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Last time

I 1d Fourier Transform
I 2d waves and 2d Fourier Transform
I Multiplication – Convolution duality
I Convolution – Multiplication duality
I Ringing and filter design
I Aliasing
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More amplitude spectrum examples
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Amplitude spectra of natural images
I Amplitude spectra of natural images show strong

regularity.
I They typically take the form

1
f

where f is the absolute value of frequency.
I Equivalently, the power spectrum |S(f )|2 takes the

form 1
f 2

I This is known as power law.
I Power law relationships occur frequently in nature

and they can be related to scale invariance.
I They can also be related to the covariance structure

of natural images.
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Statistics on image spectra

I Torralba, Oliva; 2003
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DFT leakage

I We can think of the DFT of a finite signal as the DFT
on a periodic signal that has been multiplied by a
rectangular window.

I The DFT spectrum is therefore the spectrum of the
periodic signal, convolved with a sinc-function.

I Because of the zero-crossings of the sinc-function
the convolution will have no effect on signals whose
frequencies are integer multiples of the window
length.

I For any other signal the convolution will generate
additional components in the spectrum.

I This effect is known as leakage.
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Leakage example
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Leakage example
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0 5 10 15 20 25 30
n

−1.0

−0.5

0.0

0.5

1.0

s(
n

)

0 5 10 15 20 25 30
ω

0

5

10

15

20

|S
(ω

)|

Roland Memisevic Visual feature learning

Leakage example
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Windowing

I The main reason that leakage can be a problem is
that other components or noise can leak into the
frequency bins that one may want to detect.

I Leakage cannot be avoided, but different types of
window will have different leakage-properties.

I By choosing an appropriate window function, one can
re-distribute the leakage effect across bins such that
it causes the least harm for the application at hand.
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Windowing and Short Time Fourier Transform

I The Short-Time Fourier Transform (STFT) is a
common application of windowing:

I Fourier transform a signal locally, then view the
resulting set of spectra as a function of time/position.

I In 1d the result is usually called spectrogramm.
I An STFT using a Gaussian window is also called

Gabor transform.
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A spectrogram (top) of an utterance

I (Bishop 2006)
I The image analog of a spectrogram is 3-dimensional.
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PCA and whitening

Roland Memisevic Visual feature learning

The “vision equation”

I The purpose of vision: Infer world properties (or
hidden “causes”), s, from an image, I.

I We can express this with an analysis, encoder,

inference, or backward equation:

s = g(I)
I Learning amounts to estimating the parameters of g

from data.
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Latent variables and generative models

I In practice, it can be easier to write down how images
get formed, given the causes.

I This leads to the synthesis, or decoder, or forward

equation:

I = f (s)
I It describes how images depend on the state of the

world.
I s is called “latent variable” or “hidden variable”,

because unlike the image, I, we do not observe it.
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Latent variables and generative models

I To incorporate ambiguities and uncertainties, we can

re-phrase this equation as a conditional probability:

I ∼ p(I|s)
I Analysis then follows from Bayes’ rule:

p(s|I) = p(I|s)p(s)
p(I)

I Analysis then requires a prior, p(s), over the latent
variables.
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Manifold learning

x

z

g(x)f (z)

I When the dimensionality of
the latent variables is smaller
than the dimensionality of the
data, then we can think of the
data as being distributed
along some
lower-dimensional manifold in
the dataspace.

I Learning the manifold is
known as dimensionality
reduction.

I We shall use x in the following
to denote data and z to
denote the latent variables.
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Principal Components Analysis (PCA)
x2

x1

I If we assume the manifold to be linear, learning is
simple and it can done in closed form.

I Because the manifold is just a lower-dimensional
subspace.

I Learning amounts to finding the optimal subspace.
Inference amounts to projecting data into the
subspace.
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Principal Components Analysis

I Learning the linear manifold is known as Principal
Components Analysis (PCA).

I There are a lot of equivalent learning criteria leading
to PCA.

I Two of the most well-known are
1. find the subspace in which the projection of the

training data has maximal variance
2. maximize the average distance between the

projections and the original points.
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Principal Components Analysis

x2

x1

xn

I The variance along the manifold is large.
I The average projection error is small.
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Principal Components Analysis

x2

x1

xn

I The variance along the manifold is small.
I The average projection error is large.
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Principal Components Analysis

I To learn a subspace means we need to work under
the assumption that the data is mean-centered:

1
N

N∑

n=1

xn = 0

I To derive PCA, we define an orthonormal basis for
the lower-dimensional subspace, consisting of
vectors

u1, . . . ,uM

where M is smaller than the dimensionality of the
data.

I PCA amounts to learning this basis.
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Principal Components Analysis
I It is convenient to stack the basis-vectors

column-wise in matrix U.
I Assuming we had already learned the optimal basis,

we can write the forward and backward mappings as:

Projecting data (backward mapping)
I The optimal coefficients that approximate x within the

subspace are given by

z = UTx

Reconstructing data (forward mapping)
I The approximation x̃ of x is given by

x̃ = Uz = UUTx
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Principal Components Analysis
I One way to learn the subspace: minimize

reconstruction error

E(U) =
∑

n

‖xn −UUTxn‖2

under the constraint UTU = I
I To solve the problem, we stack the data row-wise in

matrix X and rewrite the objective function as a
quadratic form in U:

E(U) = ‖XT −UUTXT‖2
F

= Tr((XT −UUTXT)T(XT −UUTXT))

= Tr(XXT)− Tr(UTXTXU)

= −Tr(UTXTXU) + const

I Optimizing a quadratic form under an orthonormality
constraint is a common exercise in linear algebra:
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Principal Components Analysis
Optimizing quadratic forms

I The maximizer of

Tr(UTAU)

subject to
UTU = I

(where U is D ×M) is given by the matrix whose
columns are the eigenvectors of A corresponding to
the M largest eigenvalues.

I So to find principal components perform an
eigen-decomposition of the data covariance
matrix.
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Principal Components Analysis

Summary: Computing principal components
1. Mean-center the data.
2. Compute the covariance matrix C = 1

N XTX.
3. Perform an eigen-decomposition of C.
4. Sort the eigen-vectors according to the size of their

eigenvalues.
5. Stack the leading M eigen-vectors in matrix U.
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Principal Components Analysis
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I A two-dimensional dataset and the two principal
components.

I Projections onto the leading eigenvectors preserve
most of the variability in the data. So PCA performs
lossy compression.
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Translation invariance (1d)

I The covariance between natural image pixels does
not depend much on their absolute position.
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Translation invariance (2d)

I The covariance between natural image pixels does
not depend much on their absolute position.
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PCA and Fourier analysis (1d)

I A (covariance) matrix whose entries are
translation-invariant has phasors as eigenvectors:

∑

t ′
cov(t , t ′)eiωt ′

=
∑

t ′
c(t − t ′)eiωt ′

=
∑

z

c(z)eiωte−iωz

=
[∑

z

c(z)e−iωz]eiωt

I In fact, the covariance defines a convolution.
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PCA and Fourier analysis (1d)

I Covariance matrices are symmetric (c(z) = c(T − z))
I So the eigenvalues are real:

[∑

z

c(z)eiωz]eiωt

=
[
c(0) +

T−1
2∑

z=1

c(z)
(
eiωz + e−iωz)]eiωt

=
[
c(0) + 2

T−1
2∑

z=1

c(z) cos(ωz)
]
eiωt
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PCA and Fourier analysis 2d

I An image covariance matrix whose entries are
translation-invariant has 2d waves as eigenvectors:

∑

x ′,y ′
cov
(
(x , y), (x ′, y ′)

)
ei(ω1x ′+ω2y ′)

=
∑

x ′,y ′
c
(
(x − x ′)2 + (y − y ′)2)ei(ω1x ′+ω2y ′)

=
∑

ξ,η

c(ξ, η)ei(ω1x−ω1ξ+ω2y−ω2η)

=
[∑

ξ,η

c(ξ, η)e−i(ω1ξ+ω2η)
]
ei(ω1x+ω2y)

Roland Memisevic Visual feature learning

PCA example (first 96 EVs)
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Dimensionality reduction and anti-aliasing

I Thus, PCA on natural images amounts to
approximately peforming a Fourier decomposition,
and dimensionality reduction amounts to low-pass
filtering.

I Low-pass filtering can be a good idea because:
1. In rectangular images, oblique frequencies are

overrepresented as compared to vertical or horizontal
frequencies.

2. Phase becomes meaningless at the highest
representable frequencies.
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PCA and Whitening
I The components of the features, Z, are uncorrelated

(that is, Z has a diagonal covariance matrix):

1
N

∑

n

znz
T
n =

1
N

∑

n

UTxnx
T
n U

= UT
( 1

N

∑

n

xnx
T
n

)
U

= UTCU

= L

where the diagonal matrix L contains the eigenvalues
of C on its diagonal.

I (The last step follows from the eigenvalue definition:
Cui = λiui)
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PCA and Whitening

I We can obtain the identity as the covariance matrix
for Z, if we define the forward mapping as

V = L−
1
2 UT

I Data with identity covariance matrix is known as
white; multiplying data by V as whitening.

I Whitening may be performed without reducing the
dimensionality.

I This amounts to just rotating the coordinate system of
the data, followed by independently “stretching” or
“squeezing” the dimensions to obtain unit variance in
each.
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Whitening example
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Whitening example
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Whitening example
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ZCA Whitening

I Multiplying whitened data with an orthonormal matrix
leaves the data white. (exercise)

I Thus, the whitening matrix V = L−
1
2 UT is not the

only whitening matrix. Any matrix AV with
orthonormal A is, too.

I One way to define a canonical whitening matrix is to
choose the symmetric one:

W := UV = UL−
1
2 UT

I Transforming data with this matrix is known as ZCA
(zero-phase components analysis).
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PCA whitened data
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ZCA whitened data
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ZCA whitened data
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original/ZCA whitened
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ZCA example (all columns of W)
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De-whitening

I To go back from whitened images to images, we
need to invert the transform:

x = UΛz = V−1z (inverse PCA whitening)

x = UΛUTz = W−1z (inverse ZCA whitening)

where Λ = L
1
2 , so Λii =

√
λi
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Common standardization before whitening

1. DC centering

I(x , y)← I(x , y)− 1
MN

∑

x ′,y ′
I(x ′, y ′)

2. Contrast normalization

I(x , y)← I(x , y)√∑
x ,y I(x , y)2 + ε
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Common standardization before whitening

I This is not the same as:

1. Centering each pixel.
2. Setting the standard deviation of each pixel to 1.

I But one may do this in addition.
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