
Visual feature learning
Winter 2013

Roland Memisevic

Lecture 12, March 12, 2013

Roland Memisevic Visual feature learning

Dependence of ICA features

I a: f (s) = |s|
I b: f (s) = s2

I c: f (s) = |s| > 1
I d: f (s) = sign(s)
I e: f (s) = s3

Roland Memisevic Visual feature learning

Dependence of squares

I How can we fix this?
I Idea: Learn another feature learning layer on top of

transformed (eg. squared) features.
I This leads to complex cells, so it seems to make

sense biologically→ one benefit of using squaring
non-linearities.

I But we may also try to understand why these
dependencies exist.

Roland Memisevic Visual feature learning

Benefits of squares (II): Local Fourier energy

I Recall that the sum over the squared responses of
two quadrature Gabor features (90 deg
phase-difference) can detect an edge independently
of phase and polarity.

I To this end, we need to sum over squares across
directions:

Roland Memisevic Visual feature learning

Derivative filters
I In computer vision it is common to detect edges

using horizontal and vertical derivatives.
I To this end, we can convolve the image with two

filters like
hx = (−1 0 1)

(to compute horizontal derivatives) and

hy =



−1
0
1




(to compute vertical derivatives)
I Each of the two resulting output images will contain

the derivative in one direction.

Roland Memisevic Visual feature learning

Image gradients
I The gradient ∇I(m,n) of the image I at pixel (m,n)

can then be written

∇I(m,n) =
(
(I ∗ hx) (m,n)
(I ∗ hy) (m,n)

)

I Other filtermasks can be used, like

hx = (−1 1),hy = (−1 1)T

I Or diagonal variants, like the “Robert’s cross”
operator:

h+ =

(
0 1
−1 0

)
,h− =

(
1 0
0 − 1

)

Roland Memisevic Visual feature learning

I ∗ hx

Roland Memisevic Visual feature learning

I ∗ hy

Roland Memisevic Visual feature learning

I ∗ h+

Roland Memisevic Visual feature learning

I ∗ h−

Roland Memisevic Visual feature learning

Edge strength and direction

I After computing 2−D directional derivatives, one can
compute edge strength and direction from the 2-D
gradient as follows:

I Strength = Norm of the gradient
I Direction = arctan(hy/hx)

I To compute the norm, we have to sum over squared
filter responses.

I Note that, to compute direction, we can alternatively
use a panel of filters that cover all directions.

Roland Memisevic Visual feature learning

Image contours |s(m,n)|

Roland Memisevic Visual feature learning

Benefits of squares (III): motion energy
model

I Adelson & Bergen, 1983
I To to separate motion from what is moving you may

compute a (local) amplitude response.
Roland Memisevic Visual feature learning

The motion energy model

I Adelson & Bergen, 1983
I For 2− D images, use the 3− D Fourier transform.
I This will compute a spatio-temporal, “oriented”

energy.

Roland Memisevic Visual feature learning

Single-frame complex cells and “motion” in a
single image

I If we replace the time, T , in the motion energy model
with another image coordinate, we get a complex cell
applied to a single patch.

I Thus, we may think of an image patch as a slowly
transforming (1d) scan-line.

I This leads to another explanation for why we always
get Fourier and Gabor features: Nearby scan-lines
are related through translation.

Roland Memisevic Visual feature learning

Benefits of squares (IV): stereo vision

I Fleet et al., 1996
I see also: ”ODF” model
I Why does this work?

Roland Memisevic Visual feature learning

Epipolar geometry

I (wikipedia)
I The distance of 3-D point X is a function of the

spatial relationship between XL and XR.

Roland Memisevic Visual feature learning

Multiview geometry

I Figuring out, where a world-point that is seen in the
left image ended up in the right image can be difficult
and messy. (The area around the point will not look
exactly alike in the two images.)

I It gets slightly easier with images that are
pre-processed, so that cameras may be thought of as
being in parallel, because then we can search along
horizontal lines.

I This is known as “rectification”.
I One can generalize this to more than 2 views.

Roland Memisevic Visual feature learning

Multiview geometry

I The core operation is matching of views across
cameras, to find points that coincide.

I The common approach is to crop patches, compute
feature vectors, search across the epipolar lines, and
declare two patches as matches, if they are close in
feature space.

I How well it works depends of course on the features,
the similarity measure, etc.

I Still, matching is hard and incredibly noisy, but there
are various hacks to help clean up (eg., “RANSAC”).

Roland Memisevic Visual feature learning

And in the brain?

I If the camera geometry is fixed, matching amounts to
always searching along the same lines.

I Two points match if they are (approximately)
translated copies of each other.

I So the sum of two phase-shifted squared Gabor
features can detect matches, too, because it detects
translation by a certain amount.

I A panel of energy responses with different phase
shifts will be a population code for the translation.

Roland Memisevic Visual feature learning

Squaring vs. products

I Since
(a + b)2 = 2ab + const

we can think of the complex cell response as a way to
compute products.

I The product-version of the Adelson & Bergen model
has been proposed around the same time.

I It is commonly referred to as cross-correlation model.
I It leads to hidden units that are tuned to inputs that

are identical:

Roland Memisevic Visual feature learning

Square tuning

I square-of-sum
I Other even-symmetric functions will show the same

behaviour:

Roland Memisevic Visual feature learning

Other even-symmetric functions

I Example: abs(sum)

Roland Memisevic Visual feature learning

Suspicious coincidences

I a: f (s) = |s|
I b: f (s) = s2

I c: f (s) = |s| > 1
I d: f (s) = sign(s)
I e: f (s) = s3

I Is the unexplained variability due to coincidences
(caused by motion, depth, contours, etc.)?

Roland Memisevic Visual feature learning

Mapping units

I The usefulness of products for motion, invariance,
etc. has been suggested a long time ago. Eg.:

I Hinton, 1981: “mapping units”
I von der Malsburg, 1981: “dynamic mappings”

Roland Memisevic Visual feature learning

Active dendrites

I Hidden units that can gate connections between
other hidden units behave more like a transistor:

I Weights are not passive “cables”, but they modulate
their behavior depending on context.

I Eg. Archie & Mel., 2000

Roland Memisevic Visual feature learning

Benefits of squares (IV): AND and OR

I A hidden variable that can detect the product of
incoming variables can also be thought of as
computing something similar to a logical AND.

I This is in contrast to simple cells and the standard
neural network hidden units, which compute
something more like an OR.

I Zetzsche & Nuding, 2005

Roland Memisevic Visual feature learning

