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2d waves

I To represent images, we need to generalize the
concept of oscillation to 2d.

I Since oscillations are functions of a scalar t , we can
do this by first assigning a scalar to an image
position, and then passing the scalar to a phasor:

I(y) = eir(y)

where y is a 2d coordinate and r is some
scalar-valued function.
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2d waves
Examples for some functions r(y) and the resulting 2d
waves (real part)
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2d waves

I The most commonly used waves are those where the
scalar is a linear function of 2d-position:

r(y) = ωTy , I(y) = exp(iωTy)

I Recall that ωTy grows in the direction of ω and is
constant in the direction orthogonal to ω.

I ω is now called frequency vector.
I We can define higher-dimensional waves in the same

way. The 3-d case is useful when dealing with videos.
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2d waves
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2d waves

I Wavefronts point in the direction of ω
I A useful 2d-analog of the 1d angular frequency ω is

the norm ‖ω‖ of the frequency vector ω:
Set f (t) = ω

‖ω‖ t with real valued t , and you get a 1d
wave in the direction of ω, where t plays the same
role as in 1d.

I A projection parallel to a coordinate axis i yields a 1d
phasor with angular frequency ωi .
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Separability of complex waves

I Complex valued waves are separable:

I(y) = exp(i(ωT y))

= exp(iω1y1 + iω2y2))

= exp(iω1y1) · exp(iω2y2)

=: I1(y1) · I2(y2)

I The same is not true for real valued waves.
I Separability can be used to prove orthogonality of

complex waves in 2d.
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Real waves are sums of complex waves

I Using the relationships between cos, sin and the
phasor,

cosϕ =
1
2
· eiϕ +

1
2
· e−iϕ

sinϕ =
1
2i
· eiϕ − 1

2i
· e−iϕ = − i

2
· eiϕ +

i
2
· e−iϕ,

we may write
I cos

(
ωT y

)
= 1

2 exp
(
iωT y

)
+ 1

2 exp
(
−iωT y

)

I sin
(
ωT y

)
= − i

2 exp
(
iωT y

)
+ i

2 exp
(
−iωT y

)
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DFT on images

I Using the discrete phase vector ω with components
ω1 = 2π

M k , ω2 = 2π
N ` we get the

Discrete Fourier Transform (DFT) in 2d

S(k , `) =
M−1∑

m=0

N−1∑

n=0

s(m,n)e−i2π( km
M + `n

N )

Inverse Discrete Fourier Transform in 2d

s(m,n) =
1

MN

M−1∑

k=0

N−1∑

`=0

S(k , `)ei2π( km
M + `n

N )
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DFT Symmetries

1. For discrete phasors
I 1d: The phasor p(k) is equal to the conjugate phasor

p̄(T − k).
I 2d: The phasor p(k , `) is equal to the conjugate

phasor p̄(M − k ,N − `).

I So a “fast” phasor is the same as a “backwards
spinning” slow phasor, and vice versa.

I Here, conjugate means elementwise.
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DFT Symmetries

2. For real valued signals
I in 1d: S(k) = S̄(T − k)

I in 2d: S(k , `) = S̄(M − k ,N − `)

I So the amplitude spectrum of real valued signals is
symmetric.

|k |0 7

|S(k)|

weights for the same (but flipped) phasor
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Practical implications of symmetries
I Because of this, the Fourier transform is usually

presented with the origin in the center, and increasing
(absolute) amplitudes away from the origin.

I All common software packages provide a function for
this (such as “fftshift”).

|S(k)|

3−3 k0
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Spectrum example

I The amplitude spectrum is usually shown on a
logarithmic scale, because it can span several orders
of magnitude.
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Spectrum example

I The amplitude spectrum is usually shown on a
logarithmic scale, because it can span several orders
of magnitude.
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More amplitude spectra (average over
cross-sections on the right)

from: Natural Image Statistics (Hyvarinen, Hurri, Hoyer; 2009)
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Amplitude spectra of natural images
I Amplitude spectra of natural images show strong

regularity.
I They typically are roughly of the form

1
f

where f is the absolute value of frequency.
I Equivalently, the power spectrum |S(f )|2 takes the

form 1
f 2

I This is known as power law.
I Power law relationships occur frequently in nature

and they can be related to scale invariance.
I They can also be related to the covariance structure

of natural images.
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Statistics on image spectra

I from Torralba, Oliva; 2003
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Fourier transform and convolution
I Consider the convolved signal

g(t) = s(t) ∗ h(t) =
∑

k h(k) · s(t − k)
I Its (discrete-time) Fourier transform is

G(ω) =
∑

t

[∑

k

h(k) · s(t − k)

]
e−iωt

=
∑

t

∑

k

h(k) · e−iωk · s(t − k) e−iω(t−k)

=
∑

k

h(k) · e−iωk ·
∑

t

s(t − k) e−iω(t−k)

= H(ω) · S(ω)

Convolution in the time-domain is multiplication in
the frequency domain.
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Fourier transform and convolution

I So to convolve a signal s(t) with a signal h(t) we can
either:

I Compute the convolution sum, or
I 1. compute the Fourier transforms S(ω) and H(ω)

2. compute the element-wise product G(ω) = S(ω)H(ω)
3. use the inverse Fourier transform to get g(t) = s ∗ h

I Depending on the situation (like size/number of
images or filters, separable or not, etc.) any one of
the two may be more efficient.
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Effects of multipyling a signal

I One can show analogously:

Multiplication in the time-domain is convolution in the
frequency domain.

I Multiplying a signal or its spectrum elementwise with
some function is a very common operation in
practice.

I In practice, the relation between convolution and
multiplication often leads to strange side-effects:

ringing, aliasing and leakage

Roland Memisevic Machine learning for vision



Low-pass filtering in the frequency domain

I An easy way to define a low-pass filter is to multiply
low frequency components by zero, then to do the
inverse transform to get back the resulting signal.

I However, this will yield ringing artefacts:
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Fourier transform of a box

I The box function is defined as

bT (t) =

{
1 if − T

2 ≤ t ≤ T
2

0 else

I Its Fourier transform is

BT (f ) =

∫ ∞

−∞
b(t)e−i2πft dt

=

∫ T
2

− T
2

e−i2πft dt ∝ sin(πTf )

πTf
= sinc(Tf )

I Similarly, the impulse response corresponding to a
frequency “box” response is a sinc function, too.
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Sinc function sin(x)/x
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Ringing
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Ringing

Roland Memisevic Machine learning for vision

Filterdesign

Filterdesign: “window method”
1. Specify desired ideal filter Hid, as well as tolerances

in the frequency domain.
2. Compute the inverse Fouriertransform hid of the

desired filter. This will in general not be finite.
Therefore:

3. Multiply hid with a window w . Windows have been
computed analytically and are tabulated wrt. to their
tolerances in the frequency domain.

4. Implement the filter by convolving with mit hid · w
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Avoiding sharp transitions

I One can relate the problem of ringing also to the
presence of sharp edges in the filter.

I Discontinuities in the signal require the presence of
many spectral components (and vice versa).

I An informal rule of thumb for designing filters is
therefore to avoid sharp edges.
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Gauss filter

g(x , y) =
1

2πσ
exp

(
− 1

2σ2 (x2 + y2)

)
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Gauss filter

The Fourier transform of a Gaussian is a Gaussian.

I The standard deviations are related by σspectrum = 1
σ

I In practice: Use a sampled Gaussian or some other
discrete approximation to the Gauss function.
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Example
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Gauss filter, σ = 1.0
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Gauss filter, σ = 2.0
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Gauss filter, σ = 3.0
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Gauss filter, σ = 4.0

Roland Memisevic Machine learning for vision

Gauss filter, σ = 5.0
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Gauss filter, σ = 10.0
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