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“It’s the features, stupid!”

A common computer vision pipeline before 2012
1. Find interest points.
2. Crop patches around them.
3. Represent each patch with a sparse local descriptor.
4. Combine the descriptors into a representation of the

image.
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I This creates a representation that even a linear classifier
can deal with.

bottom line: computer vision is all about
building non-linear pipelines

(aka “the representation matters”)
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What do good low-level features look like?

I Local features that are
often found to work well
are based on oriented
structure (such as Gabor
features)

I These were discovered
again and again (also in
other areas) and are
closely related to the
Short Time Fourier
Transform.
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The XOR problem
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Neural networks are trainable pipelines

x y

h1 h2 h3

W 01 W 12 W 23 W out

Roland Memisevic Machine learning for vision

Neural networks are trainable pipelines
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Most common networks interleave matrix multiplies with
element-wise non-linearities:

y(x) = W outh(W 23h(W 12h(W 01x)))

Usually there are constant “bias”-terms as well.
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Neural networks are trainable pipelines
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Common non-linearities:
sigmoid: h(a) = 1

1+exp(a) ReLU: h(a) = a · [a > 0] tanh: h(a) = ea−e−a

ea+e−a
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Neural networks are trainable pipelines
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For classification tasks, turn class outputs into probabilities
using the “softargmax” function:

p(Ck |x) =
exp(yk(x))∑

j exp(yj(x))
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Neural networks are trainable pipelines
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For training, use a (large) training set
(
xn, tn

)
n=1...N and

minimize a suitable cost-function, using stochastic gradient
descent (SGD).
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The most common choices of cost function

I Regression (predict real values):

cost =
1
2

N∑

n=1

‖y(xn)− tn‖2

I Classification (predict discrete labels):

cost = −
N∑

n=1

K∑

k=1

tnk log p(Ck |xn)

where tnk = 1 iff training case n belongs to class k .
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Stochastic gradient descent (SGD)

θ(0)

θ(τ )

θ(τ+1)= θ(τ ) − η∂cost(xn,tn)
∂θ

old parameter value

learning rate
new parameter value
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Error back-propagation (backprop)

x y
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cost(x , t)

I Use the chainrule: For regression and classification we get:
∂cost

∂y(xn)
= y(xn)− tn

I Next: If y has any parameters, W out, collect them using:
∂cost

∂W out
= (y(xn)− tn) ·

∂y(xn)

∂W out

I Next: Descend to the next layer by computing
∂cost

∂h3
=

∂cost

∂y(xn)
· ∂y(xn)

∂h3(xn)
...and so on...
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Backprop general form

wh

wg

wf

h(x;wh)

g(h;wg)

f(g;wf)

x

bprop grad

∂f
∂wf

∂f
∂g

fprop

f

I Backprop can be thought of as an engineering principle,
that prescribes how to design an end-to-end train-able
system from differentiable components:

I Use components which provide the methods fprop,
bprop and grad. Then backprop can be automated.

I Well-suited for support by software frameworks
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Implementing backprop
I There are several software packages that implement

backprop.
I Software packages like theano and tensorflow, take the

idea to the extreme, by using symbolic differentiation, so
you don’t even need to implement bprop and grad
yourself.
import theano

import theano.tensor as T

x = T.dmatrix("x")

w = T.dmatrix("w")

somefunction = T.dot(w,x).sum()

python_function = theano.function([x,w], somefunction)

python_function(randn(100, 10), randn(10, 100))

derivative = T.grad(somefunction, w)
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theano
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Potential Issues

I “But what about local minima?”
I “But what about overfitting?”
I Vanishing gradients
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The cost surface/local optima

I Local minima not an issue in practice
I This is probably due to high dimensional parameter

space, which causes most critical points to be saddle
points not local optima.

I Some recent theoretical work supports this view
(Choromanska et al. 2014); (Dauphin, et al. 2014)

figure from wikipedia Roland Memisevic Machine learning for vision

Overfitting

w
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Overfitting
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Overfitting in regression

(Bishop 2006: Pattern recognition and machine learning)
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Preventing overfitting in neural networks

I Early stopping:

training iteration

training cost

training iteration

validation cost

I Weight decay (somewhat outdated): add a weight
penalty to the training objective (weight constraints now
more common)

I Dropout (Hinton et al., 2012): Corrupt hidden unit
activations (multiplicatively) during training

I More data
I Weight sharing (reduce the number of parameters):
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Weight sharing

x y
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5,6

0x32ff

I Parameters can be shared by having them point to the
same memory location.

I Very common way to reduce parameters and encode
prior knowledge.

I Central ingredient in conv-nets (CNNs) and recurrent
nets (RNNs). But: It requires long-range communication.

Roland Memisevic Machine learning for vision

Batch normalization (Ioffe, Szegedy 2015)

I Normalize the “pre-activation” (activation before
non-linearity) of each neuron averaged over the current
mini-batch to have mean 0 and standard-deviation 1.

I To allow the network to learn the original, unnormalized
function, two parameters are added that allow it to undo
the normalization.

I Batch normalization is a somewhat unusual operation,
because it couples (independently for each neuron) all
examples within the minibatch (and requires to
back-prop through them).

I Shown to stabilize training and prevent overfitting.
I Explanation attempt by (Ioffe, Szegedy 2015): it prevents

“covariate-shift”.
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The vanishing gradients problem
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I The backward-pass is a sequence of matrix multiplies.
I Depending on the magnitude of the eigenvalues, initial

values can blow up or decay to zero.
I This can may learning difficult or slow.
I Potential solutions: architectural tricks (for example, the

“LSTM” unit)
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Neural nets learn distributed representations

x y
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I Neural networks encode information as vectors of real
values.

I This makes it easy to encode conceptual similarities. In
a text processing task, for example:

I If user searches for Dell notebook battery size, we
would like to match documents with “Dell laptop battery
capacity”

I If user searches for Seattle motel, we would like to
match documents containing “Seattle hotel”

(Example from Chris Manning)
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Universal approximation

I A network with a single hidden layer can model any
non-linear function under fairly mild conditions to
arbitrary accuracy (eg. Funahashi, 1989).

I Unfortunately, the proof relies on using an exponentially
large number of hidden units.

I So the practical relevance of this result is very limited.
I In practice, networks with many layers have proven to be

much more useful.
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Back-prop using asynchronous, local
computations?

x y

h1 h2 h3
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In the brain, where is the backward channel?
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Towards back-prop using local computations
I Hinton 2007: Use the temporal derivative to encode

the error derivative!
I (see also: Bengio et al. 2015)
I Recall that the derivative of most common cost functions

is, conveniently, given by
∂cost

∂y(xn)
= y(xn)− tn

How local back-prop may work
I Let top-layer drive the activations towards the correct value.
I Let feedback weights transport that change downward.
I Make weight changes proportional to the rate of change of a

postsynaptic neuron and the value of the pre-synaptic
neuron.
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Is the brain doing local back-prop?
I (Hinton 2007): “What would neuro-scientists see if this is

what’s happening in the brain?”
I They should see this (and they do!):

picture from http://www.scholarpedia.org/article/Spike-timing dependent plasticityRoland Memisevic Machine learning for vision


