
[dsp TIPS&TRICKS]
Mark Allie
and Richard Lyons

A Root of Less Evil

IEEE SIGNAL PROCESSING MAGAZINE [93] MARCH 2005

I
n this article, we discuss several useful
“tricks” for estimating the square root
of a number. Our focus will be on
high-speed (minimum computations)
techniques for approximating the

square root of a single value as well as the
square root of a sum of squares for quadra-
ture (I/Q) vector magnitude estimation.

In the world of DSP, the computation
of a square root is found in many applica-
tions: calculating root mean squares,
computing the magnitudes of fast
Fourier transform (FFT) results, imple-
menting automatic gain control (AGC)
techniques, estimating the instantaneous
envelope of a signal (AM demodulation)
in digital receivers, and implementing
three-dimensional (3-D) graphics algo-
rithms. The fundamental tradeoff when
choosing a particular square root algo-
rithm is execution speed versus algo-
rithm accuracy. In this article, we
disregard the advice of legendary lawman
Wyatt Earp (1848–1929), “Fast is impor-
tant, but accuracy is everything. . . ,” and
concentrate on various high-speed square
root approximations. In particular, we
focus on algorithms that can be imple-
mented efficiently in fixed-point arith-
metic. We have also set other constraints:
no divisions are allowed; only a small
number of computational iterations are
permitted; and only a small look-up table
(LUT), if necessary, is allowed.

The first two methods below
describe ways to estimate the square
root of a single value using iterative
methods. The last two techniques are
methods for estimating the magnitude
of a complex number.

NEWTON-RAPHSON
INVERSE METHOD
A venerable technique for computing the
square root of x is the so-named “Newton-

Raphson square root” iterative technique
to find y(n), the approximation of

√
x ≈ y(n + 1) = [y(n) + x/y(n)]/2.

(1)

Variable n is the iteration index, and y(0)

is an initial guess of
√

x used to compute
y(1). Successive iterations of (1) yield
more accurate approximations to

√
x.

However, to avoid the computational-
ly expensive division by y(n) in (1), we
can use the iterative Newton-Raphson
inverse (NRI) method. First, we find the
approximation to the inverse square root
of x using (2), where p = 1/

√
x. Next, we

compute the square root of x by multi-
plying the final p by x

p(n + 1) = 0.5 p(n)[3 − xp(n)2]. (2)

Two iterations of (2) provide surprisingly
good accuracy. The initial inverse square
root value p(0), as defined by (3), is used
in the first iteration

p(0) = 1/(2x/3 + 0.354167). (3)

Indeed, (3) was selected because it is the
reciprocal of the initial value expression
used in the next iterative square root
method presented below.

The square root function looks more
linear when we restrict the range of our
x input. As it turns out, it’s convenient to
limit the range of x to 0.25 � x < 1. So
if x < 0.25, then it must be normalized
and, fortunately, we have a slick way to
do so. When x needs normalization, then
x is multiplied by 4n until 0.25 � x < 1.
A factor of four is two bits of arithmetic
left shift. The final square root result is
denormalized by a factor of 2n (the

square root of 4n). A denormalizing fac-
tor of two is a single arithmetic right
shift. Implementing this normalization
ensures 0.25 � x < 1. The error curve
for this two-iteration NRI square root
method is shown in Figure 1, where we
see the maximum error is roughly
0.0008%. The curve is a plot of the esti-
mated square root divided by the true
square root of x. That maximum error
value is impressively small; it is almost
worth writing home about because no
arithmetic division is needed. But what if
our data throughput requirements only
allow us to perform one iteration of (2)?
In that case, the maximum NRI method
error is 0.24%. We see a truism of signal
processing here—improved accuracy
requires additional computations.
There’s no free lunch in DSP.

“DSP Tips and Tricks” introduces practi-

cal tips and tricks of design and imple-

mentation of signal processing

algorithms so that you may be able to

incorporate them into your designs.

We welcome readers who enjoy read-

ing this column to submit their contri-

butions. Contact Associate Editors Rick

Lyons (r.lyons@ieee.org) or Amy Bell

(abell@vt.edu).

1053-5888/05/$20.00©2005IEEE

[FIG1] NIIRF implementation.

LUT

+ +
yx

−

β

z −1

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [94] MARCH 2005

This NRI method is not recommend-
ed for fixed-point format, with its sign
and fractional bits. The coefficients,
p(n), and intermediate values in (2) are
greater than one. In fixed-point math,
using bits to represent internal results
greater than one increases the error by
a factor of two per bit. (Certainly, using
more bits for the integer part of inter-
mediate values without taking them
away from the fractional part can be
done, but only at the cost of more CPU
cycles and memory.)

NONLINEAR IIR FILTER METHOD
The next iterative technique, by Mikami
et al. [1], is specifically aimed at fixed-
point implementation. It is configured as
a non-linear IIR filter (NIIRF) as depicted
in Figure 2, where again input x has
been normalized to the range

0.25 � x < 1. The output is given by (4)
where the constant β , called the itera-
tion acceleration factor, depends on the
value of input x

y(n + 1) = β[x − y(n)2] + y(n). (4)

The magnitude of the error of (4) is
known in advance when β = 1. The β
acceleration factor scales the square root
update term, x − y(n)2, so the new esti-
mate of y has less error. The acceleration
factor results in reduced error for a given
number of iterations.

In its standard form, this technique
uses an LUT to provide β and performs
two iterations of (4). For the first itera-
tion, y(0) is initialized using

y(0) = 2x/3 + 0.354167. (5)

The constants in (5) were determined
empirically. The acceleration constant
β , based on x, is stored in an LUT
made up of 12 subintervals of x with
an equal width of 1/16. This square
root method is implemented with the
range of x set between 4/16 and 16/16
(12 regions), as was done for the NRI
method. This convenient interval
directly yields the offset for the LUT
when using the four most significant
mantissa bits of the normalized x
value as a pointer, as shown in Table 1.

(A listing of a fixed-point DSP assem-
bly code, simulated as an ADSP218x
part implementing this NIIRF. It is
available at http:/ /www.cspl.umd.
edu/spm/tips-n-tricks/. Various MAT-
LAB square root modeling routines are
also available at this Web site.)

Figure 1 shows the normalized
NIIRF error curves as a function of x.
(Normalized, in this instance, means
the estimated square root is divided by
the true square of x.) The NRI square
root method is the most accurate in
floating-point math, followed by the
NIIRF method. This is not surprising
considering the greater number of
operations needed to implement the
NRI method. The effect of the LUT for
β is clearly seen in Figure 1, where the
curve shows discontinuities (spikes) at
the table look-up boundaries. These
are, of course, missing from the NRI
error curve.

One sensible step, when presented
with algorithms such as the NIIRF
square root method, is to experiment
with variations of the algorithm to
investigate accuracy versus computa-
tional cost. (We did that for the above
NRI method by determining the maxi-
mum error when only one iteration of
(2) was performed.) With this explore
and investigate thought in mind, we
examined seven variations of this NIIRF
algorithm. The first variation, a simpli-
fication, is the original NIIRF algo-
rithm using only one iteration. We then
studied the following quadratic func-
tion of x to find β

β = 0.763x2 − 1.5688x + 1.314. (6)

Next, we used a linear function of x to
find β, as defined by

β = −0.61951x + 1.0688. (7)

For the quadratic and linear variations
used to compute β, we investigated their
performance when using both one and
two iterations of (4). [FIG2] Normalized error for the NRI and NIIRF methods.

NR Inverse Nonlinear IIR Filter

P
er

ce
nt

3

2

1

0

−1

−2

−3

−4
1/8 2/8 3/8 4/8 5/8 6/8 7/8 1

x

× 10−3 Error/SQRT(x)

4 MSBs β β

OF x FIXED-POINT FLT-POINT

0100 0x7b20 0.961914

0101 0x6b90 0.840332

0110 0x6430 0.782715

0111 0x5e10 0.734869

1000 0x5880 0.691406

1001 0x53c0 0.654297

1010 0x4fa0 0.622070

1011 0x4c30 0.595215

1100 0x4970 0.573731

1101 0x4730 0.556152

1110 0x4210 0.516113

1111 0x4060 0.502930

[TABLE1] βββ VERSUS NORMALIZED-X LUT.

IEEE SIGNAL PROCESSING MAGAZINE [95] MARCH 2005

For the final NIIRF method varia-
tion, we set β equal to the constants
0.633 and 0.64 for two and one iteration
variations, respectively. Table 2 provides
a comparison of the error magnitude
behavior of the original two-iteration
(LUT) NIIRF algorithm and the varia-
tions detailed above.

For all the variations listed in Table
2, the range of the input x was limited
to 0.25 � x < 1. (The term normal-
ized, as used in Table 2, means the esti-
mated square root divided by the true
square of x.)

The error data in Table 2 was generated
using double-precision floating-point
math. Comparing the accuracy and com-
plexity of the NRI and NIIRF methods, we
might ask why ever use the NIIRF
method? Oftentimes, double-precision
floating-point math is not available to us.
Fixed-point data is one of the assumptions
of this article. This fixed-point constraint
requires that the algorithms must be
reevaluated for the error when fixed-point
math is used. It turns out this is the rea-
son why Mikami et al. developed the NIIRF
square root method in the first place [1].

In fixed-point math, most of the
internal values are close to each other
and are less than one. Thus, these values
result in a lower error using the NIIRF
method compared to the NRI method
when both are implemented in fixed-
point format. In fact, there is less error
in the fixed-point implementation of the
NIIRF method than in the floating-point
implementation. All of the NIIRF varia-
tions are well-suited to fixed-point math.

Next, we look at high-speed square
root approximations used to estimate the
magnitude of a complex number.

BINARY-SHIFT MAGNITUDE
ESTIMATION
When we want to compute the magnitude
M of the complex number I + jQ, the
exact solution is

M =
√

I2 + Q2. (8)

To approximate the square root opera-
tion in (8), the following binary-shift

magnitude estimation algorithm can be
used to estimate M using

M ≈ AMax + BMin (9)

where A and B are constants, Max is the
maximum of either |I| or |Q|, and Min is
the minimum of |I| or |Q|.

Many combinations of A and B are
provided in [2], yielding various accura-
cies for estimating M. However, of spe-
cial interest is the combination
A = 15/16 and B = 15/32 using

M ≈ 15
16

Max + 15
32

Min. (10)

This algorithm’s appeal is that it
requires no explicit multiples because
the A and B values are binary fractions
and the formula is implemented with
simple binary right-shifts, additions,
and subtractions. (For example, a 15/32
times z multiply can be performed by
first shifting z right by four bits and
subtracting that number from z to
obtain 15/16 times z. That result is
then shifted right one bit). This algo-
rithm estimates the magnitude M with

[FIG3] Error of binary-shift and equiripple-error methods.

MAX. NORMALIZED MEAN NORMALIZED
ALGORITHM ERROR (%) ERROR (%)

NR INVERSE (NRI)

NRI, 2 Iters 8.4E-4 8.3E-5

NRI, 1 Iter 0.24 0.057

NIIRF FLOATING-PT

LUT β, 2 Iters 0.004 5.4E-4

LUT β, 1 Iter 0.099 0.026

Quad. β, 2 Iters 0.0013 2.8E-4

Quad. β, 1 Iter 0.056 0.019

Linear β, 2 Iters 0.024 0.0061

Linear β, 1 Iter 0.28 0.088

β = 0.633, 2 Iters 0.53 0.05

β = 0.64, 1 Iter 1.44 0.23

NIIRF FIXED-PT

NIIRF, 2 Iters 0.0035 5.1E-4

Quad. β, 2 Iters 0.0019 4.1E-4

Linear β, 2 Iters 0.011 0.0029

[TABLE2] ITERATIVE ALGORITHM NORMALIZED ABSOLUTE ERROR.

Percent Error
8

6

4

2

0
0 10 20 30 40

Phase Angle (°)

A=1, B=0;
A=7/8, B=1/2

A=15/16,
B=15/32

Equiripple
Error

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [96] MARCH 2005

a maximum error of 6.2% and a mean
error of 3.1%. The percent error of this
binary-shift magnitude estimation
scheme is shown by the dashed curve in
Figure 3 as a function of the angle
between I and Q. (The curves in Figure
3 repeat every 45º.)

At the expense of a compare opera-
tion, we can improve the accuracy of (10)
[3]. If Min � Max/4, we use the coeffi-
cients A = 1 and B = 0 to compute (9);
otherwise, if Min > Max/4, we use
A = 7/8 and B = 1/2. This dual-coeffi-
cient (and still multiplier-free) version of
the binary-shift square root algorithm
has a maximum error of 3.0% and a
mean error of 0.95%, as shown by the
dotted curve in Figure 3.

EQUIRIPPLE-ERROR
MAGNITUDE ESTIMATION
Another noteworthy scheme for comput-
ing the magnitude of the complex number
I + jQ is the equiripple-error magnitude

estimation method by Filip [4]. This tech-
nique, with a maximum error of roughly
1%, is sweet in its simplicity: if
Min � 0.4142135Max, the complex num-
ber’s magnitude is estimated using

M ≈ 0.99Max + 0.197Min. (11)

On the other hand, if Min > 0.4142135
Max, M is estimated by

M ≈ 0.84Max + 0.561Min. (12)

This algorithm is so named because its
maximum error is 1.0% for both (11)
and (12). Its mean error is 0.6%.
Because its coefficients are not simple
binary fractions, this method is best
suited for implementations on pro-
grammable hardware. The percent
error of this equiripple-error magni-
tude estimation method is also shown
in Figure 3, where we see the more
computationally intensive method,
equiripple-error, is more accurate. As
usual, accuracy comes at the cost of
computations. Although these methods
are less accurate than the iterative
square root techniques, they can be
useful in those applications where high
accuracy is not needed, such as when M
is used to scale (control the amplitude
of) a system’s input signal.

One implementation issue to keep in
mind when using integer arithmetic is
that, even though values |I| and |Q| may
be within your binary word width range,
the estimated magnitude value may be
too large to be contained within the
numeric range. The practitioner must
limit |I| and |Q| in some way to ensure
that the estimated M value does not
cause overflows.

SUMMARY
We have discussed several square root
and complex vector magnitude approxi-
mation algorithms, with a focus on
high-throughput (high-speed) algo-
rithms as opposed to high-accuracy
methods. We investigated the perform-

ance of several variations of iterative
NRI and NIIRF square root methods
and found, not surprisingly, that the
number of iterations has the most pro-
found effect on accuracy. The NRI
method is not appropriate for imple-
mentation using fixed-point fractional
binary arithmetic, while the NIIRF
technique and the two magnitude esti-
mation schemes lend themselves nicely
to fixed-point implementation. The
three magnitude estimation methods
are less accurate but more computa-
tionally efficient than the NRI and
NIIRF schemes. All algorithms
described here are open to modification
and experimentation. This will make
them more accurate and computation-
ally expensive, or less accurate and
computationally “cheap.” Your accuracy
and data throughput needs determine
the path you take to a root of less evil.

AUTHORS
Mark Allie is presently an assistant facul-
ty associate in the Department of
Electrical and Computer Engineering at
the University of Wisconsin at Madison.
He received his B.S. and M.S. degrees in
1981 and 1983, respectively, in electrical
engineering from the same department.
He has been employed as an engineer
and consultant in the design of analog
and digital signal processing systems for
over 20 years.

Richard Lyons is a consulting sys-
tems engineer and lecturer with Besser
Associates in Mt. View, California. He is
the author of Understanding Digital
Signal Processing 2/E (Prentice-Hall,
2004) and an associate editor for IEEE
Signal Processing Magazine.

REFERENCES
[1] N. Mikami et al., “A new DSP-oriented algorithm
for calculation of square root using a nonlinear digi-
tal filter,” IEEE Trans. Signal Processing,
pp. 1663–1669, July 1992.

[2] R. Lyons, Understanding Digital Signal
Processing, 2nd ed. Upper Saddle River, NJ: Prentice-
Hall, 2004, pp. 481–482.

[3] W. Adams and J. Brady, “Magnitude approxima-
tions for microprocessor implementation,” IEEE
Micro, pp. 27–31, Oct. 1983.

[4] A. Filip, “Linear approximations to
√

x2 + y2
having equiripple error characteristics,” IEEE Trans.
Audio Electroacoust., pp. 554–556, Dec. 1973.

[SP]

	footer1:
	01: v
	02: vi
	03: vii
	04: viii
	05: ix
	06: x
	footerL1: 0-7803-8408-3/04/$20.00 © 2004 IEEE
	headLEa1: ISSSTA2004, Sydney, Australia, 30 Aug. - 2 Sep. 2004

