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Unsupervised learning

» So far we looked almost exclusively at supervised learning
tasks
x—t

where the goal is to learn dependencies from data and
thus to build systems “by example”.

» This is the simplest and most obvious approach to
learning, and it has obvious and well-known applications
(like spam filtering, face recognition, stock price
prediction, etc.).

» There is another, less obvious, but somewhat deeper, type
of learning, often referred to as unsupervised learning:
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» Unsupervised learning and latent variables.

» K-means clustering.
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Gaussian mixture models.
The EM-algorithm.

v
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Unsupervised learning

v

Given just data
X
learn to “understand” the data, by re-representing it in
some intelligent way.
» Example: Clustering — Find natural grouping in data.

» Example: Dimensionality reduction — Find projections
that carry important information.

» Example: Compression — Represent data using fewer
bits.

» Unsupervised learning is like supervised learning with
missing outputs (or with missing inputs).
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Latent variables

» Most unsupervised learning methods can be formalized
elegantly using the concept of latent or hidden variables:

» We assume the data generating process has internal
parameters which we cannot directly observe, but which
affect the data nevertheless.

» Formally, we postulate that there is a hidden variable z,,
associated with each training case x,,.

» The goal of learning is to infer the values of the z, given
just the data.

Roland Memisevic Machine Learning

Latent variables

» Another example:

EEERREEE

» A continuous latent variable may determine the angle
under which an object is depicted.
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Latent variables

» Example:

(images from “Indoor-Outdoor Image Classification”, M. Szummer, R. Picard)

» A discrete latent variable may determine where some
picture was taken.
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Latent variables

V4

» Learning about these hidden causes of variability in the
data can help compress, understand or pre-process the
data.
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K-means clustering

» We consider only discrete latent variables in this lecture.
We shall deal with continuous latent variables later.

» We can model a discrete latent variable using a
one-of- K-encoding z,,.
» Inferring this discrete latent variable from data is known

as clustering, since it amounts to grouping each point
into one of K groups.

» We can think of z, as assigning each point x,, to one
cluster.

» One of the most common clustering methods is /A -means
clustering.
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K-means clustering

» Notation: We shall stack one-hot encodings z,, of discrete
latent variables row-wise in a matrix Z.

» We further assume that there is a set of K prototypes
Wi, ..., g that represent the K clusters. The
dimensionality of the prototypes is the same as that of
the data x.

» Assume for a moment, that we knew the cluster
assignments z,, for each point x,,.

» The objective function that K-means clustering tries to
minimize is the average distance between points x and
their cluster-representatives:

N K
J = Zzznkan - l‘/kHZ

n=1 k=1
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K-means clustering
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» Find the groups!
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K-means clustering

» Learning amounts to finding both the prototypes u and
the assignments z,, for each point, so as to minimize J.

» This is a tricky optimization problem, because the z,, are
discrete (and the p;, are continuous).

» Learning can be greatly simplified if we decouple learning
the z,, from learning the pu.

» This gives rise to a block coordinate-descent method,
which is a special case of a general optimization approach
in unsupervised learning, known as the EM-algorithm.
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Finding the optimal z, Finding the optimal

» Given the z,, the objective function J is a quadratic
function of p; which we can optimize by setting the

» Note that given the p, we can optimize all the z, derivative to zero
rivativ ZEro:

independently, because the objective is just the sum over

n. N
» But the squared error will be smallest if we set z,, = 1 2 Z Znk(Xn — pi) = 0
for whichever i, is closest. n=1
» Formally, to optimize all z,, given the set of uy, set: » Solving for u, yields:
)1 if k= argmin, ||x, — pyl? My = > ZnkXn
"7 10 otherwise. D Znk

» This solution has a simple interpretation: Set each p; to
the mean of all points currently assigned to cluster & !

Roland Memisevic Machine Learning 13 Roland Memisevic Machine Learning

lterating inference and parameter adaptation K -means example

» Learning amounts to iterating inference of the z,, and
adapting the parameters ;. until there are no more
changes.

» This training procedure always converges: J is positive,
and every step either decreases it or leaves it unchanged.

» But note that there can be local minima.

» One way to deal with them is to try multiple runs with
different initializations for the parameters p;, and to pick
the solution with the lowest final cost.

» Learning a model with 2 cluster centers.
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The value of J as learning progresses
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A simple application

» Replace the RGB-value (a 3-D vector) at each pixel with
one of K prototypes:

Machine Learning
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Inference for test-data

» Given a trained model, we can infer the cluster-centers for
new test-data points x not seen during training: Pick the
nearest py like we did during training:

1 if k = argmin; [|x, — p;]?
2l = .
0 otherwise.

» Since z represents the high-dimensional vector x using
only one of K integers, K-means is a way to perform
lossy compression.

» The set of all K prototypes p; is sometimes called
codebook.

» Clustering and K-means are also known as vector
quantization.
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Gaussian mixture models

» K-means is closely related to a probabilistic model known
as the

Mixture of Gaussians
p(x) = Y mN (x|per, )
k

> Tk, bk, 2k are parameters. 7 are called mixing
proportions, each Gaussian is called a mixture component.

» The model is simply a weighted sum of Gaussians. But it
is much more powerful than a single Gaussian, because it
can model multi-modal distributions:
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Gaussian mixture models example

p(z)y

=)

» A mixture of three Gaussians.
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Gaussian mixture models

p(x) =D N (x|per, i)

» Note that for p(x) to be a probability distribution, we
require that ), m, = 1 and that 7, >0 Vk

» Thus, we may interpret the 7, as probabilities themselves!

» This motivates introducing latent variables z and
re-writing the model, equivalently, in terms of two
distributions p(z) and p(z|x) as follows:

p(x) =Y p(z)p(x|z)
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Gaussian mixture models example
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A Gaussian fit to some data.
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Gaussian mixture models

» Here .
p(z) = [[ =
k=1

is a discrete distribution (that is, z is a one-hot encoding
like in /{-means.)

» And
p(x|zr = 1) = N (x|, i)
is a conditional Gaussian distribution.

» Why rewrite the mixture model like this?
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Gaussian mixture fit to same data.




Gaussian mixture models

» We can now think of the model as a generative process,
where we first draw a mixture component from a discrete
distribution, and then we draw the observation from a
Gaussian distribution, whose parameters depend on the
component.

» This allows us to use Bayes' rule to compute posteriors

(anzn) (Zn)
Zznp(Xn|Zn) (2n)

which represent how likely a given observation x,, is to
come from a particular mixture component.
» p(znx = 1|x,,) is often referred to as the responsibility of
mixture component k, and it is often abbreviated 7(zx,).
» The Gaussian mixture is thus like a “soft” version of
K-means.

p(znlxn) =

Roland Memisevic

The EM algorithm

Machine Learning

» Instead of optimizing L, we will now optimize the lower
bound £ with respect to both the original parameters and
the newly introduced auxiliary variables ¢(z).

» To avoid clutter, it is convenient to rewrite
L= Z Adnk log p(xn |Zn = k; Z Adnk log Adnk
nk

where we abbreviate ¢,x = q(z, = k)

» Note that the first term of L is the expectation of
p(Xn, 2z,) with respect to ¢(z,). It is commonly referred
to as “expected complete log-likelihood" .

» This is the only term that depends on model parameters.
As usual, we can set derivatives to zero to optimize it:
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The EM algorithm

» We now turn to parameter estimation.

» While we could use gradient-based optimization, there is a
more convenient two-step procedure similar to K-means.
» Given training data {x,}, we can write

L:=) logp(x,) = Zlogzp(xnlzn)p(zn)
_ Zlogzq Z,) Xn|zn> (2n)

 q(za)

> quzn log Xn|?n))(zn)
= E "

where we use Jensen's inequality:
log) . ab; > .a;logh; ifVi:a;>0and)  a;=1
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The EM algorithm

» We have

&% — i) =0

Zan k
n

Zn qnkXn
Zn Gnk

= My =
» Likewise, we get

)"

= Zn an(xn - H’k)(xn -
E=
Zn Adnk

and

Z Adnk

T = play) = S5
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The EM algorithm

» But what about the auxiliary variables g,,;?

» We rewrite £ once more in a different way:

ZZ 2,) log Xn|?n)>(zn)
= ZZq z,) log Zn|>En))(Xn)

n

L —

= Z Z q(z,,) log q(nTlnX)n + Z Z q(zn) log p(x)

Z77 ||p(z77‘x77) )+L

= —ZKL
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The EM algorithm

Machine Learning

» In other words, setting ¢(z,) = p(z,|x,) will make the
bound £ on L tight!

> p<zn‘xn) =
» We already know how to optimize £ with respect to the
model parameters. So we can repeatedly compute (by

inferring ¢,x), and then optimize, a tight lower bound on
L.

» To summarize, the EM algorithm iterates two steps to
find a (local) optimum of the log-likelihood of a mixture
model:
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(7(2nk)) is easy to compute as we saw before.

The EM algorithm

» The
Kullback-Leibler divergence (KL—divergence)

Zlh

measures the similarity between two probability distributions
P1 and P1-

KL (p1(2) [| p2(2)

» The KL-divergence is always non-negative, and it is zero
only for identical distributions (!)

» This means, that £ will be equal to L, if we set
q(zn) = p(2n|x,) !
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The EM algorithm

EM algorithm
1. E-step: Evaluate the posteriors p(z,|x,,).

2. M-step: Optimize £ with respect to the model
parameters, keeping ¢(z,) = p(z,|x,) fixed.

» The E-step computes the expected complete
log-likelihood. It amounts to evaluating the
responsibilities y(z,;) for each point.

» The M-step maximizes the expected complete
log-likelihood. In a Gaussian mixture, this amounts to
setting parameters to responsibility-weighted sums.
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EM as optimizing a sequence of lower bounds

gold gnew
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EM algorithm comments

» The EM algorithm can be applied to many latent variable
models, not just mixtures of Gaussians.

» The E-step and the M-step have to be derived individually
for each model, but the view from the lower bound L of
the log-likelihood is always the same.

» One of the first models that deployed EM was the Hidden
Markov Model.

» There are models where computing p(z|x) is not
tractable. In this case, it is still common to deploy a
variation of EM, where we only improve the
KL-divergence in the E-step rather than finding the exact
posterior.
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Example: Training a Gaussian mixture with EM
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Gaussian mixtures and K -means

» A Gaussian mixture model is like K-means where we use
a “soft” assignment to clusters.

» One can formally derive K-means as the limit of a
mixture model with infinitely small variances.
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