
[dsp TIPS&TRICKS]
Fred Harris

Ultra Low Phase Noise DSP Oscillator

M
any DSP algorithms
in analysis and com-
munication systems
require a complex
sinusoid to accom-

plish various signal rotation tasks.
Examples include the discrete and fast
Fourier transforms, digital up/down con-
versions, and operations in communica-
tion carrier recovery loops [1]. Often the
desired sine and cosine samples of the
complex sinusoid are generated by a
computationally efficient oscillator,
called a direct digital synthesizer (DDS)
and implemented with the CORDIC algo-
rithm [2]. In a CORDIC DDS the phase
noise (phase angle error) is inversely
proportional to the number of CORDIC
iterations performed. As such, to
improve the accuracy (i.e., reduce the
phase noise) of the sine and cosine sam-
ples, additional CORDIC iterations need
to be performed.

This article describes a novel complex
oscillator, which is based on an interest-
ing variation of the traditional CORDIC

DDS and produces sine and cosine out-
put samples of any specified angle. Our
oscillator provides drastically improved
phase noise performance (relative to a
traditional CORDIC DDS) without the
need for additional CORDIC iteration
processing. In addition, our oscillator
supports real-time output sample-by-
sample digital frequency control.

In describing our enhanced complex
oscillator, we first present the arithmetic
processing needed to generate sine and
cosine samples. Next we show how that
processing is implemented using the
CORDIC algorithm. Then we detail the
trick used to reduce oscillator phase
noise errors. Finally we show how to
guarantee a stable oscillator output
amplitude and present an example of our
oscillator’s ultra low phase noise per-
formance.

OSCILLATOR OUTPUT
SEQUENCE GENERATION
Consider a complex oscillator with out-
put samples w(n) given by

w(n) = exp(jθ) · w(n − 1), where

n = 0, 1, 2, . . . and w(−1)

= 1 + j0. (1)

An oscillator that implements (1)
operates at a digital frequency of
θ = 2π fC/fS radians/sample. Frequency
θ represents the oscillator’s change in
angle per unit time, and frequencies fC
and fS are the oscillator’s output cyclic
frequency and sample rate, respectively,
in hertz. Using w(n) = cos(n) + jsin(n)

we can write

IEEE SIGNAL PROCESSING MAGAZINE [121] JULY 2007 1053-5888/07/$25.00©2007IEEE

“DSP Tips and Tricks” introduces prac-
tical design and implementation signal
processing algorithms that you may
wish to incorporate into your designs.
We welcome readers to submit their
contributions to Associate Editors Rick
Lyons (r.lyons@ieee.org) or Britt
Rorabaugh (dspboss@aol.com).

[FIG1] Block diagrams of oscillator networks: (a) traditional form; (b) alternate form; (c) desired recursive CORDIC form.

cos(θ)

cos(θ)

cos(θ)

cos(θ)
cos(θ)

sin(θ) tan(θ) tan(θ)

CORDIC

tan(θ)tan(θ)sin(θ)

cos(θ)

(a) (b) (c)

x(n)

x(n)

x(n)

y(n)

y(n)

y(n)

x(n−1) x(n−1)

x(n−1)

y(n−1) y(n−1)

y(n−1)

z−1

z−1 z−1

z−1

z−1

z−1

−− −

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:39:34 UTC from IEEE Xplore. Restrictions apply.

x(n) =x(n − 1) cos(θ)

− y(n − 1) sin(θ) : x(−1) = 1
(2)y(n) =x(n − 1) cos(θ)

− y(n − 1) sin(θ) : y(−1) = 0.

Sequences x(n) and y(n) are the
desired cosine and sine oscillator out-
puts, respectively. The remainder of this
article describes how to accurately
generate these two sequences.

The traditional structure of a complex
oscillator that implements (2) is illustrat-
ed in the block diagram of Figure 1(a).
Next, from this structure we can obtain
an alternate form, which is illustrated in
Figure 1(b), by factoring the cosine
terms from (2) as

x(n) = [x(n − 1)

− y(n − 1) tan(θ)] cos(θ)

y(n) = [y(n − 1)

+ x(n − 1) tan(θ)] cos(θ). (3)

Then, by rearranging the computations
in Figure 1(b) we can draw our desired
Figure 1(c) oscillator wherein the tan(θ)
multiplications can be efficiently imple-
mented by the CORDIC algorithm, with-
out the need for multipliers.

CORDIC ALGORITHM-BASED
PROCESSING

CORDIC tan(�) COMPUTATION
To understand how processing is imple-
mented using the CORDIC algorithm,
consider the structure illustrated in
Figure 1(c). If the digital frequency θ is a

known fixed value, we can compute
tan(θ) and cos(θ) offline. On the other
hand, if the digital frequency θ is to be
programmable or continuously variable,
we have the problem of computing the
tan(θ) and cos(θ) terms for an arbitrary
angle θ . We respond to this task by
replacing the tan(θ) multiplications in
(3) with a sequence of elementary rota-
tions known as the CORDIC rotate. We
convert a multiplication by tan(θ) to triv-
ial shift-and-add operations by selecting
rotation angles θk that satisfy

tan(θk) = 2−k, k = 0, 1, 2, . . . , K − 1.

(4)

In practice the θk angles, which are
explicitly listed in Table 1, are stored in a
look-up table memory. Any angle θ in
the first quadrant can be approximated
by a binary (±1) weighted sum of the
angles, such as

θ =
9∑

k=0

αkθk + θRem; αk = ±1. (5)

where θRem is a residual error. (Values of θ
larger than 90 degrees are accommodated
by multiplying with j.) For example, a ten-
term approximation results in an angle
error less than atan(2−10), which is
approximately equal to 0.056 degrees.
Later we will see how this residual error
θRem is folded into the rotation as a final
clean-up correction to greatly improve the
performance of our DDS.

To successively approximate the
desired tan(θ) in K rotations (iterations)
we use a state machine that cycles
through the sequence of binary shifts

and adds to approximate the desired
product. An initial −θ value stored in the
angle accumulator is driven by the
CORDIC system toward zero by adding
or subtracting the successive angles
accessed from the arctangent look-up
table in Figure 2.

CORDIC cos(�) COMPUTATION
As the CORDIC algorithm proceeds to
compute tan(θ), the cos(θ) multiply
operation in Figure 1(c) remains to be
performed. To limit the number of
arithmetic operations, instead of exe-
cuting a cos(θk) multiplication during
each CORDIC rotation, we perform
the cos(θ) multiply only once at the
end of the rotation sequence. For θ in
the f irst quadrant, recal l ing that
cosθ(k) = 1/sqrt[1 + atan2(θk)] , the
cos(θ) factor for K = 10 CORDIC rota-
tions is given by

cos(θ) =
9∏

k=0

cos(θk)

=
9∏

k=0

1√
1 + 2−2k

= 0.596495. (6)

So, at the end of the CORDIC rota-
tions, we multiply each CORDIC output
by cos(θ) = 0.596495. (Note that the
right-most column in Table 1 contains
the individual cos(θk) factors whose
cumulative product is 0.596495.) As an
added benefit, the cos(θ) multiply exactly
compensates for the undesired output
amplitude increase inherent in the
CORDIC algorithm.

LOW PHASE NOISE CORDIC
OSCILLATOR

DESIGN
With these notes in mind, we now obtain
the structure of our final recursive
CORDIC oscillator as shown in Figure 2.
In this oscillator, for each complex out-
put sample the negative of the desired
frequency angle θ is inserted in the angle
accumulator. The CORDIC rotation
engine performs (for instance) K = 10
iterations of binary shift-and-add opera-
tions of the ordered pairs [x(n − 1),

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [122] JULY 2007

θk = atan(2−k), cos(θk) = 1√
1+2−2k

k 2−k (DEGREES) (RADIANS)

0 1.0 45.0000000 0.70710678
1 0.5 26.5650510 0.89442719
2 0.25 14.0362430 0.97014250
3 0.125 7.1250160 0.99227787
4 0.0625 3.5763340 0.99805257
5 0.03125 1.7899110 0.99951207
6 0.015625 0.8951737 0.99987795
7 0.0078125 0.4476142 0.99996948
8 0.00390625 0.2238105 0.99999237
9 0.001953125 0.1119057 0.99999809

[TABLE 1] CORDIC θk ROTATION ANGLES FOR DIFFERENT k.

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:39:34 UTC from IEEE Xplore. Restrictions apply.

IEEE SIGNAL PROCESSING MAGAZINE [123] JULY 2007

y(n − 1)] while trying to zero the con-
tent of the angle accumulator by adding
or subtracting the angles θk = atan(2−k)

stored in the arctangent look-up table.
Based on the sign of the current-itera-
tion angle accumulator content, the Sign
function in Figure 2, whose output is
±1, determines whether an angle addi-
tion or angle subtraction takes place. The
cos(θ) multiply is applied once, at the
end (after the tenth rotation) rather than
once per rotation. After the tenth
CORDIC rotation there is assuredly a
nonzero residual angle θRem in the angle
accumulator. So our DSP trick is that we
perform a clean-up rotation by advanc-
ing the CORDIC’s complex output angle
by the correction angle θRem. This phase
angle correction, whose derivation is
described in [3], is what suppresses first-
order phase noise in the DDS.

OUTPUT STABILIZATION
Upon analysis of the network in Figure
1(a) we find that its z-domain single-pole
location resides on a Cartesian grid with
the real part of the pole equal to cos(θ)
and the imaginary part of the pole equal
to sin(θ). Because the sine and cosine (or
the tangent and cosine) in the network
are transcendental numbers, and the
arithmetic implementing the network has
finite precision, the system pole can not
lie precisely on the unit circle. Thus, the
pole is either inside or outside the unit
circle and the response of the network to
an initial condition is an exponentially
decaying or growing sinusoid. To use our
DDS as a quadrature signal generator we
must incorporate an automatic gain con-
trol (AGC) loop to stabilize its output
amplitude as we want to keep the system
pole on the unit circle. The AGC that we
employ is shown in Figure 2, where the
data-dependent g(n) gain correction,
needed to ensure the oscillator’s output
magnitude remain at unity, is given by

g(n) = 3 − [x̂2(n) + ŷ2(n)]
2

. (7)

where x̂ and ŷ are the outputs of the
θRem rotation operation [3]–[5]. The g(n)
gain term in (7), applied to the output of
the θRem phase angle correction process,

operates in the direction to correct the
amplitude error caused by the final phase
correction, and the amplitude increases
or decreases due to the pole position
error relative to the unit circle.

EXAMPLE
Consider an example where the CORDIC
algorithm ran ten iterations, and the
arithmetic used 20-bit multipliers. The
spectrum of the oscillator’s complex
sinusoid stabilized with the AGC mecha-
nism in (7) is shown in Figure 3(a),
which also illustrates the ultra low phase
noise of our oscillator. The AGC gain fac-
tor g(n) in (7), less its nominal unity
value, is shown in Figure 3(b).

An interesting aspect of the recursive
CORDIC is that, for a fixed frequency sinu-
soid, the angle accumulator is initialized
with the same angle value for each succes-
sive time sample. Thus, the sequence of
add-subtract iterations in the CORDIC is
identical for each computed trigonometric
sample. The memory of the recursive
CORDIC resides in the network states
rather than in the traditional phase accu-
mulator that forms and presents a
sequence of phase angles modulo 2π to
the CORDIC’s angle accumulator. Thus,
the phase error sequence is a constant for
the recursive CORDIC; it is always the
same angle error residing in the angle
accumulator. Consequently, there is no

[FIG3] Complex CORDIC oscillator: (a) spectrum; (b) small angle and finite-arithmetic
gain correction time series.

−150

−100

−50

0

0 50 100 150 200 250
−1

0

1
× 10–6

−0.5 0 0.5−0.25 0.25

0.5

−0.5

Time Index

Frequency

dB

(a)

(b)

[FIG2] Recursive CORDIC DDS with automatic level control.

θRem

x(n–1)

y(n–1)

x(n)

x(n)

y(n)

g(n)

y(n)

− −

AGC

^

^

2–kz–1

z–1

z–1

Sign

–a
ta

n(
2–k

) −θ
αk

Look-Up
Table

CORDIC

cos(θ)

Angle
Accumulator

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:39:34 UTC from IEEE Xplore. Restrictions apply.

[SP]

line structure in the spectrum of the
recursive CORDIC, and the phase error
correction is not applied to suppress phase
error artifacts but rather to complete the
phase rotation left incomplete due to the
residual phase term in the angle accumu-
lator. This is a very different DDS!

IMPLEMENTATION
As a practical note, there are truncating
quantizers between the AGC multipliers
and the feedback delay element regis-
ters. As such, the truncation error circu-
lates in the registers and contributes an
undesired dc component to the complex
sinusoid output. This dc component can
(and should) be suppressed by using a
sigma delta-based dc cancellation loop
between the AGC multipliers and the
feedback delay elements [6].

CONCLUSIONS
We modified the traditional recursive
DDS complex oscillator structure to a

tangent/cosine configuration. The tan(θ)
computations were implemented by
CORDIC rotations avoiding the need for
multiply operations. To minimize output
phase angle error, we applied a post-
CORDIC clean-up angle rotation. Finally,
we stabilized the DDS output amplitude
by an AGC loop. The phase-noise per-
formance of the DDS is quite remarkable
and we invite you, the reader, to take a
careful look at its structure. A MATLAB-
code implementation of the DDS is avail-
able at http://apollo.ee.columbia.edu/
spm/?i=external/tipsandtricks.

ACKNOWLEDGMENT
Thanks to Rick Lyons for patience and
constructive criticism above and beyond
the call of duty.

AUTHOR
Fred Harris (fred.harris@sdsu.edu)
teaches DSP and modem design at San
Diego State University. He holds 12

patents on digital receivers and DSP
technology. He has written over 140
journal and conference papers and is the
author of the book Multirate Signal
Processing for Communication Systems
(Prentice Hall Publishing).

REFERENCES
[1] C. Dick, F. Harris, and M. Rice, “Synchronization
in software defined radios—Carrier and timing
recovery using FPGAs,” in Proc. IEEE Symp. Field-
Programmable Custom Computing Machines, Napa
Valley, CA, pp. 195–204, Apr. 2000.

[2] J. Valls, T. Sansaloni, A. Perez-Pascual, V. Torres,
and V. Almenar, “The use of CORDIC in software
defined radios: A tutorial,” IEEE Commun. Mag.,
vol. 44, no. 9, pp. 46–50, Sept. 2006.

[3] F. Harris, C. Dick, and R. Jekel, “An ultra low
phase noise DDS,” presented at Software Defined
Radio Forum Tech. Conf. (SDR-2006), Orlando FL,
Nov. 2006.

[4] R. Lyons, Understanding Digital Signal
Processing, 2nd ed. Upper Saddle River, NJ: Prentice
Hall, pp. 576–578, 2004.

[5] C. Turner, “Recursive discrete-time sinusoidal
oscillators,” IEEE Signal Processing Mag., vol. 20,
no. 3, pp. 103–111, May 2003.

[6] C. Dick and F. Harris, “FPGA signal processing using
sigma-delta modulation,” IEEE Signal Processing Mag.,
vol. 17, no. 1, pp. 20–35, Jan. 2000.

[dsp TIPS&TRICKS] continued

IEEE SIGNAL PROCESSING MAGAZINE [124] JULY 2007

An image acquired with the single-
pixel camera using about 60% fewer ran-
dom measurements than reconstructed
pixels is illustrated in Figure 3(c); com-
pare to the target image in Figure 3(b).
The reconstruction was performed via a
total variation optimization [1], which is
closely related to the �1 reconstruction in
the wavelet domain. In addition to requir-
ing fewer measurements, this camera can
image at wavelengths where is difficult or
expensive to create a large array of sen-
sors. It can also acquire data over time to
enable video reconstruction [10].

CONCLUSIONS:
WHAT WE HAVE LEARNED
Signal acquisition based on compressive
sensing can be more efficient than tradi-
tional sampling for sparse or compressible
signals. In compressive sensing, the famil-
iar least squares optimization is inadequate
for signal reconstruction, and other types
of convex optimization must be invoked.

ACKNOWLEDGMENTS
This work was supported by grants from
NSF, DARPA, ONR, AFOSR, and the Texas

Instruments (TI) Leadership University
Program. Special thanks are due to TI for
the DMD array used in the single-pixel
camera. Thanks also to the Rice DSP
group and Ron DeVore for many enlight-
ening discussions and Justin Romberg
for help with the reconstruction in
Figure 3.

AUTHOR
Richard G. Baraniuk (richb@rice.edu)
is the Victor E. Cameron Professor of
Electrical and Computer Engineering
at Rice University. His research inter-
ests include multiscale analysis,
inverse problems, distributed signal
processing, and sensor networks. He is
a Fellow of the IEEE.

REFERENCES
Additional compressive sensing resources are avail-
able at dsp.rice.edu/cs.

[1] E. Candès, J. Romberg, and T. Tao, “Robust
uncertainty principles: Exact signal reconstruction
from highly incomplete frequency information,”
IEEE Trans. Inform. Theory, vol. 52, no. 2,
pp. 489–509, Feb. 2006.

[2] D. Donoho, “Compressed sensing,” IEEE Trans.
Inform. Theory, vol. 52, no. 4, pp. 1289–1306, Apr.
2006.

[3] S. Mallat, A Wavelet Tour of Signal Processing.
New York: Academic, 1999.

[4] R.G. Baraniuk, M. Davenport, R. DeVore, and
M.B. Wakin, “A simple proof of the restricted isome-
try principle for random matrices (aka the
Johnson-Lindenstrauss lemma meets compressed
sensing),” Constructive Approximation, 2007
[Online]. Available: http://dsp.rice.edu/
cs/jlcs-v03.pdf

[5] D. Baron, M.B. Wakin, M. Duarte, S. Sarvotham,
and R.G. Baraniuk, “Distributed compressed
sens ing,” 2005 [Online]. Available: http://dsp.
rice.edu/cs/DCS112005.pdf

[6] J. Tropp and A.C. Gilbert, “Signal recovery
from partial information via orthogonal matching
pursuit,” Apr. 2005 [Online]. Available: http://www-
personal.umich.edu/~jtropp/papers/TG06-Signal-
Recovery.pdf

[7] J. Haupt and R. Nowak, “Signal reconstruction
from noisy random projections,” IEEE Trans. Inform.
Theory, vol. 52, no. 9, pp. 4036–4048, Sept. 2006.

[8] S. Kirolos, J. Laska, M. Wakin, M. Duarte, D.
Baron, T. Ragheb, Y. Massoud, and R.G. Baraniuk,
“Analog-to-information conversion via random
demodulation,” in Proc. IEEE Dallas Circuits
Systems Workshop, Oct. 2006, pp. 71-74.

[9] M. Vetterli, P. Marziliano, and T. Blu, “Sampling
signals with finite rate of innovation,” IEEE Trans.
Signal Processing, vol. 50, no. 6, pp. 1417–1428,
June 2002.

[10] D. Takhar, V. Bansal, M. Wakin, M. Duarte, D.
Baron, J. Laska, K.F. Kelly, and R.G. Baraniuk, “A
compressed sensing camera: New theory and an
implementation using digital micromirrors,” in
Proc. Comput. Imaging IV SPIE Electronic Imaging,
San Jose, Jan. 2006.

[lecture NOTES] continued from page 120

[SP]

Authorized licensed use limited to: ECOLE POLYTECHNIQUE DE MONTREAL. Downloaded on July 17,2010 at 14:39:34 UTC from IEEE Xplore. Restrictions apply.

