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Last time

I Visual processing
I Receptive fields
I Complex cells and the energy mechanism
I Retinotopy, topography
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Convolutional networks

I A variety of models are inspired by the presence of
simple and complex cells in the brain. Eg.

I Neocognitron (Fukushima, 1980)
I Convolutional networks (LeCun et. al, 1998)
I HMAX (Riesenhuber & Poggio, 1999)

I But “complex cells” in these models are not defined
as energy models (they use pooling without
squaring).
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Why Hebbian learning can implement PCA
I Hebbian learning (linear neurons):

w ← w + ε(wTx)x

I Average weight changes:
〈

∆w
〉

=
〈
ε(wTx)x

〉

=
〈
εxxTw

〉

= Cw

where C is the covariance matrix of x .
I Weight dynamics as differential equation:

dw
dt

= ηCw

I Solution:
w(t) = eηCtw(0)
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Why Hebbian learning can implement PCA

I Write w(t) in terms of the eigenvectors of C:

w(t) =
∑

k

ak (t)vk = eηCtw(0)

= eηCt
∑

k

ak (0)v k

=
∑

k

ak (0)eηCtvk

=
∑

k

ak (0)eηλk tv k
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Why Hebbian learning can implement PCA

I Assume λ1 > . . . > λD

I Then we have

w(t) =
∑

k

ak (t)eηλk tvk

= eηλ1t[a1(0)v1 +
D∑

k=2

ak (0)e−ηt(λ1−λk )vk
]

≈ a1(0)eηλ1tv1

I So
lim

t→∞
w(t)

‖w(t)‖ = ±v1
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Why Hebbian learning can implement PCA

I “But ‖w‖ will grow.”
Solution: Renormalize after every step (Oja’s rule).

I “What about the other eigenvectors v2, . . . ,vD?”
Solution: Orthogonalize after each step (Sanger’s
rule).

I With some small modifications (for example,
non-linear output nonlinearity) Hebbian learning can
implement sparse coding, too.
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Probabilistic PCA

I One can define PCA also as a probabilistic latent
variable model (Tipping, Bishop; 1999).

I Assume a Gaussian prior distribution over latent
variables

p(z) = N (z|0, I)

and a Gaussian conditional distribution over images x

p(x |z) = N (x |Wz + µ, σ2I)
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Probabilistic PCA

I This defines the following generative model: First
draw from a low-dimensional Gaussian in the latent
space, and then draw the observation from a
D-dimensional conditional Gaussian whose mean
depends on the latent variable.
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Probabilistic PCA
I The backward mapping follows from Bayes’ rule:

p(z|x) =
p(x|z)p(z)∫

z
p(x|z)p(z)dz

I Plugging in the Gaussian distributions yields

p(z|x) = N (z|M−1WT(x− µ), σ−2M)

with M = WTW + σ2I
I The marginals turn out to be Gaussian, too:

p(x) =

∫

z

p(x|z)p(z) dz = N (x|µ,WWT + σ2I)

I This is simply a Gaussian, whose covariance matrix
is the outer product of two low-rank matrices (plus
noise).
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Gaussians and independence

I Spherical Gaussians have independent marginals:

p(x1, . . . , xn) =
1

(2π)
n
2

exp
(
− 1

2
‖x‖2)

=
∏

i

1√
2π

exp
(
− 1

2
x2

i

)

I Implications:
1. For Gaussian distributed data, whitening amounts to

extracting the independent components.
2. For Gaussian distributed data, uncorrelatedness

implies independence.
I For non-Gaussian distributions these are not true.
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A counter example

I a: Independent variables.
I b: A linear combination: not independent.
I c: Linear combination after whitening: not

independent.
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Uncorrelatedness is not independence
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I Recall that any orthogonal transformation of white
data is white.

I PCA and ZCA are two of the infinitely many example
whitening matrices.

I How can we find the one that maximizes
independence?
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Finding independent components is
whitening

I Independence does imply uncorrelatedness.
I So the linear transformation that makes data

independent (if it exists) must still be a whitening
matrix!
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Independent components analysis
I Generative model: We have independent “source”

variables si , which get mixed to yield the observed
data:

x = ATs
where p(s1, . . . , sn) =

∏
i pi(si).

I The analysis equation is:

s = WTx
I For images it can be convenient to write this as

I(x , y) =
n∑

i=1

Ai(x , y)si

si =
∑

x ,y

Wi(x , y)I(x , y)

I Learning: Find A and W as well as all the s.
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Independent components analysis

I Instead of the original images, I, we typically use the
whitened components, z, (from PCA or ZCA) as the
input data.

I Multiplying any component si by some scalar will
have no effect if we divide the corresponding Ai by
the same number.

I One way to fix this is by constraining A.
I In general, we also have to assume that A = W−1.
I A and W need to be square matrices. We will relax

that assumption in the future.
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Implication for feature learning

I Most popular feature learning models (auto-encoder
networks, k-means, restricted Boltzmann machines,
etc.) utilize “tied weights”.

I This means that the encoder weights are the
transpose of the decoder weights:

A = WT

I But this means that WTW = I , so W is orthogonal.
I So these models are likely to work well only on

whitened data!?
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Maximum likelihood ICA
I Since we assume independence of the si , we can

write the pdf of the observations as

p(x) =
∣∣det W

∣∣
n∏

i=1

pi
(
wT

i x
)

I For IID observations, we get the following likelihood:

L(w1, . . . ,wn) =
T∏

t=1

p(x t) =
T∏

t=1

[∣∣det W
∣∣

n∏

i=1

pi
(
wT

i x t
)]

Densities under linear transformation
Under a linear transformation y = Wx , the density px (x)
turns into

|det W |px (Wx)
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Maximum likelihood ICA
I The log-likelihood is

log L(w1, . . . ,wn) = T log
∣∣det W

∣∣+
n∑

i=1

T∑

t=1

log pi
(
wT

i x t
)

I If we apply this to pre-whitened data z, then W must
be orthonormal, so

∣∣det W
∣∣ = 1

I In this case we may maximize:

n∑

i=1

T∑

t=1

log pi
(
wT

i z t
)
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Maximum likelihood ICA

I We can rewrite the constrained optimization problem
as

Minimize
∑

t

∑

i

φ(wT
i z t)

s.t. WTW = I

where φ() = − log pi() is some negative,
non-Gaussian log-pdf.

I We just need to choose appropriate source
densities...
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Maximum likelihood for Gaussian sources

I The independent Gaussian is spherically symmetric.
I So rotation (orthogonal W ) won’t change the

objective.
I For any non-Gaussian source distribution it will.
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Forms non-Gaussianity

I To get beyond uncorrelatedness, we have to choose
non-Gaussian pi .

I Three forms of non-Gaussianity are
1. Super-Gaussian (sparsity): Distribution is peaked at

zero (positive kurtosis)
2. Sub-Gaussian: Distribution is “flat” at zero (negative

kurtosis)
3. Skew: Distribution is unsymmetric.

I Of these, super-Gaussianity is generally assumed to
be the best match for (most) image features.
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Sparseness
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I Top: Samples from a student-T-distribution (sparse)
I Bottom: Samples from a normal distribution of the

same variance (not sparse).
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Histograms
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Sparse does not mean “small values”

I Sparsity can easily be mixed up with “small”.
I A normal distribution may be scaled to take on small

values, too. This doesn’t make it sparse.
I Sparsity must be measured relative to some standard

deviation.
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Gaussian scale mixtures

I One explanation for super-Gaussianity in natural
images is that any one feature may occur at different
(brightness-)scales.

I We can model an image patch using a Gaussian gi

whose value is modulated by some independent
scale-variable di :

si = gidi

I This yields a super-Gaussian distribution, because
p(si) will be a superposition of Gaussians each with
different variance.

I In fact, contrast normalization seems to reduce
sparsity (a bit).
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Sparse source densities

I A popular choice for the sparse source density is the
(zero-mean) Laplacian:

p(si) =
1

2b
exp

(
− |si |

b
)

I A differentiable alternative is the log cosh function.
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Sparse coding

I With this source density, the optimization problem
turns into

Minimize
∑

t

∑

i

|wT
i z t |

s.t. WTW = I

I This can be solved by alternating gradient steps and
projections that enforce the constraint.
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Reconstruction error
I An alternative to solving a constrained optimization

problem is to enforce the constraint

WTW = I ⇔W−1 = WT

implicitly.
I By adding a reconstruction term we can encourage

this as follows:

Minimize
∑

t

‖WWTz t − z t‖2 +
∑

t

∑

i

|wT
i z t |

I We may even separate encoder and decoder
weights:

Minimize
∑

t

‖AWTz t − z t‖2 +
∑

t

∑

i

|wT
i z t |
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Reconstruction error

I In the literature one frequently finds

Minimize
∑

t

‖Ast − z t‖2 +
∑

t

∑

i

|si |

where the optimization is over both A and s.
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ICA filters
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Sparse coding components
(Olshausen/Field)
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Estimating the source densities

I One can estimate the source densities from data as
well.

I It turns out that not all components are sparse.
I The DC component, for example, tends to be

sub-Gaussian.
I So to keep it or not can make a difference in practice!
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Relation between analysis and synthesis
weights

I If the si are independent and have unit variance, it
holds (exercise):

cov
(
(x , y), (x ′, y ′)

)
=
∑

i

Ai(x , y)Ai(x ′, y ′)

I Therefore:∑

x ′,y ′
cov
(
(x , y), (x ′, y ′)

)
Wi(x ′, y ′)

=
∑

x ′,y ′

∑

j

Aj(x , y)Aj(x ′, y ′)Wi(x ′, y ′)

=
∑

j

Aj(x , y)
∑

x ′,y ′
Aj(x ′, y ′)Wi(x ′, y ′) = Ai(x , y)

I Multiplying by the covariance matrix is
lowpass-filtering:
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Example analysis filters
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Example synthesis filters
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Information theoretic interpretation
I One can use the mutual information to measure

independence of the si :

I(s1, . . . , sn) =

∫

s1,...,sn

p(s1, . . . , sn) log
p(s1, . . . , sn)

p(s1) · · · p(sn)

=
n∑

i=1

H(si)− H(s)

=
n∑

i=1

H(wT
i z)− H(Wz)

I For orthogonal W , the last term is constant.
I To minimize MI, minimize the entropy of individual

components!
I To minimize their entropy, make them less Gaussian!
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