
IFT 6268 stats and ML review

Roland Memisevic

January 19, 2016

Probabilities in AI

I Probabilities allow us to be explicit about uncertainties:
I Instead of representing values, we can “keep all options open”

by defining a distribution over alternatives.
I Example: Instead of setting ’x = 4’, define all of:

p(x = 1),p(x = 2),p(x = 3),p(x = 4),p(x = 5)
I Benefits:

1. Robustness (let modules tell each other their whole state of
knowledge)

2. Measure of uncertainty (“errorbars”)
3. Multimodality (keep ambiguities around)

I We can still express ’x = 4’ as a special case.

Random variable: “not random, not a variable”
I The only relevant property of a random variable is its

distribution.
I p(x) is a distribution if

p(x) ≥ 0 and
∑

x

p(x) = 1

I Notational quirks:
I The symbol p can be heavily overloaded. The argument

decides. For example, in “p(x , y) = p(x)p(y)” each p means
something different!

I Sometimes we write X for the RV and x for the values it can
take on.

I Another common notation is p(X = x).
I
∑

x . . . refers to the sum over all values that x can take on.
I For continuous x , replace

∑
by
∫

(up to some measure
theoretic “glitches”, that we usually ignore in practice)

I Some prefer to use the term “density” or “probability density
function (pdf)” to refer to continuous p(·).

Some useful distributions (1d)
Discrete

I Bernoulli: px (1− p)1−x where x is 0 or 1.

I Discrete distribution: (also known as
“multinoulli”)

I Binomial, Multinomial: Sum over Bernoulli/Discrete.
(Sometimes “multinomial” is used to refer to a discrete
distribution, too...)

I Poisson: p(k) = λk exp(−λ)
k!

Continuous

I Uniform:
I Gaussian (1d): p(x) = 1

(2πσ2)
1
2

exp
(
− 1

2σ2 (x − µ)2
)

How to represent discrete values

I A very useful way to represent a variable that takes one out of
K values:

I As a K -vector with (K − 1) 0’s, and one 1 at position k

x =

0
...
1
...
0

I This is known as one-of-K encoding, one-hot encoding, or
as orthogonal encoding.

I Note that we can interpret x itself as a probability distribution.

Some useful distributions (1d)

I Using a one-hot encoding allows us to write the discrete
distribution compactly as

p(x) =
∏

k

µxk
k

where µk is the probability for state k .
I This can greatly simplify calculations (see below).

Summarizing properties

I Any relevant properties of RVs are just properties of their
distributions.

I Mean:

µ =
∑

x

p(x)x = E
[
x
]

I Variance:

σ2 =
∑

x

p(x)(x − µ)2 = E
[
(x − µ)2]

I (Standard deviation: σ =
√
σ2)

Summarizing properties

I Any relevant properties of RVs are just properties of their
distributions.

I Mean:
µ =

∑

x

p(x)x = E
[
x
]

I Variance:

σ2 =
∑

x

p(x)(x − µ)2 = E
[
(x − µ)2]

I (Standard deviation: σ =
√
σ2)

Summarizing properties

I Any relevant properties of RVs are just properties of their
distributions.

I Mean:
µ =

∑

x

p(x)x = E
[
x
]

I Variance:

σ2 =
∑

x

p(x)(x − µ)2 = E
[
(x − µ)2]

I (Standard deviation: σ =
√
σ2)

The Gaussian (1d)

p(x) = N (x |µ, σ2) =
1

(2πσ2)
1
2

exp
(
− 1

2σ2 (x − µ)2
)

Multiple variables

I The joint distribution p(x , y) of two variables x and y also
satisfies

p(x , y) > 0 and
∑

x ,y

p(x , y) = 1,

I Likewise, we can write

p(x) > 0 and
∑

x
p(x) = 1,

for vector x
I For discrete RVs, the joint is a table (or a higher dimensional

array).
I Everything else stays the same.

Conditionals, marginals

I Everything one may want to know about a random vector can
be derived from the joint distribution.

I Marginal distributions:

p(x) =
∑

y

p(x , y) and p(y) =
∑

x

p(x , y)

I Imagine collapsing tables.
I Conditional distributions:

p(y |x) =
p(x , y)

p(x)
and p(x |y) =

p(x , y)

p(y)

I Think of conditional as a family of distributions, “indexed” by
the conditioning variable. (We could write p(y |x) also as
px (y)).

Summarizing properties, correlation
I Mean:

µ =
∑

x
p(x)x = E

[
x
]

I Covariance:

cov(xi , xj) = E
[
(xi − µi)(xj − µj)

]

I Covariance matrix:

Σij = cov(xi , xj)
(
Σ =

∑

x
p(x)(x − µ)(x − µ)T

)

I The correlation coefficient:

corr(xi , xj) =
cov(xi , xj)√

σ2
i σ

2
j

I Two variables for which the covariance is zero are called
uncorrelated.

Correlation example

uncorrelated correlated

The multivariate Gaussian

p(x) =
1

(2π)
D
2 |Σ| 12

exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)

A fundamental formula

p(x |y)p(y) = p(x , y) = p(y |x)p(x)

I This can be generalized to more variables (“chainrule of
probability”).

I A special case is Bayes’ rule:

p(x |y) = p(y |x)p(x)
p(y)

Independence and conditional independence

I Two RVs are called independent, if

p(x , y) = p(x)p(y)

I Captures our intuition of “dependence”. In particular, note that
this definition implies

p(y |x) = p(y)

I Independence implies uncorrelatedness, but not vice versa!
I Related: Two RVs are called conditionally independent,

given a third variable z, if

p(x , y |z) = p(x |z)p(y |z)

I (Note that these concepts are just a property of the joint.)

Independence is useful

I Say, we have some variables, x1, x2, . . . , xK

I Even just defining their joint (let alone doing computations with
it) is hopeless for large K !

I But what if all the xi are independent?
I Then we need to specify just K probabilities, because the joint

is the product.
I A more sophisticated version of this idea, using conditional

independence, is the basis for the area of graphical models.

Maximum likelihood

I Another useful property of independence.
I Task: Given a set of data points

(x1, . . . , xN)

build a model of the data-generating process.
I Approach: Fit a parametric distribution p(x ; w) with some

parameters w to the data.
I How? Maximize the probability of “seeing” the data under your

model!

Maximum likelihood

I This is easy if examples are independent and identically
distributed (“iid”):

p(x1, . . . ,xN ; w) =
∏

i

p(xi ; w)

I Instead of maximizing probability, we may maximize
log-probability, because the log function is monotonic.

I So we may maximize:

L(w) := log
∏

i

p(xi ; w) =
∑

i

log p(xi ; w)

I Thus each example xi contributes an additive component to
the objective.

Gaussian example

I What is the ML-estimate of the mean of a Gaussian?
I We need to maximize

L(µ) =
∑

i

log p(xi ;µ) =
∑

i

(
− 1

2σ2 (xi − µ)2)− const.

I The derivative is:

∂L(µ)

∂µ
=

1
σ2

∑

i

(
xi − µ

)
=

1
σ2

(∑

i

xi − Nµ
)

I By setting to zero, we get:

µ =
1
N

∑

i

xi

Linear regression

x→ t

I Given two real-valued observations x and t, learn to predict t
from x.

I This is a supervised learning problem.

Linear regression

I We can define linear regression as a probabilistic model, if we
make the following assumption:

t = y(x,w) + ε

I In words, we assume there is a true, underlying function
y(x,w), and the function values we observe are corrupted by
additive Gaussian noise.

I Thus
p(t |x;w) = N

(
t |y(x,w), σ2)

Linear regression

Noise vs. dependencies we don’t care about

I Actually, linear regression can work fine also with highly
non-Gaussian noise.

Linear regression

I To fit the conditional Gaussian, given training data
D =

{
(xn, tn)

}N
n=1, we make the iid assumption and get:

p(D) =
∏

n

N (tn|y(xn,w), σ2)

I Using monotonicity of the log, we may again maximize the
log-probability (or minimize its negation):

minimize

N∑

n=1

(
tn −wTxn

)2
+ const.

Least squares
I To optimize with respect to w, we differentiate:

∂E
∂w

= −
N∑

n=1

(
tn −wTxn

)
xT

n

I Setting the derivative to zero:

0 = −
N∑

n=1

tnxT
n + wT

(N∑

n=1

xnx
T
n
)

yields the solution

w =
(N∑

n=1

xnx
T
n
)−1(N∑

n=1

tnxT
n
)

I (It can be instructional to write down the case for 1-d inputs, if
this confuses you)

Least squares

I We can write this more compactly with the following
definitions:

t =

t1
...

tN

X =

x1
...
xN

This allows us to write the solution as

w =
(
XTX

)−1
XTt

“The normal equations”.

Linear classification

x→ t

I A prediciton task, where the outputs, t , are discrete (that is,
they can take on one of K values, C1, . . . , CK), is called
classification.

I Like regression, this is a supervised learning problem.

(Multi-class) logistic regression

I Logistic regression defines a probabilistic model over classes
given inputs as follows:

p(Ck |x) =
exp

(
wT

k xn
)

∑K
j=1 exp

(
wT

j xn
)

where w1, . . . ,wK are parameters.
I The exp-function ensures positivity, and the normalization that

the outputs sum to one.
I (In practice, one usually adds constant “bias”-terms inside the

exp’s)

Multi-class logistic regression

I Represent discrete one-hot labels row-wise in a matrix T, like
we did before for continuous vectors.

I The negative log-likelihood cost, assuming iid training data,
can then be written

E(W;D) = − log
∏

n

p(tn|xn)

= − log
∏

n

∏

k

p(Ck |xn)tnk

= −
∑

n

∑

k

tnk log p(Ck |xn)

= −
∑

n

∑

k

tnk
(
wT

k xn − log
K∑

j=1

exp
(
wT

j xn
))

= −
∑

n

(
wT

tnxn − log
K∑

j=1

exp
(
wT

j xn
))

Multi-class logistic regression

I In contrast to linear regression, there is no closed-form
solution for W.

I But one can use gradient-based optimization to minimize
E(W;D) iteratively.

I The gradient with respect to each parameter-vector wk is

∂E(W;D)

∂wk
= −

∑

n

tnkxn −
exp

(
wT

k xn
)

∑
j exp

(
wT

j xn
)xn

=
∑

n

(
p(Ck |xn)− tnk

)
xn

I It can be shown that E(W;D) is convex, so there are no local
minima.

Learning with stochastic gradient descent

W(τ+1) = W(τ) − η ∂En
W

I Here, τ denotes the iteration number, and En is the cost
contributed by the nth training case (one term in the sum over
n).

I Parameters are initialized to some random starting value W(0).
I η is called learning rate, and it is typically set to a small real

value (such as, η = 0.001). It may be reduced as learning
progresses.

I It is convenient to think of W as a vector not a matrix when
doing learning. (Think of it in “vectorized” form: vec(W))

Stochastic gradient descent (SGD)

θ(0)

θ(τ)

θ(τ+1)= θ(τ) − η∂cost(xn,tn)
∂θ

old parameter value

learning rate
new parameter value

For one or several training cases at a time, iterate:
1. compute cost (forward pass)
2. compute derivatives (backward pass)
3. update parameters

Stochastic gradient descent (SGD)

θ(0)

θ(τ)

θ(τ+1)= θ(τ) − η∂cost(xn,tn)
∂θ

old parameter value

learning rate
new parameter value

I Most operations performed on each training example will be
matrix-vector products.

I To get a higher arithmetic intensity it is common to use
mini-batches (often of size ≈ 100, currently...).

I Each full pass through the training set is called an epoch.

The “logsumexp”-trick
I Expressions like

exp
(
wT

k xn
)

∑K
j=1 exp

(
wT

j xn
)

are very common but highly unstable, because the “exp” in the
denominator can cause an under- or overflow.

I Never compute sums
∑

i exp(ai) naively.
I Add a constant A to each argument in all exp’s, so that even

the largest argument is small; then undo the operation after
computing the sum!

I Many software packages supply a convenience function
“logsumexp” for this purpose:

logsumexp

logsumexp(a1, . . . ,aK) = log
(∑

i exp(ai + A)
)
− A

with A = −(maxi ai)

Random variables and information

I ”Probabilities allow us to be explicit about uncertainty”. So
how can we measure uncertainty?

I Idea: Define the information content

log
(1

p(x)

)
= − log(p(x))

contained in a random event.
I The information content is additive for independent events.
I So if we use log2 and fair coin tosses, then the information

content is measured in bits and it exactly fits our intuition.

Entropy

I To measure uncertainty, we define the entropy

H(X) = −
∑

x

p(x) log p(x)

which is the average information content.
I For continuous RV:

H(X) = −
∫

x
p(x) log p(x)dx

I The more uniform, the more uncertain. The more “peaky”, the
more certain.

I Question: Which probability distribution has maximum entropy,
given mean and (co)variance(s)?

KL divergence

I Closely related to entropy is the Kullback-Leibler divergence
(KL divergence) (or “relative entropy”):

KL(p||q) =
∑

x

p(x) log
(p(x)

q(x)

)

I The KL divergence measures the dissimilarity between two
distributions.

I It is not symmetric.
I Maximum likelihood learning amounts to minimizing the KL

divergence between the model distribution and the empirical
distribution over the observed training data (exercise).

Mutual Information

I The mutual information between two random variables x , y
with joint density p(x , y) is defined as

MI(x , y) =
∑

x ,y

p(x , y) log
(p(x , y)

p(x)p(y)

)

I It is the KL divergence between p(x , y) and the joint of two
perfectly independent random variables (with marginals p(x)
and p(y)).

I Thus, MI measures the dependence between x and y .
I It is nonnegative, and it is zero iff x and y are independent, in

other words iff p(x , y) = p(x)p(y).

Frequentist – Bayesian

I Probability theory tells us how to calculate with probabilities.
I As scientists, we may ask how to interpret a probabilistic

expression, such as

p(x = 1) = 0.7

I There are two common interpretations:

1. Frequentist: “The relative frequency of x in a (possibly infinite)
population of trials is 0.7”

2. Bayesian: “I believe that x is 1 with certainty 0.7”

I The Bayesian view used to be contentious because it is less
intuitive. But it gives us the freedom to turn model parameters
into random variables. And it is now an established view in ML.

Reading

I A good introduction to most of the concepts discussed in this
class can be found in:

Pattern Recognition and Machine Learning. C. Bishop.
Springer, 2006.

I Most figures in this presentation are from that book.

The following material has to be taken with a grain of salt.1

1Before the outrageous success of back-prop, one of the most wide-spread
approaches in vision research was generative modeling. However, this seems to
have changed now (probably for good).

The “vision equation”

I The purpose of vision: Infer world properties (or hidden
“causes”), s, from an image, I.

I We can express this with an analysis, or encoder, or inference,

equation:

s = f (I)
I Learning then amounts to estimating the parameters of f from

image data.

Latent variables and generative models

I In practice, it can be easier to write down how images get
formed given the causes.

I This leads to the synthesis, or decoder, equation:

I = g(s)

It describes how images depend on the state of the world.
I s is called “latent variable” or “hidden variable”, because unlike

the image, I, we do not observe it.

Latent variables and generative models

I To incorporate ambiguities and uncertainties, we can

re-phrase this equation as a conditional probability:

I ∼ p(I|s)
I This allows us to define analysis using Bayes’ rule:

p(s|I) = p(I|s)p(s)
p(I)

I Analysis now requires a prior, p(s), over the latent variables.

I Alternatively we can directly model the joint

p(I,s)

in which case we don’t necessarily need a prior.

Latent variables and generative models

I For maximum likelihood learning, we need to marginalize over

s:

p(I) =
∑

s

p(I,s)

I How are f and g, or the probabilities, defined in practice?
I There are many possibilities, and we will discuss some of

these in this course.
I All models involve constraining the “capacity” of s, to force the

learned representation to be meaningful.

Natural images are not random

All natural images

All images

I Constraining the capacity of s forces learner to “zoom” into
where the data is.

