
IFT 6085 Probability refresher

Roland Memisevic

Jan 25, 2013

Probabilities in AI

I Probabilities allow us to be explicit about uncertainties:
I Instead of representing values, we can “keep all options

open” by defining a distribution over alternatives.
I Example: Instead of setting ’x = 4’, define all of:

p(x = 1),p(x = 2),p(x = 3),p(x = 4),p(x = 5)
I Benefits:

1. Robustness (let modules tell each other their whole state of
knowledge)

2. Measure of uncertainty (“errorbars”)
3. Multimodality (keep ambiguities around)

I We can still express ’x = 4’ as a special case.

Random variables
I The only relevant information about random variable is its

distribution: (“A random variable is (i) not random, (ii) not a
variable.”)

I p(x) is a distribution if

p(x) ≥ 0 and
∑

x

p(x) = 1

I Notational quirks:
I p is usually heavily overloaded. The argument decides. For

example, in “p(x , y) = p(x)p(y)” each p means something
different!

I Sometimes we write X for the RV and x for the values it can
take on.

I Another common notation is p(X = x).
I
∑

x . . . refers to the sum over all values that x can take on.
I For continuous x , replace

∑
by
∫

(up to some measure
theoretic “glitches”, that we can usually safely ignore)

I Some use the term “density” or “probability density function
(pdf)” to refer to continuous p(·).

Summarizing properties

I Any relevant properties of RVs are just properties of their
distributions.

I Mean:
µ =

∑

x

p(x)x = E
[
x
]

I Variance:

σ2 =
∑

x

p(x)(x − µ)2 = E
[
(x − µ)2]

I (Standard deviation: σ =
√
σ2)

Some useful distributions (1d)
Discrete

I Bernoulli: px (1− p)1−x where x is 0 or 1.

I Discrete distribution: (also known as
“multinoulli”)

I Binomial, Multinomial: Sum over Bernoulli/Discrete.
(Sometimes “multinomial” is used to refer to a discrete
distribution, too...)

I Poisson: p(k) = λk exp(−λ)
k!

Continuous

I Uniform:
I Gaussian (1d): p(x) = 1

(2πσ2)
1
2

exp
(
− 1

2σ2 (x − µ)2
)

How to represent discrete values

I A very useful way to represent a variable that takes one
out of K values:

I As a K -vector with (K − 1) 0’s, and one 1 at position k

x =

0
...
1
...
0

I This is known as one-of-K encoding, one-hot encoding,
or as orthogonal encoding.

I Note that we can interpret x itself as a probability
distribution.

Some useful distributions (1d)

I Using a one-hot encoding allows us to write the discrete
distribution compactly as

p(x) =
∏

k

µxk
k

where µk is the probability for state k .
I This can greatly simply maximum likelihood calculations

(see below).

The Gaussian (1d)

p(x) = N (x |µ, σ2) =
1

(2πσ2)
1
2

exp
(
− 1

2σ2 (x − µ)2
)

Multiple variables

I The joint distribution p(x , y) of two variables x and y also
satisfies

p(x , y) > 0 and
∑

x ,y

p(x , y) = 1,

I Likewise, we can write

p(x) > 0 and
∑

x
p(x) = 1,

for vector x
I For discrete RVs, the joint is a table (or a

higher-dimensional array).
I Everything else stays the same.

Conditionals, marginals

I Everything one may want to know about a random vector
can be derived from the joint distribution.

I Marginal distributions:

p(x) =
∑

y

p(x , y) and p(y) =
∑

x

p(x , y)

I Imagine collapsing tables.
I Conditional distributions:

p(y |x) =
p(x , y)

p(x)
and p(x |y) =

p(x , y)

p(y)

I Think of conditional as a family of distributions, “indexed”
by the conditioning variable. (We could write p(y |x) also as
px (y)).

Summarizing properties, correlation
I Mean:

µ =
∑

x
p(x)x = E

[
x
]

I Covariance:

cov(xi , xj) = E
[
(xi − µi)(xj − µj)

]

I Covariance matrix:

Σij = cov(xi , xj)
(
Σ =

∑

x
p(x)(x − µ)(x − µ)T

)

I The correlation coefficient:

corr(xi , xj) =
cov(xi , xj)√

σ2
i σ

2
j

I Two variables for which the covariance is zero are called
uncorrelated.

Correlation example

uncorrelated correlated

The multivariate Gaussian

p(x) =
1

(2π)
D
2 |Σ| 12

exp
(
− 1

2
(x − µ)TΣ−1(x − µ)

)

A fundamental formula

p(x |y)p(y) = p(x , y) = p(y |x)p(x)

I This can be generalized to more variables (“chainrule of
probability”).

I A special case is Bayes’ rule:

p(x |y) = p(y |x)p(x)
p(y)

Independence and conditional independence

I Two RVs are called independent, if

p(x , y) = p(x)p(y)

I Captures our intuition of “dependence”. In particular, note
that this definition implies

p(y |x) = p(y)

I Independence implies uncorrelatedness, but not vice
versa!

I Related: Two RVs are called conditionally independent,
given a third variable z, if

p(x , y |z) = p(x |z)p(y |z)

I (Note that these concepts are just a property of the joint.)

Independence is useful

I Say, we have some variables, x1, x2, . . . , xK

I Even just defining their joint (let alone doing computations
with it) is hopeless for large K !

I But what if all the xi are independent?
I Then we need to specify just K probabilities, because the

joint is the product.
I A more sophisticated version of this idea, using conditional

independence, is the basis for the area of graphical
models.

Maximum likelihood

I Another useful property of independence.
I Task: Given a set of data points

(x1, . . . , xN)

build a model of the data-generating process.
I Approach: Fit a parametric distribution p(x ; w) with some

parameters w to the data.
I How? Maximize the probability of “seeing” the data under

your model!

Maximum likelihood

I This is easy if examples are independent and identically
distributed (“iid”):

p(x1, . . . ,xN ; w) =
∏

i

p(x i ; w)

I Instead of maximizing probability, we may maximize
log-probability, because the log function is monotonic.

I So we may maximize:

L(w) := log
∏

i

p(x i ; w) =
∑

i

log p(x i ; w)

I Thus each example x i contributes an additive component
to the objective.

Gaussian example

I What is the ML-estimate of the mean of a Gaussian?
I We need to maximize

L(µ) =
∑

i

log p(xi ;µ) =
∑

i

(
− 1

2σ2 (xi − µ)2)− const.

I The derivative is:

∂L(µ)

∂µ
=

1
σ2

∑

i

(
xi − µ

)
=

1
σ2

(∑

i

xi − Nµ
)

I By setting to zero, we get:

µ =
1
N

∑

i

xi

Linear regression

x→ t

I Given two real-valued observations x and t, learn to
predict t from x.

I This is a supervised learning problem.

Linear regression

I We can define linear regression as a probabilistic model, if
we make the following assumption:

t = y(x,w) + ε

I In words, we assume there is a true, underlying function
y(x,w), and the function values we observe are corrupted
by additive Gaussian noise.

I Thus
p(t |x;w) = N

(
t |y(x,w), σ2)

Linear regression

Noise vs. dependencies we don’t care about

I Actually, linear regression can work fine also with highly
non-Gaussian noise.

Linear regression

I To fit the conditional Gaussian, given training data
D =

{
(xn, tn)

}N
n=1, we make the iid assumption and get:

p(D) =
∏

n

N (tn|y(xn,w), σ2)

I Using monotonicity of the log, we may again maximize the
log-probability (or minimize its negation):

minimize

N∑

n=1

(
tn −wTxn

)2
+ const.

Least squares
I To optimize with respect to w, we differentiate:

∂E
∂w

= −
N∑

n=1

(
tn −wTxn

)
xT

n

I Setting the derivative to zero:

0 = −
N∑

n=1

tnxT
n + wT

(N∑

n=1

xnx
T
n
)

yields the solution

w =
(N∑

n=1

xnx
T
n
)−1(N∑

n=1

tnxT
n
)

I (It can be instructional to write down the case for 1-d
inputs, if this confuses you)

Least squares

I We can write this more compactly with the following
definitions:

t =

t1
...

tN

X =

x1
...
xN

This allows us to write the the solution as

w =
(
XTX

)−1
XTt

“The normal equations”.

Geometrical interpretation

y

t

x1
x2

S

I We can think of the squared error
∑

n(tn −wTxn)2 as the
squared norm of the difference between two
N−dimensional vectors t and y, containing all
training-outputs and model-predictions.

I The vector y
(

= Xw
)

has to lie in the space S spanned by
the columns xi of X.

I It is exactly the orthogonal projection of t onto S

Linear classification

x→ t

I A prediciton task, where the outputs, t , are discrete (that is,
they can take on one of K values, C1, . . . , CK), the task is a
classification task.

I Like linear regression, this is a supervised learning
problem.

(Multi-class) logistic regression

I Logistic regression defines a probabilistic model over
classes given inputs as follows:

p(Ck |x) =
exp

(
wT

k xn
)

∑K
j=1 exp

(
wT

j xn
)

where w1, . . . ,wK are parameters.
I The exp-function ensures positivity, and the normalization

that the outputs sum to one.
I (In practice, one usually adds constant “bias”-terms inside

the exp’s)

Multi-class logistic regression

I Represent discrete one-hot labels row-wise in a matrix T,
like we did before for continuous vectors.

I The negative log-likelihood cost, assuming iid training data,
can then be written

E(W;D) = − log
∏

n

p(tn|xn)

= − log
∏

n

∏

k

p(Ck |xn)tnk

= −
∑

n

∑

k

tnk log p(Ck |xn)

= −
∑

n

∑

k

tnk
(
wT

k xn − log
K∑

j=1

exp
(
wT

j xn
))

= −
∑

n

(
wT

tnxn − log
K∑

j=1

exp
(
wT

j xn
))

Multi-class logistic regression

I In contrast to linear regression, there is no closed-form
solution for W.

I But one can use gradient-based optimization to minimize
E(W;D) iteratively.

I The gradient with respect to each parameter-vector wk is

∂E(W;D)

∂wk
= −

∑

n

tnkxn −
exp

(
wT

k xn
)

∑
j exp

(
wT

j xn
)xn

=
∑

n

(
p(Ck |xn)− tnk

)
xn

I It can be shown that E(W;D) is convex, so there are no
local minima.

Learning with stochastic gradient descent

W(τ+1) = W(τ) − η ∂En
W

I Here, τ denotes the iteration number, and En is the cost
contributed by the nth training case (one term in the sum
over n).

I Parameters are initialized to some random starting value
W(0).

I η is called learning rate, and it is typically set to a small
real value (such as, η = 0.001). It may be reduced as
learning progresses.

I It is convenient to think of W as a vector not a matrix when
doing learning. (Think of it in “vectorized” form: vec(W))

Learning with stochastic gradient descent

W(0)

W(τ)

I Since the algorithm visits one training-case at a time, it will
jitter around an idealized “average path” towards the
optimum.

I That’s why it’s called “stochastic” gradient descent.
I One could use the gradient of the whole sum instead but

that is often slower (because of redundancies in the data).

The “logsumexp”-trick
I Expressions like

exp
(
wT

k xn
)

∑K
j=1 exp

(
wT

j xn
)

are very common but highly unstable, because the “exp” in
the denominator can cause an under- or overflow.

I Never compute sums
∑

i exp(ai) naively.
I Add a constant A to each argument in all exp’s, so that

even the largest argument is small; then undo the
operation after computing the sum!

I Many software packages supply a convenience function
“logsumexp” for this purpose:

logsumexp

logsumexp(a1, . . . ,aK) = log
(∑

i exp(ai + A)
)
− A

with A = −(maxi ai)

Random variables and information

I ”Probabilities allow us to be explicit about uncertainty”. So
how can we measure uncertainty?

I Idea: Define the information content

log
(1

p(x)

)
= − log(p(x))

contained in a random event.
I The information content is additive for independent events.
I So if we use log2 and fair coin tosses, then the information

content is measured in bits and it exactly fits our intuition.

Entropy

I To measure uncertainty, we define the entropy

H(X) = −
∑

x

p(x) log p(x)

which is the average information content.
I For continuous RV:

H(X) = −
∫

x
p(x) log p(x)dx

I The more uniform, the more uncertain. The more “peaky”,
the more certain.

I Question: Which probability distribution has maximum
entropy, given mean and (co)variance(s)?

KL divergence

I Closely related to entropy is the Kullback-Leibler
divergence (KL divergence) (or “relative entropy”):

KL(p||q) =
∑

x

p(x) log
(p(x)

q(x)

)

I The KL divergence measures the dissimilarity between two
distributions.

I It is not symmetric.

Mutual Information

I The mutual information between two random variables x , y
with joint density p(x , y) is defined as

MI(x , y) =
∑

x ,y

p(x , y) log
(p(x , y)

p(x)p(y)

)

I It is the KL divergence between p(x , y) and the joint of two
perfectly independent random variables (with marginals
p(x) and p(y)).

I Thus, MI measures the dependence between x and y .
I It is nonnegative, and it is zero iff x and y are independent,

in other words iff p(x , y) = p(x)p(y).

The Frequentist – Bayesian debate

I Probability theory tells us how to calculate with
probabilities.

I As scientists, we may ask how to interpret a probabilistic
expression, like p(x = 1) = 0.7

I There are two common interpretations:
1. Frequentist: “The relative frequency of x in a (possibly

infinite) population of trials is 0.7”
2. Bayesian: “I believe that x is 1 with certainty 0.7”

I The Bayesian view used to be contentious because it is
less intuitive.

I But it gives us the freedom to turn model parameters into
random variables.

Reading

I A good introduction to most of the concepts discussed in
this class can be found in:

Pattern Recognition and Machine Learning. C. Bishop.
Springer, 2006.

I Most drawings were taken from that book.

