
Machine Learning
Winter 2011/12

Roland Memisevic

Lecture 6, Nov. 28, 2011

Roland Memisevic Machine Learning 1

Outline

I Continuous latent variables

I Principal Components Analysis (PCA)

I Probabilistic PCA

I Non-linear continuous latent variables

Roland Memisevic Machine Learning 2

Latent variables

x

z

g(x)
f(z)

I Reminder: We can use latent variables to model structure
that is “hidden” in a given set of observations.

I In the previous lecture we looked at discrete latent
variables. In this lecture we shall look at continuous latent
variables. This is like regression with missing outputs (or
inputs).

Roland Memisevic Machine Learning 3

Latent variables

x

z

g(x)
f(z)

I When the dimensionality M of the continuous latent
variable is smaller than the dimensionality D of the data,
then we can think of the data as being distributed along
some lower-dimensional manifold in the dataspace.

I Learning the manifold is known as dimensionality
reduction.

Roland Memisevic Machine Learning 4

Latent variables

x

z

g(x)
f(z)

I In many applications, we not only need the latent codes z
for the data, but also:
1. A backward mapping g(x), that we can apply to new

data after training.
2. A forward mapping f(z), with which we can

“fantasize” new data.
Roland Memisevic Machine Learning 5

Principal Components Analysis (PCA)
x2

x1

I If we assume the manifold to be linear, learning gets
simple and it can done in closed form.

I We can in this case think of the manifold as a
lower-dimensional subspace.

I Learning amounts to finding the optimal subspace.
Inference amounts to projecting data onto the subspace.

Roland Memisevic Machine Learning 6

Principal Components Analysis

I Learning the linear manifold is known as Principal
Components Analysis (PCA).

I PCA can be derived by maximizing the variance of the set
of points that we would get by projecting our training
data, {xn}n=1,...,N , onto that subspace.

I Equivalently, one can maximize the average distance
between the projections and the original points:

Roland Memisevic Machine Learning 7

Principal Components Analysis

x2

x1

xn

I The variance along the manifold is large.

I The average projection error is small.

Roland Memisevic Machine Learning 8

Principal Components Analysis

x2

x1

xn

I The variance along the manifold is small.

I The average projection error is large.

Roland Memisevic Machine Learning 9

Principal Components Analysis

I Since PCA involves optimizing a subspace, it is common
to work under the assumption that the data is
mean-centered:

1

N

N∑

n=1

xn = 0

I (Forgetting to mean-center your data is a common
mistake when implementing PCA in practice!)

I To derive PCA, it is useful to define an orthonormal basis
for the lower-dimensional subspace, consisting of vectors

u1, . . . ,uM (with M < D)

I PCA amounts to learning this basis.

Roland Memisevic Machine Learning 10

Principal Components Analysis

I It is convenient to stack the basis-vectors column-wise in
a matrix U, as this allows us to write the forward and
backward mappings in a convenient way:

Projecting data (backward mapping)
I The optimal coefficients that approximate x within the

subspace are given by

z = UTx

Reconstructing data (forward mapping)
I The approximation x̃ of x is given by

x̃ = Uz = UUTx

Roland Memisevic Machine Learning 11

Principal Components Analysis
I To learn the subspace, minimize the reconstruction error:

E(U) =
∑

n

‖xn − x̃n‖2 =
∑

n

‖xn −UUTxn‖2

(under the constraint UTU = I !)
I To solve the problem, it is convenient to stack data

row-wise in matrix X, and to rewrite the objective
function as a quadratic form in U:

E(U) = ‖XT −UUTXT‖2F
= Tr((XT −UUTXT)T(XT −UUTXT))

= Tr(XXT)− Tr(UTXXTU)

= −Tr(UTXXTU) + const

I Optimizing a quadratic form under an orthonormality
constraint is a common exercise in linear algebra:

Roland Memisevic Machine Learning 12

Principal Components Analysis

Optimizing quadratic forms
I The maximizer of

Tr(UTAU)

subject to
UTU = I

(where U is D ×M) is given by the matrix whose
columns are the eigenvectors of A corresponding to the
M largest eigenvalues.

I So we can find the principal components by performing an
eigen-decomposition of the data covariance matrix!

Roland Memisevic Machine Learning 13

Principal Components Analysis

Summary: Computing principal components
1. Mean-center the data.

2. Compute the covariance matrix C = 1
N

XXT.

3. Perform an eigen-decomposition of C.

4. Sort the eigen-vectors according to the size of their
eigenvalues.

5. Stack the leading M eigen-vectors in a matrix U.

I UT now defines the forward mapping, U defines the
backward mapping.

Roland Memisevic Machine Learning 14

Principal Components Analysis

10 5 0 5 10
x1

6

4

2

0

2

4

6

8

x
2

I A two-dimensional dataset and the two principal
components.

I Projections onto the leading eigenvectors preserve most of
the variability in the data. So PCA performs lossy
compression.

Roland Memisevic Machine Learning 15

PCA and Whitening

I The components of the latent data representation Z are
uncorrelated (that is, Z has a diagonal covariance matrix):

1

N

∑

n

znz
T
n =

1

N

∑

n

UTxnx
T
nU

= UT
(1
N

∑

n

xnx
T
n

)
U

= UTCU

= L

where the diagonal matrix L contains the eigenvalues of
C on its diagonal.

I (The last step follows from the eigenvalue definition:
Cui = λiui)

Roland Memisevic Machine Learning 16

PCA and Whitening

I We can obtain the identity as the covariance matrix for

Z, if instead of UT we use L− 1
2 UT to define the forward

mapping.

I Data with identity covariance matrix is known as white;

multiplying data by L− 1
2 UT as whitening.

I Whitening can be performed also without reducing the
dimensionality, that is, by using M = D.

I This amounts to just rotating the coordinate system of
the data, followed by independently “stretching” or
“squeezing” the dimensions to obtain unit variance in
each.

I Whitening can be thought of as a “fancier” version of the
usual standardization by mean-centering and setting
variances to 1.

Roland Memisevic Machine Learning 17

Whitening example

8 6 4 2 0 2 4 6 8
x1

8

6

4

2

0

2

4

6

8

10

x
2

x

Roland Memisevic Machine Learning 18

Whitening example

10 5 0 5 10
z1

10

5

0

5

10

z 2

UTx

Roland Memisevic Machine Learning 19

Whitening example

10 5 0 5 10
z1

10

5

0

5

10

z 2

L−
1

2 UTx

Roland Memisevic Machine Learning 20

PCA for data visualization

I Like other unsupervised learning methods, PCA has
numerous applications, including compression,
pre-processing, etc.

I An additional common application of dimensionality
reduction is visualization of high-dimensional data (with
D > 3):

I We project the high-dimensional data into two or three
dimensions, where we can look at it using, for example, a
scatter-plot.

Roland Memisevic Machine Learning 21

PCA for data visualization

2.5 2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
z1

3

2

1

0

1

2

3

4

z 2

I Two-dimensional PCA-projection of the classic,
4-dimensional “iris”-dataset, whose features represent
properties of Iris flowers, each belonging to one of three
classes (represented by three colors in the plot).

Roland Memisevic Machine Learning 22

Probabilistic PCA

I One can define PCA also as a probabilistic latent variable
model.

I Assume a Gaussian prior distribution

p(z) = N (z|0, I)

over latent variables.

I Assume a Gaussian conditional distribution

p(x|z) = N (x|Wz + µ, σ2I)

over observations.

Roland Memisevic Machine Learning 23

Probabilistic PCA

I This defines a generative process, where we first draw
from an M -dimensional Gaussian in the latent space, and
then draw the observation from a D-dimensional Gaussian
distribution, whose mean depends on the latent variable.

Roland Memisevic Machine Learning 24

Probabilistic PCA

I This process defines a probabilistic version of the forward
mapping in terms of a conditional distribution!

I We can get the backward mapping using Bayes’ rule:

p(z|x) = p(x|z)p(z)∫
z
p(x|z)p(z)dz

I Plugging in the Gaussian distributions yields

p(z|x) = N (z|M−1WT(x− µ), σ−2M)

with M = WTW + σ2I

I (see, for example, Bishop, 2.3.3, for the conditional
Gaussian derivations)

Roland Memisevic Machine Learning 25

Probabilistic PCA
I To optimize the parameters of the probabilistic model,

maximize:

L =
∑

n

log p(xn)

=
∑

n

log

∫

zn

p(xn|zn)p(zn) dzn

I The marginals turn out to be Gaussian, too:

p(x) =

∫

z

p(x|z)p(z) dz = N (x|µ,WWT + σ2I)

I Thus, probabilistic PCA models data using a constrained
Gaussian distribution, whose covariance matrix is the
outer product of two low-rank matrices (plus noise).

Roland Memisevic Machine Learning 26

Probabilistic PCA
I To optimize the log-likelihood, one can use

gradient-based optimization or the EM-algorithm.
I The EM-algorithm proceeds as usual: In the E-step,

compute p(zn|xn); in the M-step, maximize the expected
complete log-likelihood.

I Unlike for Gaussian mixtures, here the posteriors p(zn|xn)
are Gaussians, so we represent them using mean and
covariance.

I (details of the EM updates given in Bishop, page 578)
I Benefits of the probabilistic formulation are that (i) it can

easily handle missing data values, (ii) it can be extended
into a “mixture of PCA”-model which performs clustering
and dimensionality reduction (within each cluster) at the
same time, (iii) there is a fully Bayesian formulation,
where parameters are integrated out.

Roland Memisevic Machine Learning 27

Factor Analysis

I Probabilistic PCA is closely related to a statistical model
known as Factor Analysis:

I Factor analysis differs from probabilistic PCA in that it
assumes a conditional Gaussian distribution

p(x|z) = N (x|Wz + µ,Ψ)

with a diagonal (not necessarily spherical) covariance
matrix Ψ.

I Factor analysis uses the latent variables only to encode
covariances.

I Learning is similar to probabilistic PCA.

Roland Memisevic Machine Learning 28

Non-linear continuous latent variables

I PCA is a highly common tool used in practical
applications.

I But sometimes data is not distributed along a linear
subspace, so the linearity assumption may be a limitation.

I (Sometimes, even the assumption of a manifold is not
correct, because data may be structured in more
complicated ways.)

I Neural networks provide an elegant and useful way to get
beyond the linearity assumption.

Roland Memisevic Machine Learning 29

Auto-encoder networks

I We introduced backprop networks as a supervised
learning method.

I But we can turn a backprop network into an unsupervised
method, if we train it to reconstruct its own inputs!

I For this end, define the targets tn to be copies of the
inputs xn, and minimize:

E(W) =
1

2
‖y(xn,W)− xn‖2

Roland Memisevic Machine Learning 30

Auto-encoder networks

I If we use a purely linear network with a small number, M ,
of hidden units, then the network will be forced to find
good low-dimensional projections of the data.

I In fact, it can be shown that the first-layer weights, w,
will define a projection into the same subspace as PCA
(but the components will in general not be orthonormal)
(Baldi and Hornik, 1989).

I But we can use a backprop network with more hidden
layers, some of which may have non-linear transfer
functions.

I It is common to use an inner-most hidden layer that is
linear and one non-linear layer before and after the linear
layer:

Roland Memisevic Machine Learning 31

Auto-encoder networks

I This model reconstructs its inputs by first projecting into
a non-linear feature space, performing a non-orthogonal
variant of linear PCA in that feature space, and then
inverting the non-linear mapping.

Roland Memisevic Machine Learning 32

Auto-encoder networks

intermediate hidden layers

intermediate hidden layers

z

x̂

x

I A classic toy-application and proof-of-concept is learning
of a low-dimensional code to represent a one-of-K
representation.

Roland Memisevic Machine Learning 33

Graph-based dimensionality reduction

I A variety of dimensionality reduction methods have been
introduced in recent years, that can learn non-linear
manifolds by solving a closed-form optimization problem.

I Examples include “Locally Linear Embedding”,
“ISOMAP”, “kernel PCA”, “Laplacian Eigenmaps”, and
there are many others.

I The idea behind these methods is to build a graph that
represents neighborhood-relations between pairs of points,
and then to find latent representatives zn which have
approximately the same neighborhood-relations.

I Potential drawbacks of most of theses methods is that
they do not easily scale to large data-sets, and they do
not come with the forward and backward-mappings,
which are required in many applications.

Roland Memisevic Machine Learning 34

Over-complete latent variables and sparse coding

I In general, in continuous latent variable models, there are
alternative ways to constrain the capacity of the hidden
variables z than to make their dimensionality small.

I The most common alternative is to force the hidden
representation to be sparse, such that most components
znk are approximately zero for most observations.

I This can be easily achieved with some small modifications
to auto-encoder networks, but there are also many other
methods that explicitly try to make latent variables sparse.

I A common, fully probabilistic sparse coding model is
Independent Components Analysis (ICA):

Roland Memisevic Machine Learning 35

Independent Components Analysis
I ICA is based on latent variables which, unlike in PCA, are

assumed to be non-Gaussian, but like in PCA they are
assumed to be independent, such that

p(z) =
M∏

j=1

p(zj)

I It is common to use heavy-tailed distributions to define
the component distributions p(zj).

I A common application is blind source separation (aka the
“cocktail-party-problem”): Given a mixture of
independent signals (imagine a set of microphones
listening to a set of people who are speaking
simultaneously), find the (de-)mixing matrix and the
original signals.

Roland Memisevic Machine Learning 36

