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Outline

I Unsupervised learning and latent variables.

I K-means clustering.

I Gaussian mixture models.

I The EM-algorithm.
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Unsupervised learning

I So far we looked almost exclusively at supervised learning
tasks

x→ t

where the goal is to learn dependencies from data and
thus to build systems “by example”.

I This is the simplest and most obvious approach to
learning, and it has obvious and well-known applications
(like spam filtering, face recognition, stock price
prediction, etc.).

I There is another, less obvious, but somewhat deeper, type
of learning, often referred to as unsupervised learning:
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Unsupervised learning

I Given just data

x
learn to “understand” the data, by re-representing it in

some intelligent way.

I Example: Clustering – Find natural grouping in data.

I Example: Dimensionality reduction – Find projections
that carry important information.

I Example: Compression – Represent data using fewer
bits.

I Unsupervised learning is like supervised learning with
missing outputs (or with missing inputs).
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Latent variables

I Most unsupervised learning methods can be formalized
elegantly using the concept of latent or hidden variables:

I We assume the data generating process has internal
parameters which we cannot directly observe, but which
affect the data nevertheless.

I Formally, we postulate that there is a hidden variable zn

associated with each training case xn.

I The goal of learning is to infer the values of the zn given
just the data.
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Latent variables
I Example:

(images from “Indoor-Outdoor Image Classification”, M. Szummer, R. Picard)

I A discrete latent variable may determine where some
picture was taken.
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Latent variables

I Another example:

I A continuous latent variable may determine the angle
under which an object is depicted.
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Latent variables

x

z

I Learning about these hidden causes of variability in the
data can help compress, understand or pre-process the
data.
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K-means clustering

I We consider only discrete latent variables in this lecture.
We shall deal with continuous latent variables later.

I We can model a discrete latent variable using a
one-of-K-encoding zn.

I Inferring this discrete latent variable from data is known
as clustering, since it amounts to grouping each point
into one of K groups.

I We can think of zn as assigning each point xn to one
cluster.

I One of the most common clustering methods is K-means
clustering.
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K-means clustering

x1

x2

I Find the groups!
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K-means clustering
I Notation: We shall stack one-hot encodings zn of discrete

latent variables row-wise in a matrix Z.

I We further assume that there is a set of K prototypes
µ1, . . . ,µK that represent the K clusters. The
dimensionality of the prototypes is the same as that of
the data x.

I Assume for a moment, that we knew the cluster
assignments zn for each point xn.

I The objective function that K-means clustering tries to
minimize is the average distance between points x and
their cluster-representatives:

J =
N∑

n=1

K∑

k=1

znk‖xn − µk‖2
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K-means clustering

I Learning amounts to finding both the prototypes µk and
the assignments zn for each point, so as to minimize J .

I This is a tricky optimization problem, because the zn are
discrete (and the µk are continuous).

I Learning can be greatly simplified if we decouple learning
the zn from learning the µk.

I This gives rise to a block coordinate-descent method,
which is a special case of a general optimization approach
in unsupervised learning, known as the EM-algorithm.
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Finding the optimal zn

I Note that given the µk, we can optimize all the zn

independently, because the objective is just the sum over
n.

I But the squared error will be smallest if we set znk = 1
for whichever µk is closest.

I Formally, to optimize all zn, given the set of µk, set:

znk =

{
1 if k = argminj ‖xn − µj‖2
0 otherwise.
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Finding the optimal µk

I Given the zn, the objective function J is a quadratic
function of µk which we can optimize by setting the
derivative to zero:

2
N∑

n=1

znk(xn − µk) = 0

I Solving for µk yields:

µk =

∑
n znkxn∑
n znk

I This solution has a simple interpretation: Set each µk to
the mean of all points currently assigned to cluster k !
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Iterating inference and parameter adaptation

I Learning amounts to iterating inference of the zn, and
adapting the parameters µk until there are no more
changes.

I This training procedure always converges: J is positive,
and every step either decreases it or leaves it unchanged.

I But note that there can be local minima.

I One way to deal with them is to try multiple runs with
different initializations for the parameters µk and to pick
the solution with the lowest final cost.
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K-means example

I Learning a model with 2 cluster centers.
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The value of J as learning progresses
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Inference for test-data

I Given a trained model, we can infer the cluster-centers for
new test-data points x not seen during training: Pick the
nearest µk like we did during training:

zk =

{
1 if k = argminj ‖xn − µj‖2
0 otherwise.

I Since z represents the high-dimensional vector x using
only one of K integers, K-means is a way to perform
lossy compression.

I The set of all K prototypes µk is sometimes called
codebook.

I Clustering and K-means are also known as vector
quantization.
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A simple application
I Replace the RGB-value (a 3-D vector) at each pixel with

one of K prototypes:
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Gaussian mixture models

I K-means is closely related to a probabilistic model known
as the

Mixture of Gaussians

p(x) =
∑

k

πkN (x|µk,Σk)

I πk,µk,Σk are parameters. πk are called mixing
proportions, each Gaussian is called a mixture component.

I The model is simply a weighted sum of Gaussians. But it
is much more powerful than a single Gaussian, because it
can model multi-modal distributions:
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Gaussian mixture models example

I A mixture of three Gaussians.

Roland Memisevic Machine Learning 21

Gaussian mixture models example

A Gaussian fit to some data. Gaussian mixture fit to same data.
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Gaussian mixture models

p(x) =
∑

k

πkN (x|µk,Σk)

I Note that for p(x) to be a probability distribution, we
require that

∑
k πk = 1 and that πk > 0 ∀k

I Thus, we may interpret the πk as probabilities themselves!

I This motivates introducing latent variables z and
re-writing the model, equivalently, in terms of two
distributions p(z) and p(z|x) as follows:

p(x) =
∑

z

p(z)p(x|z)
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Gaussian mixture models

I Here

p(z) =
K∏

k=1

πzk
k

is a discrete distribution (that is, z is a one-hot encoding
like in K-means.)

I And
p(x|zk = 1) = N (x|µk,Σk)

is a conditional Gaussian distribution.

I Why rewrite the mixture model like this?

Roland Memisevic Machine Learning 24



Gaussian mixture models
I We can now think of the model as a generative process,

where we first draw a mixture component from a discrete
distribution, and then we draw the observation from a
Gaussian distribution, whose parameters depend on the
component.

I This allows us to use Bayes’ rule to compute posteriors

p(zn|xn) =
p(xn|zn)p(zn)∑
zn
p(xn|zn)p(zn)

which represent how likely a given observation xn is to
come from a particular mixture component.

I p(znk = 1|xn) is often referred to as the responsibility of
mixture component k, and it is often abbreviated γ(zkn).

I The Gaussian mixture is thus like a “soft” version of
K-means.
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The EM algorithm
I We now turn to parameter estimation.
I While we could use gradient-based optimization, there is a

more convenient two-step procedure similar to K-means.
I Given training data {xn}, we can write

L :=
∑

n

log p(xn) =
∑

n

log
∑

zn

p(xn|zn)p(zn)

=
∑

n

log
∑

zn

q(zn)
p(xn|zn)p(zn)

q(zn)

≥
∑

n

∑

zn

q(zn) log
p(xn|zn)p(zn)

q(zn)

:= L
where we use Jensen‘s inequality:
log

∑
i aibi ≥

∑
i ai log bi if ∀i : ai > 0 and

∑
i ai = 1
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The EM algorithm

I Instead of optimizing L, we will now optimize the lower
bound L with respect to both the original parameters and
the newly introduced auxiliary variables q(z).

I To avoid clutter, it is convenient to rewrite

L =
∑

nk

qnk log p(xn|zn = k)p(zn = k)−
∑

nk

qnk log qnk

where we abbreviate qnk = q(zn = k)

I Note that the first term of L is the expectation of
p(xn, zn) with respect to q(zn). It is commonly referred
to as “expected complete log-likelihood”.

I This is the only term that depends on model parameters.
As usual, we can set derivatives to zero to optimize it:
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The EM algorithm

I We have

∂L
∂µk

=
∑

n

qnkΣk (xn − µk) = 0

⇔ µk =

∑
n qnkxn∑
n qnk

I Likewise, we get

Σk =

∑
n qnk(xn − µk)(xn − µk)

T

∑
n qnk

and

πk = p(zk) =

∑
n qnk
N
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The EM algorithm

I But what about the auxiliary variables qnk?

I We rewrite L once more in a different way:

L =
∑

n

∑

zn

q(zn) log
p(xn|zn)p(zn)

q(zn)

=
∑

n

∑

zn

q(zn) log
p(zn|xn)p(xn)

q(zn)

=
∑

n

∑

zn

q(zn) log
p(zn|xn)

q(zn)
+
∑

n

∑

zn

q(zn) log p(xn)

= −
∑

n

KL ( q(zn) || p(zn|xn) ) + L
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The EM algorithm

I The

Kullback-Leibler divergence (KL-divergence)

KL ( p1(z) || p2(z) ) =
∑

z

p1(z) log
p1(z)

p2(z)

measures the similarity between two probability distributions
p1 and p1.

I The KL-divergence is always non-negative, and it is zero
only for identical distributions (!)

I This means, that L will be equal to L, if we set
q(zn) = p(zn|xn) !
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The EM algorithm

I In other words, setting q(zn) = p(zn|xn) will make the
bound L on L tight!

I p(zn|xn) = (γ(znk)) is easy to compute as we saw before.

I We already know how to optimize L with respect to the
model parameters. So we can repeatedly compute (by
inferring qnk), and then optimize, a tight lower bound on
L.

I To summarize, the EM algorithm iterates two steps to
find a (local) optimum of the log-likelihood of a mixture
model:
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The EM algorithm

EM algorithm

1. E-step: Evaluate the posteriors p(zn|xn).

2. M-step: Optimize L with respect to the model
parameters, keeping q(zn) = p(zn|xn) fixed.

I The E-step computes the expected complete
log-likelihood. It amounts to evaluating the
responsibilities γ(znk) for each point.

I The M-step maximizes the expected complete
log-likelihood. In a Gaussian mixture, this amounts to
setting parameters to responsibility-weighted sums.
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EM as optimizing a sequence of lower bounds
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Example: Training a Gaussian mixture with EM
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EM algorithm comments

I The EM algorithm can be applied to many latent variable
models, not just mixtures of Gaussians.

I The E-step and the M-step have to be derived individually
for each model, but the view from the lower bound L of
the log-likelihood is always the same.

I One of the first models that deployed EM was the Hidden
Markov Model.

I There are models where computing p(z|x) is not
tractable. In this case, it is still common to deploy a
variation of EM, where we only improve the
KL-divergence in the E-step rather than finding the exact
posterior.
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Gaussian mixtures and K-means

I A Gaussian mixture model is like K-means where we use
a “soft” assignment to clusters.

I One can formally derive K-means as the limit of a
mixture model with infinitely small variances.
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