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Energy based models

» We may eliminate the partition function altogether
and define the model as an “energy landscape” that
we form through learning.

» This gives us even more freedom in devising
schemes that push or pull on the energy landscape.

» (LeCun, et al. 2006)
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Last time

» Limitations of ICA
» Overcomplete codes
» Energy based models

Energy based models
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» It is common to define energies as —q(x; W), in
which case we want to minimize energy near the
data.

» Energy based models can be used in a variety of
tasks, but for feature learning, they practically always
involve hidden variables which can be visualized
conveniently as a bi-partite graph.

» Pushing up the energy away from the data typically
translates into a capacity constraint on the hiddens.
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Feature learning and bi-partite networks
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» Most feature learning models are based on a
variation of the encoder/decoder equations.

» PCA is a special case with linear dependencies and
low-dimensional s

Feature learning models
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PCA

» Training: minimize ||x — Ws||2 = || x — WTWXx| s.t.
orthogonality constraint.
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Feature learning
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» In practice, one typically adds bias terms to obtain
affine not linear dependencies.

» But one often drops these in derivations.

Feature learning models
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Sparse coding (Olshausen/Fields)

» Energy: Y, ||xi — Ws;||2 + >, |si| (optimize wrt. s;
and W)
» Inference: Search for s that minimizes the same cost.
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Feature learning models
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s = sigmoid(W'x) &
X = sigmoid(Ws)
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(Binary) Restricted Boltzmann Machine (RBM)

> Density: p(x, s) = Z exp (D WikX;Sk)
» Contrastive divergence learning
(Hebbian/anti-hebbian learning rule)

» Probability model with Gj(x) = (1 + exp(w] x))
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Feature learning models
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Autoencoder with “untied” weights
» Energy: >, ||x; — Asigmoid (WTx;) |2

» Can add a sparsity penalty for s, or corrupt inputs
during training (Vincent et al., 2008)
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Feature learning models
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Autoencoder
» Energy: Y, [|x; — Wsigmoid (W™x;) |2
» Can add a sparsity penalty for s, or corrupt inputs
during training (Vincent et al., 2008)
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Feature learning models
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s = wta(W'x) &
x = Ws
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k-means clustering

» Energy: Y, ||x; — Ws||? with s infered as follows:

» Inference: Set s; = 1 for the i with maximal w}'x, 0
otherwise (“winner-takes-all”)
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Feature learning models
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s = wta(WTx) &
x = Ws
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Mixtures of Gaussians
» Probalistic version of kmeans.

» Density:
p(x) = >k p(sk)p(X|sk) = > ) P(Sk)N (x| Wik, Z)
» Inference: Bayes' rule.

Lateral interactions
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» End-stopping is one known effect that can be
explained with competition among simple cells.

» A process related to lateral interaction is top-down
feedback from higher processing layers.
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Lateral interactions
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In some of these models, inference requires lateral
interactions or feedback.

This means that hidden units need to talk to each
other to figure out their joint activity pattern.

In most cases, the interactions are inhibitory and lead
to competition.

Examples include sparse coding, k-means, MoG.

K-means clustering
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» K-means is traditionally a clustering algorithm.

» Learning: Fit K prototypes p (these will be the rows
of W) to training data-points x,.

» Inference: Given a point, find the nearest prototype.
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K-means clustering K-means clustering

» Think of s as a one-hot encoding of the discrete

variable representing the index of the cluster center. » Learning amounts to finding both the prototypes px
» There are K prototypes 1, ..., pg that represent the and the assignments s, for each point, so as to
K clusters. The dimensionality of the prototypes is minimize J.
the same as that of the data x. » This seems like a tricky optimization problem,
» Assume we knew the cluster assignments s, for each because the s, are discrete and the u are
point X . continuous.
» The K-means objective function measures the » But learning gets easy if we decouple learning the s,
average distance between points x and their from learning the pu.
representatives: » This gives rise to a block coordinate-descent method,
N K which is a special case of the EM-algorithm for
raining mixtur f ians.
J— Zzsnknxn T training mixtures of Gaussians
n=1 k=1
K-means clustering K-means clustering
Finding the optimal gk
Finding the optimal s, » Given S, J is a quadratic function of p, which we can

» Note that given the 114, we can optimize all the s, minimize by setting the derivative to zero:

independently, because the objective is just the sum N

over n. 2 Z Sok(Xn — px) =0
» But the squared error will be smallest if we set n=1

S = 1 for whichever uy is closest.

o _ » Solving for p, yields:
» Formally, to optimize all s, given the set of uy, set:
_ Zn SnkXn
- {1 if kK = argmin, || X, — p|? Hi > Snk
k=

0 otherwise.

» This solution has a simple interpretation: Set each g
to the mean of all points currently assigned to cluster
k!
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K-means clustering

» Learning amounts to iterating inference of the s,, and
adapting the parameters p until there are no more
changes.

» This training procedure always converges: J is
positive, and every step either decreases it or leaves
it unchanged.

» But there can be local minima.

» One way to deal with this is to try multiple runs with
different initializations for the parameters p, and to
pick the solution with the lowest final cost.

(Bishop, 2006):
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K-means example

» K-means with K = 2.

K-means inference

» Given the trained model, we can infer the
cluster-centers for new test-data points x not seen
during training: Pick the nearest u like we did during
training:

o — 1 if k = argmin; || x, — p]|?
“7 10 otherwise.

» So inference involves some non-linear interactions
between the hiddens.

» The set of all K prototypes u, is sometimes called
codebook.

» Clustering and K-means are also known as vector
quantization.
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K-means via online learning

» The reconstruction error for training point x may be

written ’
E(W) = 5 (X~ Wew)”
» Its gradient is
OE(W)
ow, — X Wsw)dsta),

» So we can use the online learning rule:

Ws(x) = Ws(x) + 77(X — We(x))

Online K-means and Hebbian learning

» We can interpret the online k-means updates as:
Hebb-rule + competition + unlearning
» To this end write the update as

AW = nks(x) (X — W)

where
1 ifs(x)=k
Oks() = 0 else

is the “post-synaptic activity” determined by
competition (“winner takes all” rule)

» There are two learning terms:
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Geometry of online K-means

> AWs(x) = 77(X - Ws(x))
moves the winning
weight vector towards
the observation.

X — Ws(x)
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K-means and Hebbian learning

1. A Hebbian term:
5ks(x)x
2. An “unlearning” term:

—Oks(x) Wk

» The positive term decreases the energy near the
data.

» The unlearning term increases the energy
everywhere.

» “Hebb-rule + competition + unlearning” are present
(not surprisingly) in a wide variety of learning
algorithms, including contrastive divergence learning
for RBMs.
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K-means features from natural image
patches




