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Convolutional networks

» A variety of models are inspired by the presence of
simple and complex cells in the brain. Eg.
» Neocognitron (Fukushima, 1980)
» Convolutional networks (LeCun et. al, 1998)
» HMAX (Riesenhuber & Poggio, 1999)

» But “complex cells” in these models are not defined
as energy models (they use pooling without
squaring).
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Visual processing

Receptive fields

Complex cells and the energy mechanism
Retinotopy, topography
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Why Hebbian learning can implement PCA

» Hebbian learning (linear neurons):
W w+e(w'x)x
» Average weight changes:
(Aw) = (e(w'x)x)
= (exx"w)
= Cw

where C is the covariance matrix of x.
» Weight dynamics as differential equation:

ar S ew
» Solution:
w(t) = "°'w(0)
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Why Hebbian learning can implement PCA

» Write w(t) in terms of the eigenvectors of C:
w(t) => alt)ivy =
k
k
k
= Z ak(O)eW’Vk
k

e"'w(0)

Why Hebbian learning can implement PCA

» “But ||w| will grow.”
Solution: Renormalize after every step (Oja’s rule).

» “What about the other eigenvectors v,, ..., vp?”
Solution: Orthogonalize after each step (Sanger’s
rule).

» With some small modifications (for example,
non-linear output nonlinearity) Hebbian learning can
implement sparse coding, too.
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Why Hebbian learning can implement PCA

» Assume A\ > ... > \p
» Then we have
w(t) = ) a(t)e™ v,
k
D
e[y (0)vy + > a(0)e " Wvi]
k=2
~ a;(0)e" v,
» So ,
lim w(?) = 4V
t=oo [[w(t)]]

Probabilistic PCA

» One can define PCA also as a probabilistic latent
variable model (Tipping, Bishop; 1999).

» Assume a Gaussian prior distribution over latent
variables
p(z) = N(2/0,1)

and a Gaussian conditional distribution over images x

p(x|2) = N (x|Wz + p, o°1)
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Probabilistic PCA

» This defines the following generative model: First
draw from a low-dimensional Gaussian in the latent
space, and then draw the observation from a
D-dimensional conditional Gaussian whose mean
depends on the latent variable.

Gaussians and independence

» Spherical Gaussians have independent marginals:

p(Xi,... X)) = (217)nexp(—%||><!\2)
— H\/Zexp 2x,-)

» Implications:
1. For Gaussian distributed data, whitening amounts to
extracting the independent components.
2. For Gaussian distributed data, uncorrelatedness
implies independence.

» For non-Gaussian distributions these are not true.
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Probabilistic PCA

» The backward mapping follows from Bayes’ rule:

p(x|z)p(z)
Z\X
PR = T pixiz)p(a)z
» Plugging in the Gaussian distributions yields
p(z|x) = N(z]M "W (x — u), 0 72M)

with M = WTW + 621
» The marginals turn out to be Gaussian, too:

- / p(x[2)p(z) dz

» This is simply a Gaussian, whose covariance matrix
is the outer product of two low-rank matrices (plus
noise).

A counter example

= N (x|, WWT + 521)

» a: Independent variables.
» b: A linear combination: not independent.

» c: Linear combination after whitening: not
independent.
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Uncorrelatedness is not independence

L0

-’

» Recall that any orthogonal transformation of white
data is white.

» PCA and ZCA are two of the infinitely many example
whitening matrices.

» How can we find the one that maximizes
independence?
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Independent components analysis

» Generative model: We have independent “source”
variables s;, which get mixed to yield the observed

data:
x=A"s
where p(s1,...,sn) =[], pi(si).
» The analysis equation is:
s=W'x

» For images it can be convenient to write this as
n
I(x,y) = Alx.y)s
i=1
Si = Z VVI(Xa.y)I(X?y)

Xy
» Learning: Find A and W as well as all the s.
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Finding independent components is
whitening

» Independence does imply uncorrelatedness.

» So the linear transformation that makes data
independent (if it exists) must still be a whitening
matrix!

Independent components analysis

v

Instead of the original images, /, we typically use the
whitened components, z, (from PCA or ZCA) as the
input data.

» Multiplying any component s; by some scalar will
have no effect if we divide the corresponding A; by
the same number.

» One way to fix this is by constraining A.

» In general, we also have to assume that A= W~".

» Aand W need to be square matrices. We will relax

that assumption in the future.
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Implication for feature learning

» Most popular feature learning models (auto-encoder
networks, k-means, restricted Boltzmann machines,
etc.) utilize “tied weights”.

» This means that the encoder weights are the
transpose of the decoder weights:

A=WT

» But this means that WTW = I, so W is orthogonal.

» So these models are likely to work well only on
whitened data!?
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Maximum likelihood ICA
» The log-likelihood is

n T
log L(w+, ..., w,) = Tlog | det W}+ZZ|09P,’(W,-TXt)

i=1 t=1

» If we apply this to pre-whitened data z, then W must
be orthonormal, so

|det W| =1
» In this case we may maximize:

n

33 logp (w)'z)

i=1 t=1
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Maximum likelihood ICA

» Since we assume independence of the s;, we can
write the pdf of the observations as

p(x) = |detW| ] pi(w/x)

i=1
» For IID observations, we get the following likelihood:

T T n

L(wy,....wo) =] px) =] [| det W| Hp,-(w,Tx,)]

t=1 t=1 i=1

Densities under linear transformation

Under a linear transformation y = Wx, the density p,(x)
turns into
| det W|py(Wx)

Maximum likelihood ICA

» We can rewrite the constrained optimization problem

as
Minimize Y ) ¢(w]z))
s.t. V\t/T V|’/ =1
where ¢() = —log p;() is some negative,

non-Gaussian log-pdf.

» We just need to choose appropriate source
densities...
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Maximum likelihood for Gaussian sources

» The independent Gaussian is spherically symmetric.

» So rotation (orthogonal W) won’t change the
objective.

» For any non-Gaussian source distribution it will.
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Sparseness

sample from sparse distribution
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sample from gaussian

Forms non-Gaussianity

» To get beyond uncorrelatedness, we have to choose
non-Gaussian p;.
» Three forms of non-Gaussianity are
1. Super-Gaussian (sparsity): Distribution is peaked at
zero (positive kurtosis)
2. Sub-Gaussian: Distribution is “flat” at zero (negative
kurtosis)
3. Skew: Distribution is unsymmetric.

» Of these, super-Gaussianity is generally assumed to
be the best match for (most) image features.
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Histograms

histogram sparse distribution
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» Top: Samples from a student-T-distribution (sparse)
» Bottom: Samples from a normal distribution of the
same variance (not sparse).
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Sparse does not mean “small values”

» Sparsity can easily be mixed up with “small”.

» A normal distribution may be scaled to take on small
values, too. This doesn’t make it sparse.

» Sparsity must be measured relative to some standard
deviation.

Sparse source densities
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» A popular choice for the sparse source density is the
(zero-mean) Laplacian:

1 Si
p(si) = op EXP (- |—b|)

» A differentiable alternative is the log cosh function.
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Gaussian scale mixtures

» One explanation for super-Gaussianity in natural
images is that any one feature may occur at different
(brightness-)scales.

» We can model an image patch using a Gaussian g;
whose value is modulated by some independent
scale-variable d;:

Si = gid,

» This yields a super-Gaussian distribution, because
p(s;) will be a superposition of Gaussians each with
different variance.

» In fact, contrast normalization seems to reduce
sparsity (a bit).

Sparse coding

» With this source density, the optimization problem
turns into

Minimize Z Z \wiz|
t
st. W'W=1|

» This can be solved by alternating gradient steps and
projections that enforce the constraint.
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Reconstruction error Reconstruction error

» An alternative to solving a constrained optimization
problem is to enforce the constraint

W'W=IleW'=Ww"

implicitly. » In the literature one frequently finds
» By adding a reconstruction term we can encourage o
this as follows: Minimize ) [|Asi =z |+ ) |si
t t i

Minimize Z |WWTz, — z;||> + Z Z |wiz,|
! tod where the optimization is over both A and s.

» We may even separate encoder and decoder

weights:
Minimize Z |AW Tz, — z||2 + Z Z \wiz,
t t i
ICA filters Sparse coding components
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Estimating the source densities

v

One can estimate the source densities from data as
well.

It turns out that not all components are sparse.

The DC component, for example, tends to be
sub-Gaussian.

So to keep it or not can make a difference in practice!

v

v

v
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Example analysis filters
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Relation between analysis and synthesis

weights

» If the s; are independent and have unit variance, it
holds (exercise):

cov((x,y), (X, y")) = Z Ai(x, N A(X,y)

» Therefore:
> cov((x,y), (X, y)) Wi(x', ')
X/7y/
= D D AKYANX YW, Y)
XLy
= ZAJ(Xay) Z Aj(Xlay/)VVi(XlayI) = Ai(Xay)
J Xy
» Multiplying by the covariance matrix is
lowpass-filtering:

Example synthesis filters
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Information theoretic interpretation

» One can use the mutual information to measure
independence of the s;:

p(S1,...,8n)
p(s1) - p(sn)

I(81,...,87) = / p(si,...,8n) log
54 Sn

-----

n

= ) H(s) - H(s)

i=1

— zn: H(w/z) — HWz)

» For orthogonal W, the last term is constant.

» To minimize MI, minimize the entropy of individual
components!

» To minimize their entropy, make them less Gaussian!
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