most common application of weight sharing.

I They are neural networks designed specifically for
visual tasks (though there are examples for conv nets
used in other domains).

I Since structure in images is local and invariant, they
use local receptive fields with weight-sharing.

I This defines a convolution with (flipped) filters which
are learned discriminatively using back-prop.
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Convolutional networks

I Alternating sub-sampling layers are commonly used
to get invariance to small shifts and to reduce the
spatial extent of the representation towards the
higher layers.

I (LeCun et al., 1989)
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Convolutional networks

I Convolutional networks were inspired by Hubel &
Wiesel’s complex/simple cells results.

I There are various related models (but without
back-prop learning): Neocognitron (Fukushima,
1980), HMAX (Riesenhuber & Poggio, 1999)

I A standard reference for conv nets is:
“Gradient-based learning applied to document
recognition.” Y. LeCun, et al. 1998.

I (interestingly, that paper introduced another concept
now heavily used in vision: conditional random fields)
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Autoencoders

sk

xj

Akj

Wjk

x

r (x)

x̂j

I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress its input.

I Linear autoencoders
implement a variation of PCA
(Baldi, Hornik; 1989)
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Overcomplete autoencoders

xj

Akj

Wjk

x

r (x)

x̂j

sk

I With overcomplete hiddens,
the model can “cheat” and
learn the identity.

I One solution: Corrupt the
inputs during training, but train
the model to reconstruct the
original, uncorrupted inputs
(Vincent et al. 2008):

cost = ‖r(x + noise)− x‖2
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Sparse autoencoders
I As discussed in the context of ICA, another way to

define an overcomplete autoencoder, is by forcing
hiddens to be sparse.

I This will also let the hidden layer act like a bottleneck.
I For example, to train a linear autoencoder with L1

sparsity term:

minimize
∑

t

‖WWTz t − z t‖2 + λ
∑

t

∑

i

|wT
i z t |

I K -mean clustering can be viewed as a (very) sparse
autoencoder, too.

I Other sparse autoencoders include: contractive
autoencoders, “shrinking” autoencoders, and others
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Factorial representations

I In K -means clustering, each hidden unit represents a
convex blob in the data-space.

I Thus, hidden units cannot collaborate to define
regions in input space.

I A sparse autoencoder may be viewed as a way to
allow for some collaboration between hiddens.

I The number of “blobs” that a set of hiddens can
represent thus becomes, in principle, exponential in
the number of hiddens involved.

I Codes that can collaborate are commonly called
“factorial”.
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Relationship between encoder and decoder
weights

I Take an autoencoder with “tied weights” (W = AT)
I If the model is defined on whitened data, the decoder

weights (in terms of the original data) will be
smoothed encoder weights (also in terms of the
original data).

I To see this, write the encoder weights in terms of the
original, unwhitened data as:

s(x) = Wz(x) = WL−
1
2UTx =: W̄x

and the decoder weights in terms of the original,
unwhitened data as:

x(s) = UL
1
2WTs =: Ās
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Relationship between encoder and decoder
weights

I Now multiply the encoder weights by the data
covariance matrix:

CW̄
T

= C
(
WL−

1
2UT

)T

= CUL−
1
2WT

= ULUTUL−
1
2WT

= UL
1
2WT

= Ā
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Relationship between encoder and decoder
weights
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Autoencoders as dynamical systems

I An autoencoder maps
points x ∈ Rn to
reconstructions
r(x) ∈ Rn.

I This defines a
dynamical system.

I We can plot r(x)− x as
a vector field.

I (Seung, 1998), (Alain,
Bengio; 2013)
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Autoencoders as dynamical systems

I The dynamical systems perspective provides another
explanation for why denoising and contractive training
works:

I Training can be viewed as making training data points
attractive fixed points of the network dynamics.

I (Seung, 1998), (Swersky et al. 2011), (Vincent 2011),
(Alain, Bengio; 2013), (Kamyshanska, Memisevic,
2013)
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Computing the energy of an autoencoder

I Some dynamical systems can be defined as the
derivative of a scalar function (AKA “scalar field” or
“potential energy”) E(x).

I If such an energy exists, extrema of the scalar field
will be fixed points of the dynamical system, and
running the dynamical system will amount to
performing gradient descent in the energy.

I A sufficient condition for the energy function to exist
is that the weights are tied (Clairaut’s theorem), in
other words W = AT
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Computing the energy of an autoencoder

I We can compute the energy of these autoencoders
by integration (Kamyshanska, Memisevic; 2013):

E(x) =

∫
(r(x)− x) dx

...

=
∑

k

∫
h(sk ) dsk −

1
2
‖x − br‖2 + const

where br is the vector of (visible) bias terms.
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Computing the energy of an autoencoder

I Thus, computing the energy boils down to the
following recipe:

1. Replace hidden activation function by its
anti-derivative (eg., softplus for sigmoid, half-square
for rectifier, etc.).

2. Sum up these new activations.
3. subtract 1

2‖x − br‖2
I For binary-output models, the last term turns into bT

r x
I For sigmoid hiddens, this recipe comes down to

computing exactly the RBM free energy!
I Potential energies are additive in the hiddens, so

autoencoders are ICA-like.
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Examples
Sigmoid activation σ(x) = (1 + exp(−x))−1:

Esigmoid(x) =
∑

k

softplus(sk )− 1
2
‖x − br‖2 + const

⇒ same as the free energy of a binary-Gaussian RBM.

Sigmoid activation (binary inputs):

Esigmoid(x) =
∑

k

softplus(sk ) + bT
r x + const

⇒ same as the free energy of a binary-binary RBM.
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Examples
Hyperbolic tangent activation tanh(x) = exp(x)−exp(−x)

exp(x)+exp(−x) :

Etanh(x) =
∑

k

log (cosh(sk ))−
1
2
(
x − br

)2
+ const

Linear activation h(s) = s:

Elinear(x) =
1
2
(Wx + bh)

T (Wx + bh)−
1
2
(
x − br

)2
+ const

⇒ the norm of the latent representation, same as PCA generative
classifier

Rectifier hiddens h(x) =

{
0 if x < 0
x else

:

Erelu(x) =
∑

k (sign(sk ) + 1) s2
k
2 − 1

2

(
x − br

)2
+ const
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