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The “vision equation”

I The purpose of vision: Infer world properties (or
hidden “causes”), z, from an image, x .

I We can express this with an analysis, inference,

encoder or backward equation:

z = g(x)
I Learning amounts to estimating the parameters of g

from training data.
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Latent variables and generative models

I In practice, it can be easier to express how images

get formed given the causes, leading to the

synthesis, or decoder, or forward equation:

x = f (z)
I It describes how images depend on the state of the

world.
I z is called “latent variable” or “hidden variable”,

because unlike the image, x , we do not observe it.
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Manifold learning

x

z

g(x)f (z)

I When the dimensionality of
the latent variables is smaller
than the dimensionality of the
data, then the data will be
distributed along some
lower-dimensional manifold in
the dataspace.

I Learning the manifold is also
known as dimensionality
reduction.
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Principal Components Analysis (PCA)
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I If we assume the manifold to be linear, learning is
easy and can done in closed form.

I (PCA can also be formulated as a probabilistic
model.)
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Autoencoders
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I Autoencoders are simple
neural networks that are
trained to reconstruct their
input:

cost = ‖r(x)− x‖2

I The hidden layer is a
bottleneck that forces the
model to compress its input.

I Linear autoencoders
implement a variation of PCA
(Baldi, Hornik; 1989)
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Overcomplete autoencoders
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I With overcomplete hiddens,
the model will “cheat” and
learn the identity.

I One solution: Denoising
autoencoders corrupt the
inputs during training, but train
the model to reconstruct the
original, uncorrupted inputs
(Vincent et al. 2008):

cost = ‖r(x + noise)− x‖2
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Latent variables and generative models

I To deal with ambiguities and uncertainties, we can

re-phrase the forward equation as a conditional

probability:

x ∼ p(x |z)
in which case analysis follows from Bayes’ rule

p(z|x) = p(x |z)p(z)
p(x)

I We also need a prior, p(z), over the latent variables.
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Mixtures of Gaussians

p(x) =
∑

k

πkN (x|µk ,Σk)

I πk ,µk ,Σk are parameters. πk are called mixing
proportions, each Gaussian is called a mixture
component.

I The model is simply a weighted sum of Gaussians.
I It is much more powerful than a single Gaussian,

because it can model multi-modal distributions:
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Gaussian mixture models example

I A mixture of three Gaussians.
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Gaussian mixture models example

Gaussian fit to some data. Gaussian mixture fit to the data.
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Gaussian mixture as latent variable model
I For p(x) to be a probability distribution, we require

∑

k

πk = 1 and πk > 0 ∀k

I Thus, we may interpret the πk as probabilities
themselves!

I This motivates introducing latent variables z and
re-writing the model, equivalently, in terms of two
distributions p(z) and p(z|x) as follows:

p(x) =
∑

z

p(z)p(x|z)

where p(z) =
∏K

k=1 π
zk
k is a discrete distribution (use z

in one-hot encoding), and p(x|zk = 1) = N (x|µk ,Σk)
is a conditional Gaussian.
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Gaussian mixture models
I We can now think of the model as a generative

process:
I To generate a data-point, first draw a mixture

component, then draw the observation from a
Gaussian, whose parameters depend on the
component.

I To compute posteriors (hiddens given data), use
Bayes’ rule

p(zn|xn) =
p(xn|zn)p(zn)∑
zn

p(xn|zn)p(zn)

(which represent how likely a given observation xn is
to come from a particular mixture component).

I p(znk = 1|xn) (abbreviate γ(zkn)) is usuall called
responsibility of mixture component k .
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The (variational) EM algorithm
I We could use gradient-based for learning, but this

view inspired a procedure (EM), that minimizes a
sequence of lower bounds:

L :=
∑

n

log p(xn) =
∑

n

log
∑

zn

p(xn|zn)p(zn)

=
∑

n

log
∑

zn

q(zn)
p(xn|zn)p(zn)

q(zn)

≥
∑

n

∑

zn

q(zn) log
p(xn|zn)p(zn)

q(zn)

:= L
where we use Jensen‘s inequality:
log

∑
i aibi ≥

∑
i ai log bi if ∀i : ai > 0 and

∑
i ai = 1

I As we shall see, separately optimizing L and the q’s
is easy.
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The EM algorithm for Gaussian mixtures

I To avoid clutter, it is convenient to rewrite

L =
∑

nk

qnk log p(xn|zn = k)p(zn = k)−
∑

nk

qnk log qnk

where we abbreviate qnk = q(zn = k)
I Note that the first term of L is the expectation of

p(xn, zn) with respect to q(zn). It is commonly
referred to as “expected complete log-likelihood”.

I This is the only term that depends on model
parameters. We can set derivatives to zero to get
closed-form solutions:
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Optimizing L
I For the means:

∂L
∂µk

=
∑

n

qnkΣk (xn − µk) = 0⇔ µk =

∑
n qnkxn∑

n qnk

I For the variances:

Σk =

∑
n qnk(xn − µk)(xn − µk)

T

∑
n qnk

I For the mixing proportions:

πk = p(zk) =

∑
n qnk

N
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The (variational) EM algorithm
I Before optimizing the q’s, let us ask the following

question: What is the gap between L and L?
I To answer this question, rewrite L differently:

L =
∑

n

∑

zn

q(zn) log
p(xn|zn)p(zn)

q(zn)

=
∑

n

∑

zn

q(zn) log
p(zn|xn)p(xn)

q(zn)

=
∑

n

∑

zn

q(zn) log
p(zn|xn)

q(zn)
+
∑

n

∑

zn

q(zn) log p(xn)

= −
∑

n

KL ( q(zn) || p(zn|xn) ) + L

I (Neal, Hinton 1998)
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The (variational) EM algorithm

I The Kullback-Leibler divergence (KL-divergence)

KL ( p1(z) || p2(z) ) =
∑

z

p1(z) log
p1(z)

p2(z)

measures the similarity between two probability
distributions p1 and p2.

I It is always non-negative, and it is zero only for
identical distributions.

I This means that L will be equal to L if we set
q(zn) = p(zn|xn) !

I It also suggests that just improving q(zn) may work,
too (and cross our fingers...)

Roland Memisevic Machine learning for vision

The EM algorithm for Gaussian mixtures

I After updating the parameters, setting
q(zn) = p(zn|xn) will make the bound L on L tight
again.

I Recall that p(zn|xn) = (γ(znk)) is easy to compute
using Bayes’ rule.

I Thus, we have a simple, iterative two-step algorithm:

EM algorithm
1. E-step: Evaluate the posteriors p(zn|xn).
2. M-step: Optimize L with respect to the model

parameters, keeping q(zn) = p(zn|xn) fixed.
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EM as optimizing a sequence of (tight) lower
bounds
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Hidden Markov Models

p(x1, . . . ,xN) =
∑

z1,...,zN

p(x1, . . . ,xN , z1, . . . , zN)

with

p(x1, . . . ,xN , z1, . . . , zN) = p(z1)
N∏

n=2

p(zn|zn−1)
N∏

m=1

p(xm|zm)

I Exact inference of the posterior (and EM training) is
trickier than in a simple MoG, but do-able using
dynamic programming.
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Variational EM

I In a more powerful/interesting/realistic model than a
simple mixture model, we may not be able to infer
exact posteriors to tighten the lower bound.

I Idea (see e.g. Helmholtz machine, or more recently
NVIL and VAE): Use neural networks for the
synthesis model and for approximating the
corresponding posteriors q(z|x).

I Then iteratively optimize the model and inference
networks.
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Variational autoencoder
I Let us rewrite L again:

L =
∑

n

∑

zn

q(zn) log
p(xn|zn)p(zn)

q(zn)

=
∑

n

∑

zn

q(zn) log p(xn|zn) +
∑

n

∑

zn

q(zn) log
p(zn)

q(zn)

=
∑

n

∑

zn

q(zn) log p(xn|zn)−
∑

n

KL ( q(zn) || p(zn) )

I The second term is easy (if we define q and p
appropriately.

I For the first term we can do a sampling approximation
I (Note that q(zn) really means q(zn|xn))
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Generative models for actual generation

I VAE’s allow us to generate data by sampling from the
prior.

I VAE suffer from some unexplained issues, like
collapsing decoder-weights for hiddens that satisfy
the KL term.

I An alternative are Generative Adversarial Networks
(Goodfellow et al 2014) where the generator network
is combined with a recognition network trained to tell
real data from false data.
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What is wrong with unsupervised learning?

I Despite 30+ years of research unsupervised learning
never took off.

I Will its time still come (like it has for neural nets)? Or
is it fundamentally flawed?

I One hypothesis why UL is the wrong approach (but
transfer learning should work):

I There is too much structure in natural data, more
than is relevant for humans. Teasing out the
structure in natural data, as attempted by UL,
may simply be overkill.
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