
Machine Learning
Winter 2011/12

Roland Memisevic

Lecture 9, Jan. 9, 2012

Roland Memisevic Machine Learning 1

Outline

I Laplace Approximation

I Variational inference

I Sampling

Roland Memisevic Machine Learning 2

Approximate Inference

I The most common operation in probabilistic modeling is
to compute (marginals of) the posterior p(Z|X) over
unobserved variables Z given observed variables X.

I We saw in Lecture 8 that this can be done efficiently, if
the dependencies in the posterior take the form of a tree.

I We also saw that, when the graph is not a tree (or the
maximal cliques are too large) one can use loopy Belief
Propagation to perform inference.

I Alternatively, approximate inference methods simplify
inference by approximating the posterior using a simpler,
tractable distribution q(Z).

Roland Memisevic Machine Learning 3

Laplace Approximation
I One approach, which applies only to continuous

distributions, is the Laplace Approximation:

I Consider (for now) the one-dimensional density

p(z) =
1

Z
f(z)

where Z =
∫
z
f(z)dz may be unkown.

I The Laplace approximation of this density is a Gaussian
at its mode z0 (or at one of its modes, in case there are
more):

q(z) =
( A
2π

) 1
2
exp

(
− A

2
(z − z0)2

)
= N

(
z; z0, A

−1
)

I How to set the variance, A−1?

Roland Memisevic Machine Learning 4



Laplace Approximation

I To define the variance, A−1, we Taylor-expand log f(z)
about z0:

log f(z) ≈ log f(z0) +
1

2

( d2

dz2
log f(z)

)
(z − z0)2

(Note that d
dz
f(z0) = 0)

I Exponentiating now allows us to write f(z) in the form of
an (unnormalized) Gaussian:

f(z) ≈ f(z0) exp
(
− −

d2

dz2
log f(z)

2
(z − z0)2

)

which suggests setting A to be the second derivative of
− log f(z) at z0.

Roland Memisevic Machine Learning 5

Laplace Approximation Example

I Laplace Approximation: p(z) ∝ exp(− z2

2
)σ(20z + 4)

I Left: The density and its Laplace approximation, Right:
The same in the log-domain.

Roland Memisevic Machine Learning 6

Laplace Approximation in M dimensions

I For M -dimensional densities, the Taylor-expansion takes
the form

log f(z) ≈ log f(z0)−
1

2
(z− z0)

TA(z− z0)

where A is the Hessian of − log f(z) at z0.

I So we get the Laplace Approximation

q(z) =
|A| 12
(2π)

M
2

exp
(
− 1

2
(z− z0)

TA(z− z0)
)

= N
(
z|z0,A−1

)

Roland Memisevic Machine Learning 7

Variational Inference

I A different approach to performing approximate inference
is variational inference:

I Like before, we pick a class of simpler distributions q(Z),
and find among this class the distribution q∗(Z) that is as
“close” as possible to the true p(Z|X).

I A common way to find the closest is by minimizing the
KL-divergence:

q∗(Z) = argmin
q

KL(q||p) = −
∫
q(Z) log

(p(Z|X)

q(Z)

)
dZ

I (We could replace the integrals by sums here.)

Roland Memisevic Machine Learning 8



Variational Inference

I This turns inference into an optimization problem.

I And solving that problem can be tractable in cases where
computing p(Z|X) is not.

I A common choice for q(Z) is the factorized distribution

q(Z) =
∏

i

qi(zi)

I This is also known as “mean-field” approximation.

I (One may also minimize KL(p||q) instead of KL(q||p),
which is the basis for an approach known as “expectation
propagation”)

Roland Memisevic Machine Learning 9

Variational EM

I In Lecture 5 we saw that we can decompose the
log-likelihood of a latent variable model,
L = log p(X) = log

∫
p(X,Z)dZ as

L = L(q(Z)) + KL(q(Z)||p(Z|X))

where

L(q(Z)) =
∫
q(Z) log

p(X,Z)

q(Z)
dZ

and q is some auxiliary distribution over Z.

I The EM-algorithm amounts to alternating between
optimizing q(Z) and optimizing model parameters.

I We also saw that optimizing q(Z) amounts to setting it
to p(Z|X).

Roland Memisevic Machine Learning 10

Variational EM

I If p(Z|X) is not tractable, we can perform approximate
EM, by restricting the search space to a tractable family
of distributions q(Z) (for example, mean-field).

I Restricting q(Z) then amounts to increasing the lower
bound on the log-likelihood in the E-step, without making
it tight.

I This approach is commonly used in Bayesian models,
where we have to infer not only distributions over latent
variables but also over model parameters, which typically
gives rise to intractable posteriors.

Roland Memisevic Machine Learning 11

Sampling

I Sampling is a third way to perfom inference with
intractable distributions.

I Sampling means drawing examples (“samples”) from a
distribution.

I Estimating quantities by resorting to sampling is also
known as Monte Carlo approach.

I The most famous toy application of a Monte Carlo
method is estimating π by uniformly sampling the unit
square and counting the ratio of points that land in the
unit circle vs. those that do not. (This will estimate π

4
).

I In general, the most common use of sampling is to
compute an expectation of some function f(z) with
respect to some distribution p(z).

Roland Memisevic Machine Learning 12



Sampling

I Consider the expectation of some arbitrary function f(z)
under the distribution p(z):

E[f ] =
∫
f(z)p(z)dz

I If we have L iid. samples z(l) from p(z), we can
approximate this expectation using

f̂ =
1

L

∑

l

f(z(l))

I Note that
E[f̂ ] = E[f ]

Roland Memisevic Machine Learning 13

Sampling from simple densities

I There are many different sampling techniques, with
different benefits and drawbacks.

I The most basic sampling method is sampling by
coordinate transform:

I Assume that we have a function rand() that provides
samples z from the uniform density in the interval [0, 1].

I (This is a task for which fairly good solutions exist. Note
that most programming environments provide a
rand()-function for sampling from the uniform density.)

I Sampling from a different density p(y), by transforming
the uniform density, then works as follows:

Roland Memisevic Machine Learning 14

Sampling from simple densities

Drawing from a density p(y) by coordinate
transform

1. Find the cumulative density h(y) =
∫ y
−∞ p(ŷ)dŷ.

2. Draw samples z from the uniform density on [0, 1] (for
example, using rand()).

3. Get samples y from p(y) by computing

y = h−1(z)

Roland Memisevic Machine Learning 15

Sampling by coordinate transform, intuition

Roland Memisevic Machine Learning 16



Sampling by coordinate transform, comments

I One can generalize this idea to multivariate densities by
using conditional cumulatives.

I In general, sampling by coordinate transform is applicable
to only a restricted set of densities: those, for which we
are able to compute the inverse of the cumulative density.

I Two common, more generally applicable methods, are
rejection sampling and importance sampling.

Roland Memisevic Machine Learning 17

Rejection Sampling

I Assumption: We can evaluate the density p(z).

I Remark: For rejection sampling, it is sufficient to be able
to evaluate p(z) up to a normalizing constant, so we may
write:

p(z) =
1

Zp
p̃(z)

where Zp may be unknown.

I Rejection sampling requires two additional ingredients:

1. Another distribution, q(z), known as proposal
distribution, from which we can sample.

2. A constant k, such that kq(z) > p̃(z) ∀z.
I Using these, rejection sampling works as follows:

Roland Memisevic Machine Learning 18

Rejection Sampling Algorithm

Rejection Sampling
I Generate pairs (z0,u0), where

I z0 is sampled from q(z) and
I u0 is sampled from the uniform distribution in the

interval [0, kq(z0)]

I Keep all those z0 for which u0 < p̃(z0), and discard
(“reject”) the rest.

Roland Memisevic Machine Learning 19

Rejection Sampling

I The remaining pairs will be distributed uniformly in the
white area, thus the z-components will be distributed
according to p(z).

Roland Memisevic Machine Learning 20



Rejection Sampling Comments

I Rejection sampling will be the most efficient for proposal
distributions that match p(z) well, because these will
incur fewer rejections.

I Because this may be hard to achieve in practice, rejection
sampling can be inefficient.

I This is true in particular in high-dimensional spaces.

Roland Memisevic Machine Learning 21

Importance Sampling
I Importance sampling is an approach to evaluating

expectations wrt. p(z) using sampling, rather than
providing samples themselves.

I Again, we assume there is a distributions q(z) from which
we can sample, and we assume that we can evaluate p(z).

I We can rewrite the expectation of some function f with
respect to p(z) as follows:

E[f ] =

∫
f(z)p(z) dz

=

∫
f(z)

p(z)

q(z)
q(z) dz

≈ 1

L

L∑

l=1

p(z(l))

q(z(l))
f(z(l))

Roland Memisevic Machine Learning 22

Importance Sampling

I Thus, to compute the expectation with respect ot p(z)
we can sample from q(z) instead, and then weight the
function values using the so-called “importance weights”

rl =
p(z(l))

q(z(l))

I Importance Sampling can be easily extended to the case
where we can evaluate p() and q() only up to normalizing
constants.

I As with rejection sampling, importance sampling may not
work well, if q(z) does not match p(z) very well.

I The problem here is slightly different: We may “miss”
modes of p(z) and get wrong results.

Roland Memisevic Machine Learning 23

Markov Chain Monte Carlo

I A class of sampling methods that often work better, in
particular, in higher dimensions, are Markov Chain Monte
Carlo (MCMC)-methods.

I Idea: Construct a Markov chain in “z′′−space which, in
the long term, will take on states z according to p(z).

I Recall that a Markov chain is a distribution p(z1, . . . , zK)
where p(zi|z1, . . . , zi−1) = p(zi|zi−1)

I MCMC methods will typically not generate iid samples,
but samples that are highly correlated.

I One way then to get close-to-uncorrelated samples is to
keep only every M th sample.

Roland Memisevic Machine Learning 24



Examples of Markov Chains that sample from rand

Three simple, degenerate ways of using a Markov chain to
sample from the uniform distribution on [0, 1]:

1. Define zi using rand()

2. Define z0 = 0 and zi+1 = mod(zi +
√
2, 1)

3. Define z0 = 0 and zi+1 = mod(zi +
1

100
rand(), 1)

Roland Memisevic Machine Learning 25

Evaluating marginals

I To define a Markov chain for a specific distribution p(z),
one typically makes use of the following properties of
(homogeneous) Markov chains:

I A homogeneous Markov chain is given by the
start-probabilities p(z0) and the transition
probabilities T (z(m), z(m+1)).

I The marginal probability at time step m+ 1 may be
written

p(z(m+1)) =
∑

z(m)

p(z(m+1)|z(m))p(z(m))

(
=

∑

z(m)

T (z(m), z(m+1))p(z(m)
)

Roland Memisevic Machine Learning 26

Invariant distribution

I A distribution p∗(z) is known as an invariant
distribution with respect to a homogeneous Markov
chain with transition probabilities T (z′, z), if

p∗(z) =
∑

z′

T (z′, z)p(z′)

I A Markov chain may have several invariant distributions.

I When thinking about invariant distributions, it may help
build intuition to imagine running many copies of the
same chain.

Roland Memisevic Machine Learning 27

Detailed balance

I A sufficient (not necessary) condition for p∗(z) to be an
invariant distribution with respect to a Markov chain with
transition probabilities T (z′, z) is that

p∗(z)T (z, z′) = p∗(z′)T (z′, z)

I This condition is known as detailed balance and a
Markov chain that respects it is called reversible.

I Invariance of p∗(z′) follows immediately:

∑

z′
p∗(z′)T (z′, z) =

∑

z′
p∗(z)T (z, z′) = p∗(z)

∑

z′
T (z, z′) = p∗(z)

I To construct a Markov chain that samples from some
desired distribution, we can set up the chain such that the
desired distribution is an invariant distribution.

Roland Memisevic Machine Learning 28



Ergodicity

I A further condition that the chain needs to meet for it to
sample from the desired distribution is that it also
converges to the invariant distribution as m→∞

I This property is known as ergodicity, and a chain that
satisfies it is known as ergodic.

I An ergodic Markov chain can have only one invariant
distribution, which is called equilibrium distribution.

I A requirement for ergodicity is that any point can be
reached from any other point in a finite number of steps.

Roland Memisevic Machine Learning 29

Constructing Markov chains

I From these considerations, it follows that we can draw
samples from a distribution by constructing an ergodic
Markov chain that satisfies detailed balance with respect
to this distribution.

I The two main techniques for doing this are
I Gibbs Sampling and
I the Metropolis-Hastings algorithm

I (Gibbs sampling may be viewed as a special case of the
Metropolis-Hastings algorithm.)

Roland Memisevic Machine Learning 30

Gibbs Sampling

I We wish to sample from p(z) = p(z1, . . . , zM)

I Gibbs sampling works under the assumption that we can
sample from each conditional over zi, given all the other
variables.

I It amounts to cycling through all variables (randomly or
in some specific order) and updating z by sampling the
conditionals:

Roland Memisevic Machine Learning 31

Gibbs Sampling

Gibbs Sampling
I Initialize all zi
I For τ = 1, . . . , T :

I Sample z
(τ+1)
1 from p(z1|z(τ)2 , z

(τ)
3 , . . . , z

(τ)
M )

I Sample z
(τ+1)
2 from p(z2|z(τ+1)

1 , z
(τ)
3 , . . . , z

(τ)
M )

I
...

I Sample z
(τ+1)
j from

p(zj |z(τ+1)
1 , . . . , z

(τ+1)
j−1 , z

(τ)
j+1, . . . , z

(τ)
M )

I Sample z
(τ+1)
M from p(zM |z(τ+1)

1 , z
(τ+1)
2 , . . . , z

(τ+1)
M−1 )

Roland Memisevic Machine Learning 32



Gibbs Sampling comments

I It is intuitively clear that p(z) is an invariant distribution:

I In each step, we sample from the correct conditional, and
the marginals over the variables we condition on stays
unchanged.

I One can also show that Gibbs sampling satisfies detailed
balance.

I Similarly for ergodicity, given that all conditional
distributions are non-zero everywhere.

I So the Markov chain will converge to producing samples
from p(z). The samples will be highly correlated, so to
get iid samples one needs to discard many of the samples.

Roland Memisevic Machine Learning 33

Metropolis-Hastings

I The Metropolis-Hastings algorithm, like rejection and
importance sampling, makes use of a proposal
distribution.

I In contrast to rejection and importance sampling, here
the proposal distribution is a conditional distribution
q(z(τ)|z(τ−1)), so it defines a Markov chain.

I The proposal distribution is used in combination with an
acceptance probability which ensures that detailed
balance wrt. to the desired distribution holds.

Roland Memisevic Machine Learning 34


