
Assignment 1
IFT 6268 Winter 2016

Date posted: February 16, 2016

Due: February 24, 2016, at the beginning of class

1. (1/15) Using the definition

logsumexp(a1, . . . , aK) = log (
∑
i

exp(ai + A)) − A

show that logsumexp(a1, . . . , aK) = log
∑

i exp(ai)

2. (1/15) Derive a numerically stable expression for the logistic sigmoid σ(a) = 1
1+exp(−a)

3. (2/15) Assume s(t) to be a real valued signal with spectrum S(l). Prove or disprove:

S(l) = S̄(T − l)

4. (6/15) In this and in the following question you will train and apply a simple object
detector using the CIFAR-10 dataset by training a convolutional network whose fully
connected layers are implemented as 1 × 1-convolutions.

We will use a variation of the VGG-network proposed in “Very Deep Convolutional
Networks For Large-scale Image Recognition” (Simonyan, Zisserman; 2015).

What you need to do:

• Download the CIFAR-10 dataset from

http://www.cs.toronto.edu/~kriz/cifar.html

Do not normalize the data in any way, except for using single precision floating
point numbers rather than integers to represent the images.

• Using a back-prop package of your choice, train a convolutional network whose
convolution filters are all of size 3×3. Use a network with the following structure:

(a) conv-layer with 3 inputs (RGB), 64 outputs (filter size is thus 64× 3× 3× 3)

(b) 2 × 2 max-pooling layer

(c) conv-layer with 64 outputs, 128 outputs (filter size 128 × 64 × 3 × 3)

(d) 2 × 2 max-pooling layer

(e) conv-layer with 128 inputs, 256 outputs

(f) conv-layer with 256 inputs, 256 outputs

(g) 2 × 2 max-pooling layer



(h) fully connected layer with 256 inputs, 1024 outputs

(i) fully connected layer with 1024 inputs, 1024 outputs

(j) softmax layer for classification: 1024 inputs, 10 outputs

• If you use theano, you can use the ops

T.nnet.conv.conv2d

to define the convolution layers and

theano.tensor.signal.downsample.max_pool_2d

to define the pooling layers.

• All convolution layers should be dense (no strides), and all pooling layers should
be non-overlapping.

• All layers, except for the pooling layers and for the last (softmax-)layer should use
ReLU-nonlinearities.

• Define the fully connected layers as 1× 1-convolutions. This is necessary to apply
the model as a detector in the next question. You will first have to determine
the size of the last layer before the first fully connected layer when CIFAR images
(32 × 32) are the model inputs.

• Augment the training dataset by adding for each training case a horizontally
flipped version.

• Train the network using gradient descent or gradient descent with momentum on
95000 randomly chosen examples from the resulting training dataset. Use the
remaining 5000 examples for validation.

• Use batch-normalization (http://arxiv.org/abs/1502.03167) on the last layer acti-
vations (immediately before computing the softmax) when training the network.
Since you will implement this layer as a convolution, you need to use the con-
volutional version of batch-normalization (as described in that paper), where you
compute statistics across training cases and spatial positions. At test-time, replace
batch-means and -standard deviations using statistics that you compute from the
training set.

• It will be necessary to experiment with learning rate and parameter initializations
to find settings that are stable and yield good solutions.

• Train your network for 20 epochs or more.

What to hand in:

• An example image from the training set as well as its horizontally flipped version.

• A plot of the learning curve showing iterations on the x-axis and negative log-
likelihood over labels on the y-axis. Make one plot showing both the training loss
and the validation loss.

• The performance on the test data of the model that performs best on the validation
data.



• Exactly how many parameters (floating point numbers) does your network have?
How many of these are in the fully connected layers and how many are in the
convolutional layers?

• Exactly how many “neurons” does your network have? How many of these are in
the fully connected layers and how many are in the convolutional layers?

• Do not hand in any program code.

5. (5/15) Apply your network to an object detection task as follows.

• Compute the output of your network on the following image:

www.iro.umontreal.ca/~memisevr/teaching/ift6268_2016/boat.jpg

Since your network is fully convolutional, the result should consist of 10 “feature
maps”, each showing probablities for one class. (But note that due to pooling, the
output feature maps will be smaller than the original image.)

• Low-pass filter the 10 probability maps by convolving them with an appropriate
filter.

• For each of the low-pass filtered probability maps, find the largest value. This will
give you 10 values in total, one for each class.

• Measure the time it takes (average over 3 runs or more) to compute the probability
images for a single input image on the GPU.

What to hand in:

• The low-pass filtered probability images as gray-value images (10 images in total).

• Describe and/or show the filter you used for low-pass filtering.

• The 10 max values.

• The timing result.


