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I Continuous latent variables

I Principal Components Analysis (PCA)

I Probabilistic PCA

I Non-linear continuous latent variables

Roland Memisevic Machine Learning 2

Latent variables
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I Reminder: We can use latent variables to model structure
that is “hidden” in a given set of observations.

I In the previous lecture we looked at discrete latent
variables. In this lecture we shall look at continuous latent
variables. This is like regression with missing outputs (or
inputs).
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Latent variables
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I When the dimensionality M of the continuous latent
variable is smaller than the dimensionality D of the data,
then we can think of the data as being distributed along
some lower-dimensional manifold in the dataspace.

I Learning the manifold is known as dimensionality
reduction.
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Latent variables
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I In many applications, we not only need the latent codes z
for the data, but also:
1. A backward mapping g(x), that we can apply to new

data after training.
2. A forward mapping f(z), with which we can

“fantasize” new data.
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Principal Components Analysis (PCA)
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I If we assume the manifold to be linear, learning gets
simple and it can done in closed form.

I We can in this case think of the manifold as a
lower-dimensional subspace.

I Learning amounts to finding the optimal subspace.
Inference amounts to projecting data onto the subspace.
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Principal Components Analysis

I Learning the linear manifold is known as Principal
Components Analysis (PCA).

I PCA can be derived by maximizing the variance of the set
of points that we would get by projecting our training
data, {xn}n=1,...,N , onto that subspace.

I Equivalently, one can maximize the average distance
between the projections and the original points:
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Principal Components Analysis
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I The variance along the manifold is large.

I The average projection error is small.
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Principal Components Analysis
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I The variance along the manifold is small.

I The average projection error is large.
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Principal Components Analysis

I Since PCA involves optimizing a subspace, it is common
to work under the assumption that the data is
mean-centered:

1

N

N∑

n=1

xn = 0

I (Forgetting to mean-center your data is a common
mistake when implementing PCA in practice!)

I To derive PCA, it is useful to define an orthonormal basis
for the lower-dimensional subspace, consisting of vectors

u1, . . . ,uM (with M < D)

I PCA amounts to learning this basis.
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Principal Components Analysis

I It is convenient to stack the basis-vectors column-wise in
a matrix U, as this allows us to write the forward and
backward mappings in a convenient way:

Projecting data (backward mapping)
I The optimal coefficients that approximate x within the

subspace are given by

z = UTx

Reconstructing data (forward mapping)
I The approximation x̃ of x is given by

x̃ = Uz = UUTx
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Principal Components Analysis
I To learn the subspace, minimize the reconstruction error:

E(U) =
∑

n

‖xn − x̃n‖2 =
∑

n

‖xn −UUTxn‖2

(under the constraint UTU = I !)
I To solve the problem, it is convenient to stack data

row-wise in matrix X, and to rewrite the objective
function as a quadratic form in U:

E(U) = ‖XT −UUTXT‖2F
= Tr((XT −UUTXT)T(XT −UUTXT))

= Tr(XXT)− Tr(UTXXTU)

= −Tr(UTXXTU) + const

I Optimizing a quadratic form under an orthonormality
constraint is a common exercise in linear algebra:
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Principal Components Analysis

Optimizing quadratic forms
I The maximizer of

Tr(UTAU)

subject to
UTU = I

(where U is D ×M) is given by the matrix whose
columns are the eigenvectors of A corresponding to the
M largest eigenvalues.

I So we can find the principal components by performing an
eigen-decomposition of the data covariance matrix!
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Principal Components Analysis

Summary: Computing principal components
1. Mean-center the data.

2. Compute the covariance matrix C = 1
N

XXT.

3. Perform an eigen-decomposition of C.

4. Sort the eigen-vectors according to the size of their
eigenvalues.

5. Stack the leading M eigen-vectors in a matrix U.

I UT now defines the forward mapping, U defines the
backward mapping.
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Principal Components Analysis
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I A two-dimensional dataset and the two principal
components.

I Projections onto the leading eigenvectors preserve most of
the variability in the data. So PCA performs lossy
compression.
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PCA and Whitening

I The components of the latent data representation Z are
uncorrelated (that is, Z has a diagonal covariance matrix):

1

N

∑

n

znz
T
n =

1

N

∑

n

UTxnx
T
nU

= UT
( 1
N

∑

n

xnx
T
n

)
U

= UTCU

= L

where the diagonal matrix L contains the eigenvalues of
C on its diagonal.

I (The last step follows from the eigenvalue definition:
Cui = λiui)
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PCA and Whitening

I We can obtain the identity as the covariance matrix for

Z, if instead of UT we use L− 1
2 UT to define the forward

mapping.

I Data with identity covariance matrix is known as white;

multiplying data by L− 1
2 UT as whitening.

I Whitening can be performed also without reducing the
dimensionality, that is, by using M = D.

I This amounts to just rotating the coordinate system of
the data, followed by independently “stretching” or
“squeezing” the dimensions to obtain unit variance in
each.

I Whitening can be thought of as a “fancier” version of the
usual standardization by mean-centering and setting
variances to 1.
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Whitening example
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Whitening example
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Whitening example
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PCA for data visualization

I Like other unsupervised learning methods, PCA has
numerous applications, including compression,
pre-processing, etc.

I An additional common application of dimensionality
reduction is visualization of high-dimensional data (with
D > 3):

I We project the high-dimensional data into two or three
dimensions, where we can look at it using, for example, a
scatter-plot.
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PCA for data visualization
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I Two-dimensional PCA-projection of the classic,
4-dimensional “iris”-dataset, whose features represent
properties of Iris flowers, each belonging to one of three
classes (represented by three colors in the plot).
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Probabilistic PCA

I One can define PCA also as a probabilistic latent variable
model.

I Assume a Gaussian prior distribution

p(z) = N (z|0, I)

over latent variables.

I Assume a Gaussian conditional distribution

p(x|z) = N (x|Wz + µ, σ2I)

over observations.
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Probabilistic PCA

I This defines a generative process, where we first draw
from an M -dimensional Gaussian in the latent space, and
then draw the observation from a D-dimensional Gaussian
distribution, whose mean depends on the latent variable.
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Probabilistic PCA

I This process defines a probabilistic version of the forward
mapping in terms of a conditional distribution!

I We can get the backward mapping using Bayes’ rule:

p(z|x) = p(x|z)p(z)∫
z
p(x|z)p(z)dz

I Plugging in the Gaussian distributions yields

p(z|x) = N (z|M−1WT(x− µ), σ−2M)

with M = WTW + σ2I

I (see, for example, Bishop, 2.3.3, for the conditional
Gaussian derivations)
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Probabilistic PCA
I To optimize the parameters of the probabilistic model,

maximize:

L =
∑

n

log p(xn)

=
∑

n

log

∫

zn

p(xn|zn)p(zn) dzn

I The marginals turn out to be Gaussian, too:

p(x) =

∫

z

p(x|z)p(z) dz = N (x|µ,WWT + σ2I)

I Thus, probabilistic PCA models data using a constrained
Gaussian distribution, whose covariance matrix is the
outer product of two low-rank matrices (plus noise).
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Probabilistic PCA
I To optimize the log-likelihood, one can use

gradient-based optimization or the EM-algorithm.
I The EM-algorithm proceeds as usual: In the E-step,

compute p(zn|xn); in the M-step, maximize the expected
complete log-likelihood.

I Unlike for Gaussian mixtures, here the posteriors p(zn|xn)
are Gaussians, so we represent them using mean and
covariance.

I (details of the EM updates given in Bishop, page 578)
I Benefits of the probabilistic formulation are that (i) it can

easily handle missing data values, (ii) it can be extended
into a “mixture of PCA”-model which performs clustering
and dimensionality reduction (within each cluster) at the
same time, (iii) there is a fully Bayesian formulation,
where parameters are integrated out.
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Factor Analysis

I Probabilistic PCA is closely related to a statistical model
known as Factor Analysis:

I Factor analysis differs from probabilistic PCA in that it
assumes a conditional Gaussian distribution

p(x|z) = N (x|Wz + µ,Ψ)

with a diagonal (not necessarily spherical) covariance
matrix Ψ.

I Factor analysis uses the latent variables only to encode
covariances.

I Learning is similar to probabilistic PCA.
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Non-linear continuous latent variables

I PCA is a highly common tool used in practical
applications.

I But sometimes data is not distributed along a linear
subspace, so the linearity assumption may be a limitation.

I (Sometimes, even the assumption of a manifold is not
correct, because data may be structured in more
complicated ways.)

I Neural networks provide an elegant and useful way to get
beyond the linearity assumption.
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Auto-encoder networks

I We introduced backprop networks as a supervised
learning method.

I But we can turn a backprop network into an unsupervised
method, if we train it to reconstruct its own inputs!

I For this end, define the targets tn to be copies of the
inputs xn, and minimize:

E(W) =
1

2
‖y(xn,W)− xn‖2
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Auto-encoder networks

I If we use a purely linear network with a small number, M ,
of hidden units, then the network will be forced to find
good low-dimensional projections of the data.

I In fact, it can be shown that the first-layer weights, w,
will define a projection into the same subspace as PCA
(but the components will in general not be orthonormal)
(Baldi and Hornik, 1989).

I But we can use a backprop network with more hidden
layers, some of which may have non-linear transfer
functions.

I It is common to use an inner-most hidden layer that is
linear and one non-linear layer before and after the linear
layer:
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Auto-encoder networks

I This model reconstructs its inputs by first projecting into
a non-linear feature space, performing a non-orthogonal
variant of linear PCA in that feature space, and then
inverting the non-linear mapping.
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Auto-encoder networks
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I A classic toy-application and proof-of-concept is learning
of a low-dimensional code to represent a one-of-K
representation.
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Graph-based dimensionality reduction

I A variety of dimensionality reduction methods have been
introduced in recent years, that can learn non-linear
manifolds by solving a closed-form optimization problem.

I Examples include “Locally Linear Embedding”,
“ISOMAP”, “kernel PCA”, “Laplacian Eigenmaps”, and
there are many others.

I The idea behind these methods is to build a graph that
represents neighborhood-relations between pairs of points,
and then to find latent representatives zn which have
approximately the same neighborhood-relations.

I Potential drawbacks of most of theses methods is that
they do not easily scale to large data-sets, and they do
not come with the forward and backward-mappings,
which are required in many applications.
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Over-complete latent variables and sparse coding

I In general, in continuous latent variable models, there are
alternative ways to constrain the capacity of the hidden
variables z than to make their dimensionality small.

I The most common alternative is to force the hidden
representation to be sparse, such that most components
znk are approximately zero for most observations.

I This can be easily achieved with some small modifications
to auto-encoder networks, but there are also many other
methods that explicitly try to make latent variables sparse.

I A common, fully probabilistic sparse coding model is
Independent Components Analysis (ICA):
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Independent Components Analysis
I ICA is based on latent variables which, unlike in PCA, are

assumed to be non-Gaussian, but like in PCA they are
assumed to be independent, such that

p(z) =
M∏

j=1

p(zj)

I It is common to use heavy-tailed distributions to define
the component distributions p(zj).

I A common application is blind source separation (aka the
“cocktail-party-problem”): Given a mixture of
independent signals (imagine a set of microphones
listening to a set of people who are speaking
simultaneously), find the (de-)mixing matrix and the
original signals.
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