
Visual feature learning
Winter 2013

Roland Memisevic

Lecture 9, February 19, 2013

Roland Memisevic Visual feature learning

Last time

I Limitations of ICA
I Overcomplete codes
I Energy based models

Roland Memisevic Visual feature learning

Energy based models

I We may eliminate the partition function altogether
and define the model as an “energy landscape” that
we form through learning.

I This gives us even more freedom in devising
schemes that push or pull on the energy landscape.

I (LeCun, et al. 2006)

Roland Memisevic Visual feature learning

Energy based models

I It is common to define energies as −q(x ; W), in
which case we want to minimize energy near the
data.

I Energy based models can be used in a variety of
tasks, but for feature learning, they practically always
involve hidden variables which can be visualized
conveniently as a bi-partite graph.

I Pushing up the energy away from the data typically
translates into a capacity constraint on the hiddens.

Roland Memisevic Visual feature learning

Feature learning and bi-partite networks

s = WTx

xj

s
sk

wjk

x

I Most feature learning models are based on a
variation of the encoder/decoder equations.

I PCA is a special case with linear dependencies and
low-dimensional s

Roland Memisevic Visual feature learning

Feature learning

s = WTx + bs

xj

wjk

bx
j

x

s

bs
k

sk

I In practice, one typically adds bias terms to obtain
affine not linear dependencies.

I But one often drops these in derivations.

Roland Memisevic Visual feature learning

Feature learning models

s = WTx
x = Ws

xj

s
sk

x

wjk

PCA
I Training: minimize ‖x −Ws‖2 = ‖x −WTWx‖ s.t.

orthogonality constraint.

Roland Memisevic Visual feature learning

Feature learning models

x = Ws

xj

s
sk

wjk

x

Sparse coding (Olshausen/Fields)
I Energy:

∑
i ‖x i −Wsi‖2 +

∑
i |si | (optimize wrt. si

and W)
I Inference: Search for s that minimizes the same cost.

Roland Memisevic Visual feature learning

Feature learning models

s = sigmoid(WTx)

x = sigmoid(Ws)

xj

s
sk

wjk

x

(Binary) Restricted Boltzmann Machine (RBM)
I Density: p(x ,s) = 1

Z exp
(∑

jk wjkxjsk
)

I Contrastive divergence learning
(Hebbian/anti-hebbian learning rule)

I Probability model with Gi(x) =
(
1 + exp(wT

i x)
)

Roland Memisevic Visual feature learning

Feature learning models

s = sigmoid(WTx)

x = Ws

yj

wkj

wjk

x

x̂

ŷj

sk

Autoencoder
I Energy:

∑
i ‖x i −W sigmoid

(
WTx i

)
‖2

I Can add a sparsity penalty for s, or corrupt inputs
during training (Vincent et al., 2008)

Roland Memisevic Visual feature learning

Feature learning models

s = sigmoid(ATx)

x = Ws

yj

akj

wjk

x

x̂

ŷj

sk

Autoencoder with “untied” weights
I Energy:

∑
i ‖x i − Asigmoid

(
WTx i

)
‖2

I Can add a sparsity penalty for s, or corrupt inputs
during training (Vincent et al., 2008)

Roland Memisevic Visual feature learning

Feature learning models

s = wta(WTx)

x = Ws
xj

s
sk

wjk

x

k-means clustering
I Energy:

∑
i ‖x i −Ws‖2 with s infered as follows:

I Inference: Set si = 1 for the i with maximal wT
i x , 0

otherwise (“winner-takes-all”)

Roland Memisevic Visual feature learning

Feature learning models

s = wta(WTx)

x = Ws
xj

s
sk

wjk

x

Mixtures of Gaussians
I Probalistic version of kmeans.
I Density:

p(x) =
∑

k p(sk)p(x |sk) =
∑

k p(sk)N (x|W·k ,Σk)

I Inference: Bayes’ rule.

Roland Memisevic Visual feature learning

Lateral interactions

yj

s
sk

wjk

x

I In some of these models, inference requires lateral
interactions or feedback.

I This means that hidden units need to talk to each
other to figure out their joint activity pattern.

I In most cases, the interactions are inhibitory and lead
to competition.

I Examples include sparse coding, k-means, MoG.
Roland Memisevic Visual feature learning

Lateral interactions

yj

s
sk

wjk

x

I End-stopping is one known effect that can be
explained with competition among simple cells.

I A process related to lateral interaction is top-down
feedback from higher processing layers.

Roland Memisevic Visual feature learning

K -means clustering

x1

x2

I K-means is traditionally a clustering algorithm.
I Learning: Fit K prototypes µk (these will be the rows

of W) to training data-points xn.
I Inference: Given a point, find the nearest prototype.

Roland Memisevic Visual feature learning

K -means clustering
I Think of s as a one-hot encoding of the discrete

variable representing the index of the cluster center.
I There are K prototypes µ1, . . . ,µK that represent the

K clusters. The dimensionality of the prototypes is
the same as that of the data x .

I Assume we knew the cluster assignments sn for each
point xn.

I The K -means objective function measures the
average distance between points x and their
representatives:

J =
N∑

n=1

K∑

k=1

snk‖xn − µk‖2

Roland Memisevic Visual feature learning

K -means clustering

I Learning amounts to finding both the prototypes µk

and the assignments sn for each point, so as to
minimize J.

I This seems like a tricky optimization problem,
because the sn are discrete and the µk are
continuous.

I But learning gets easy if we decouple learning the sn

from learning the µk .
I This gives rise to a block coordinate-descent method,

which is a special case of the EM-algorithm for
training mixtures of Gaussians.

Roland Memisevic Visual feature learning

K -means clustering

Finding the optimal sn
I Note that given the µk , we can optimize all the sn

independently, because the objective is just the sum
over n.

I But the squared error will be smallest if we set
snk = 1 for whichever µk is closest.

I Formally, to optimize all sn, given the set of µk , set:

snk =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.

Roland Memisevic Visual feature learning

K -means clustering
Finding the optimal µk

I Given S, J is a quadratic function of µk which we can
minimize by setting the derivative to zero:

2
N∑

n=1

snk (xn − µk) = 0

I Solving for µk yields:

µk =

∑
n snkxn∑

n snk

I This solution has a simple interpretation: Set each µk

to the mean of all points currently assigned to cluster
k !

Roland Memisevic Visual feature learning

K -means clustering

I Learning amounts to iterating inference of the sn, and
adapting the parameters µk until there are no more
changes.

I This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

I But there can be local minima.
I One way to deal with this is to try multiple runs with

different initializations for the parameters µk and to
pick the solution with the lowest final cost.

I (Bishop, 2006):

Roland Memisevic Visual feature learning

K -means example

I K-means with K = 2.
Roland Memisevic Visual feature learning

The value of J as learning progresses

Roland Memisevic Visual feature learning

K -means inference
I Given the trained model, we can infer the

cluster-centers for new test-data points x not seen
during training: Pick the nearest µk like we did during
training:

sk =

{
1 if k = argminj ‖xn − µj‖2

0 otherwise.

I So inference involves some non-linear interactions
between the hiddens.

I The set of all K prototypes µk is sometimes called
codebook.

I Clustering and K -means are also known as vector
quantization.

Roland Memisevic Visual feature learning

K -means via online learning

I The reconstruction error for training point x may be
written

E(W) =
1
2
(
x −w s(x)

)2

I Its gradient is

∂E(W)

∂w i
= −

(
x −w s(x)

)
δs(x),i

I So we can use the online learning rule:

w s(x) ← w s(x) + η
(
x −w s(x)

)

Roland Memisevic Visual feature learning

Geometry of online K -means

x −ws(x)

ws(x)

x

∆ws(x)

I ∆w s(x) = η(x − ws(x))
moves the winning
weight vector towards
the observation.

Roland Memisevic Visual feature learning

Online K -means and Hebbian learning

I We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning

I To this end write the update as

∆w k = ηδks(x)
(
x −w k

)

where

δks(x) =

{
1 if s(x) = k
0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

I There are two learning terms:

Roland Memisevic Visual feature learning

K -means and Hebbian learning
1. A Hebbian term:

δks(x)x

2. An “unlearning” term:

−δks(x)w k

I The positive term decreases the energy near the
data.

I The unlearning term increases the energy
everywhere.

I “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.

Roland Memisevic Visual feature learning

K-means features from natural image
patches

Roland Memisevic Visual feature learning

