Machine Learning WS2011/12
 Instructor: Roland Memisevic Machine Learning, Robert-Mayer-Str. 10 - 201 Lectures: Mondays 2pm - 4pm Tutorials: Wednesdays 2pm - 4pm
 All course related emails to: ml@vsi.cs.uni-frankfurt.de Course website: http://www.ml.cs.uni-frankfurt.de/teaching/ml2011/
Roland Memisevic Machine Learning 2 Related courses
 Adaptive Systeme (Brause) Mustererkennung (Mester) Computational Learning Theory (Schnitger)

Readings

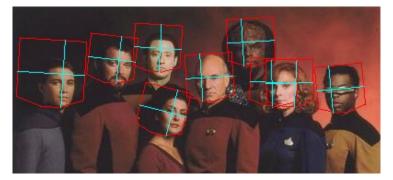
► Textbook:

Christopher Bishop: "Pattern Recognition and Machine Learning"

- Other useful books:
- D. MacKay: "Information Theory, Inference and Learning Algorithms"
- ▶ R. Duda and P Hart: "Pattern Classification"
- T. Hastie, R. Tibshirani and J. Friedman: "Elements of Statistical Learning"

Roland Memisevic Machine Learning

What makes a face?



- ► The output of a face-detector.
- ► Try to *program* this!

What is Machine Learning?

- Some tasks are extremely hard or tedious to program by hand.
- ► For example, face recognition:

Roland Memisevic Machine Learning

What makes a "2"?

What are the rules that define a 2?

What makes French?

"Wikipedia.fr est un site de l'association Wikimedia France. Les resultats du moteur de recherche proviennent de Wikiwix"

How to recognize the language, given a stream of characters?

Roland Memisevic Machine Learning

More examples

- ► Email/Spam classification
- Facial identity recognition (eg., on facebook)
- Smile recognition (in your digital camera)
- Building autonomuous robots
- Surveillance
- Music recognition (on your cell-phone)
- Self-parking (or driving) car
- Stock-price prediction
- Speech recognition
- Action understanding (eg., in your Xbox/Kinect)
- Network anomaly detection
- Recommendation systems
- "Mind reading"
- Computational biology
- Machine translation
- etc.

Data analysis

- In many areas, including most sciences, we are facing a gigantic increase in available data, due to the Internet, cheap computers, cheap storage, etc.
- Machine learning can help make sense of, and understand, all this data.

Roland Memisevic Machine Learning

Relation to neuroscience

- The best data-analysis and machine learning system is the human brain.
- Many machine learning techniques are therefore inspired by what we know about information processing in the brain.
- In turn, our understanding of the brain grows with our studying of machine learning techniques, their limits, their implementations, etc.
- A recent example: "The Bayesian Brain"

Machine learning and statistics

- ▶ The original science of data is statistics.
- Like statistics, machine learning makes heavy use of probability theory.
- An attempt at distinguishing the two:
- In contrast to statistics, the focus in machine learning is not on building tools that allow humans to analyze data, but on building systems that understand data by themselves.

Course outline (approximate)

- Overview
- Linear regression
- Linear classification
- Neural networks
- Kernel machines
- Bayesian reasoning
- Clustering, mixture models, the EM algorithm
- Sequences and Hidden Markov Models
- Graphical models, approximate inference, sampling
- Structured prediction
- Deep learning and feature learning

Roland Memisevic Machine Learning

Different types of learning

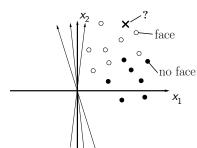
- Supervised learning: Given data pairs (x, t), learn a function y(x) that *predicts* t on future points x.
- Unsupervised learning: Given unlabelled data x (for example, images), learn to re-represent the data. This can include finding groups (clustering), extract features, compression, etc.
- Reinforcement learning: Learn to take a series of actions that maximize reward (for example, in games). Not covered in detail in this course.

Roland Memisevic Machine Learning

Representing data using variables

- We use variables to represent everything.
- Both x and t can be
 - Scalar or vectors
 - We will denote scalars also in non-bold: x and t
- Both **x** and **t** can be
 - Continuous: Eg. x = 1.73457, or $\mathbf{x} \in \mathbb{R}^D$
 - Discrete: Eg. $x \in \{0, 1\}$, or $\mathbf{x} \in \{`a`, `b`, `c`, \dots, `z`\}^D$
- Learning almost always amounts to adjusting parameters.
 We will usually stack parameters in a vector w.

Points in space

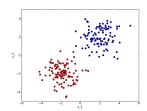


- ► Data cases **x** will typically be high-dimensional.
- But we can imagine only up to three dimensions.
- Our 3 dimensional intuitions often work, but sometimes they fail!
- High-dimensional spaces have certain peculiar properties, such as being "fairly empty". These properties are sometimes referred to as the curse of dimensionality.

Roland Memisevic Machine Learning

Unsupervised learning

 Clustering: Find groups in data. This is like finding a new, discrete representation for data.

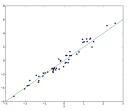


- Dimensionality reduction: Find a concise, continuous description of data.
- Unsupervised learning is *lossy compression*: Data is represented using fewer bits.

Supervised learning

• **Classification:** Predict outputs that are discrete.

Regression: Predict outputs that are continuous.



Roland Memisevic Machine Learning

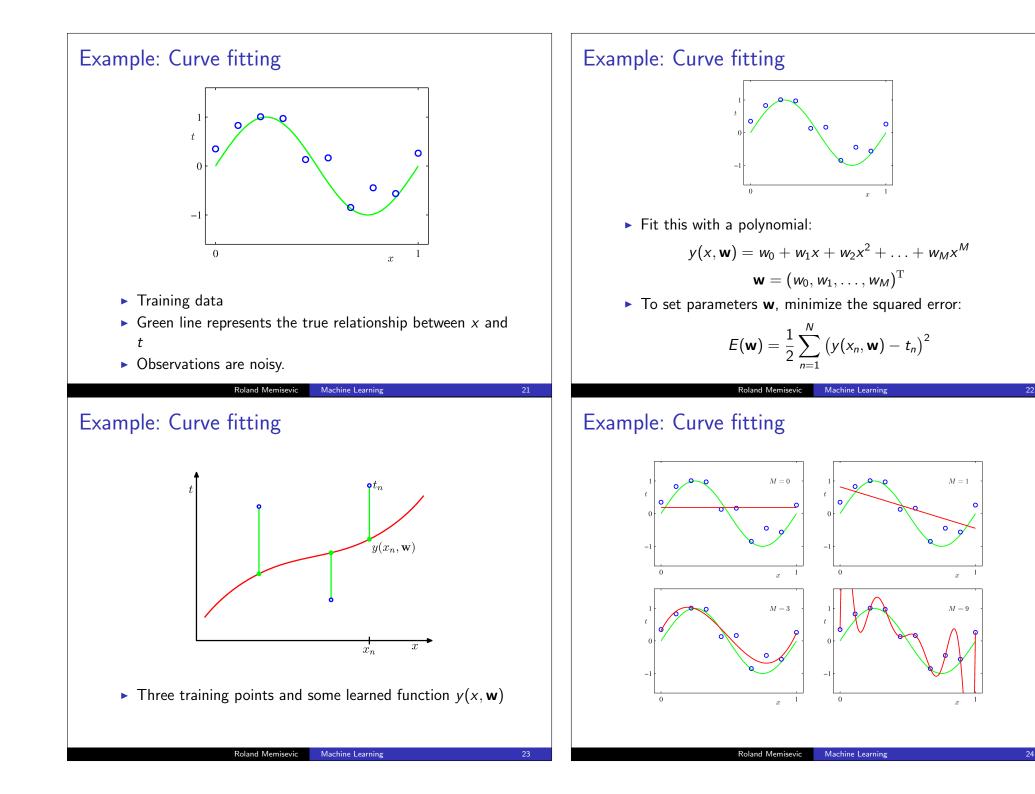
18

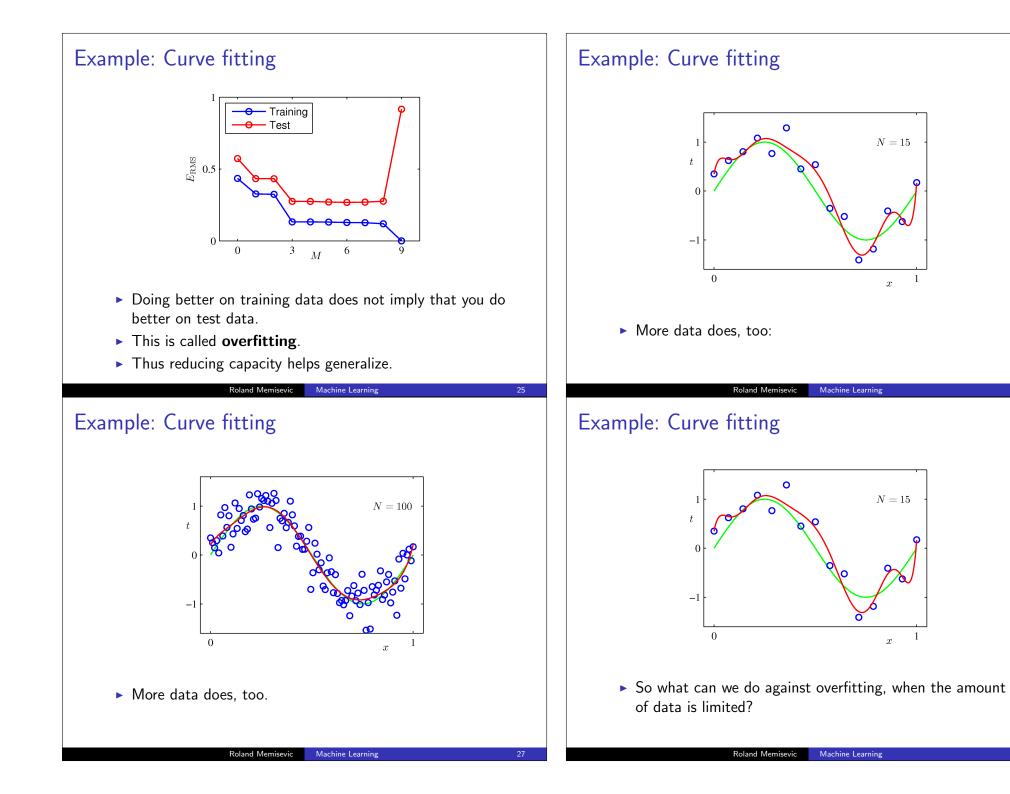
${\it Generalization}$

- Both, supervised learning and unsupervised learning adapt model parameters based on training data.
- Training is like search in a hypothesis space containing functions.
- A central question is how well the model will perform on future data, which is known as generalization.
- How well the model performs on future data is a function of (a) how well it performs on the training data and (b) the size of the hypothesis space.

Example

An easy way to solve digit classification is to *memorize each training example*. But this will be useless on new data!





Preventing overfitting

- Model selection: Use the right model class.
- **Regularization:** Penalize large coefficients:

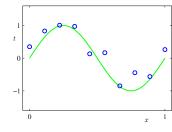
Roland Memisevic

 $\tilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left(y(x_n, \mathbf{w}) - t_n \right)^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$

- Bayesian modeling: Do not try to fit a model at all! Compute a conditional probability distribution p(model|data) over models given the training data. This is significantly harder to do in practice, but it is a natural way to prevent overfitting, and it works very well.
- These approaches are closely interlinked and connected. For example, Bayesian reasoning can provide us with a way to do model selection; regularization can be thought of as a (very) poor man's Bayes.

Machine Learning

No free lunch



- When all you have are the training points, there is *no* way you can generalize.
- Inductive bias: To learn something, we must make assumptions.
- This has been formalized in a variety of so-called "No free lunch theorems".
- The most common assumption made, which often works surpisingly well: Smoothness of the underlying function.

Training data, validation data, test data

- To perform model selection, it is common to split your training set into a training set and a validation set.
- Now fit several different models (for example, with different *M*, or λ) to the training set.
- Then check, how well each one does on the validation data!
- One can exchange the roles of training and validation subsets to get a more stable estimate. This is known as cross-validation.
- ► Extreme case: "Leave-one-out" cross validation: Fit models on all subsets of N 1 cases, evaluate each on the remaining case.

Roland Memisevic Machine Learning

Many open research questions

- Improve speed, accuracy, generality of methods.
- Find the right inductive biases for real-world tasks.
- End-to-end learning of complex models.
- Application specific problems.
- ► Etc.

Conferences and Journals

- NIPS: Neural Information Processing Systems, ICML, UAI, AISTATS
- PAMI: Pattern Analysis and Machine Intelligence, Journal of Machine Learning Research, Journal Machine Learning, Neural Computation