DIRO
IFT 1215

DÉMONSTRATION No 4

Max Mignotte

DIRO, Département d'Informatique et de Recherche Opérationelle, local 2377.
http : //www.iro.umontreal.ca/~mignotte/ift1215/
E-mail : mignotte@iro.umontreal.ca

Exercices tirés du livre de V.P. Heuring and H.F. Jordan Computer Systems Design and Architecture, 1997.

Photocopies distribuées en classe de démonstration

Annexe 1	Circuits Combinatoires
Exercices numéro \ldots.	A. 30
	Circuits séquentiels \& FSM
Exercices numéro \ldots.	A.32, A.34, A.35, A.38

A. 32

Create a state transition diagram for an FSM that sorts two binary words A and B, input serially with most significant bit first, onto two binary outputs $G E$ and $L T$. If A is greater than or equal to B, then A appears on the $G E$ line, and B appears on the $L T$ line. If B is greater than A, then B appears on the $G E$ line, and A appears on the $L T$ line.

A. 34

Design an FSM that outputs a 1 when the last three inputs are 011 or 110 . Just show the state table. Do not draw a circuit.

A. 35

Design a finite state machine that takes two binary words X and Y in serial form, least significant bit (LSB) first, and produces a 1-bit output Z that is true when $X>Y$ and is 0 for $X \leq Y$. When the machine starts, assume that $X=Y$. That is, Z produces 0's until $x>Y$. The diagram shows a sample input sequence and the corresponding output sequence.

A. 38

Given the state transition diagram shown below, do the following :

1. Create a state table.
2. Design a circuit for the state machine described by your state table, using D-flip-flop(s), a single decoder, and OR gates. For the state assignment, use the bit pattern that corresponds to the position of each letter in the alphabet, starting from 0 . For example, A is at position 0 , so the state assignment is $000 ; B$ is at position 1 , so the state assignment is 001 , and so on.
