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Preface

This book is an expansion of previous editions of Understanding Digital Signal Processing. Like
those earlier editions, its goals are (1) to help beginning students understand the theory of digital
signal processing (DSP) and (2) to provide practical DSP information, not found in other books, to
help working engineers/scientists design and test their signal processing systems. Each chapter of this
book contains new information beyond that provided in earlier editions.
It’s traditional at this point in the preface of a DSP textbook for the author to tell readers why they
should learn DSP. I don’t need to tell you how important DSP is in our modern engineering world.
You already know that. I’ll just say that the future of electronics is DSP, and with this book you will
not be left behind.

For Instructors
This third edition is appropriate as the text for a one- or two-semester undergraduate course in DSP.
It follows the DSP material I cover in my corporate training activities and a signal processing course
I taught at the University of California Santa Cruz Extension. To aid students in their efforts to learn
DSP, this third edition provides additional explanations and examples to increase its tutorial value.
To test a student’s understanding of the material, homework problems have been included at the end of
each chapter. (For qualified instructors, a Solutions Manual is available from Prentice Hall.)

For Practicing Engineers
To help working DSP engineers, the changes in this third edition include, but are not limited to, the
following:

• Practical guidance in building discrete differentiators, integrators, and matched filters
• Descriptions of statistical measures of signals, variance reduction by way of averaging, and
techniques for computing real-world signal-to-noise ratios (SNRs)

• A significantly expanded chapter on sample rate conversion (multirate systems) and its associated
filtering

• Implementing fast convolution (FIR filtering in the frequency domain)
• IIR filter scaling
• Enhanced material covering techniques for analyzing the behavior and performance of digital
filters

• Expanded descriptions of industry-standard binary number formats used in modern processing
systems

• Numerous additions to the popular “Digital Signal Processing Tricks” chapter

For Students
Learning the fundamentals, and how to speak the language, of digital signal processing does not
require profound analytical skills or an extensive background in mathematics. All you need is a little
experience with elementary algebra, knowledge of what a sinewave is, this book, and enthusiasm.



This may sound hard to believe, particularly if you’ve just flipped through the pages of this book and
seen figures and equations that look rather complicated. The content here, you say, looks suspiciously
like material in technical journals and textbooks whose meaning has eluded you in the past. Well, this
is not just another book on digital signal processing.
In this book I provide a gentle, but thorough, explanation of the theory and practice of DSP. The text is
not written so that you may understand the material, but so that you must understand the material. I’ve
attempted to avoid the traditional instructor–student relationship and have tried to make reading this
book seem like talking to a friend while walking in the park. I’ve used just enough mathematics to
help you develop a fundamental understanding of DSP theory and have illustrated that theory with
practical examples.
I have designed the homework problems to be more than mere exercises that assign values to
variables for the student to plug into some equation in order to compute a result. Instead, the
homework problems are designed to be as educational as possible in the sense of expanding on and
enabling further investigation of specific aspects of DSP topics covered in the text. Stated differently,
the homework problems are not designed to induce “death by algebra,” but rather to improve your
understanding of DSP. Solving the problems helps you become proactive in your own DSP education
instead of merely being an inactive recipient of DSP information.

The Journey
Learning digital signal processing is not something you accomplish; it’s a journey you take. When you
gain an understanding of one topic, questions arise that cause you to investigate some other facet of
digital signal processing.† Armed with more knowledge, you’re likely to begin exploring further
aspects of digital signal processing much like those shown in the diagram on page xviii. This book is
your tour guide during the first steps of your journey.
†“You see I went on with this research just the way it led me. This is the only way I ever heard of research going. I asked a question,
devised some method of getting an answer, and got—a fresh question. Was this possible, or that possible? You cannot imagine what this
means to an investigator, what an intellectual passion grows upon him. You cannot imagine the strange colourless delight of these
intellectual desires” (Dr. Moreau—infamous physician and vivisectionist from H.G. Wells’ Island of Dr. Moreau, 1896).

You don’t need a computer to learn the material in this book, but it would certainly help. DSP
simulation software allows the beginner to verify signal processing theory through the time-tested
trial and error process.‡ In particular, software routines that plot signal data, perform the fast Fourier
transforms, and analyze digital filters would be very useful.
‡“One must learn by doing the thing; for though you think you know it, you have no certainty until you try it” (Sophocles, 496–406 B.C.).

As you go through the material in this book, don’t be discouraged if your understanding comes slowly.
As the Greek mathematician Menaechmus curtly remarked to Alexander the Great, when asked for a
quick explanation of mathematics, “There is no royal road to mathematics.” Menaechmus was
confident in telling Alexander the only way to learn mathematics is through careful study. The same
applies to digital signal processing. Also, don’t worry if you need to read some of the material twice.
While the concepts in this book are not as complicated as quantum physics, as mysterious as the lyrics
of the song “Louie Louie,” or as puzzling as the assembly instructions of a metal shed, they can
become a little involved. They deserve your thoughtful attention. So, go slowly and read the material
twice if necessary; you’ll be glad you did. If you show persistence, to quote Susan B. Anthony,
“Failure is impossible.”



Coming Attractions
Chapter 1 begins by establishing the notation used throughout the remainder of the book. In that
chapter we introduce the concept of discrete signal sequences, show how they relate to continuous
signals, and illustrate how those sequences can be depicted in both the time and frequency domains.
In addition, Chapter 1 defines the operational symbols we’ll use to build our signal processing system
block diagrams. We conclude that chapter with a brief introduction to the idea of linear systems and
see why linearity enables us to use a number of powerful mathematical tools in our analysis.
Chapter 2 introduces the most frequently misunderstood process in digital signal processing, periodic
sampling. Although the concept of sampling a continuous signal is not complicated, there are
mathematical subtleties in the process that require thoughtful attention. Beginning gradually with
simple examples of lowpass sampling, we then proceed to the interesting subject of bandpass
sampling. Chapter 2 explains and quantifies the frequency-domain ambiguity (aliasing) associated
with these important topics.
Chapter 3 is devoted to one of the foremost topics in digital signal processing, the discrete Fourier
transform (DFT) used for spectrum analysis. Coverage begins with detailed examples illustrating the
important properties of the DFT and how to interpret DFT spectral results, progresses to the topic of
windows used to reduce DFT leakage, and discusses the processing gain afforded by the DFT. The
chapter concludes with a detailed discussion of the various forms of the transform of rectangular
functions that the reader is likely to encounter in the literature.



Chapter 4 covers the innovation that made the most profound impact on the field of digital signal
processing, the fast Fourier transform (FFT). There we show the relationship of the popular radix 2
FFT to the DFT, quantify the powerful processing advantages gained by using the FFT, demonstrate
why the FFT functions as it does, and present various FFT implementation structures. Chapter 4 also
includes a list of recommendations to help the reader use the FFT in practice.
Chapter 5 ushers in the subject of digital filtering. Beginning with a simple lowpass finite impulse
response (FIR) filter example, we carefully progress through the analysis of that filter’s frequency-
domain magnitude and phase response. Next, we learn how window functions affect, and can be used
to design, FIR filters. The methods for converting lowpass FIR filter designs to bandpass and
highpass digital filters are presented, and the popular Parks-McClellan (Remez) Exchange FIR filter
design technique is introduced and illustrated by example. In that chapter we acquaint the reader with,
and take the mystery out of, the process called convolution. Proceeding through several simple
convolution examples, we conclude Chapter 5 with a discussion of the powerful convolution theorem
and show why it’s so useful as a qualitative tool in understanding digital signal processing.
Chapter 6 is devoted to a second class of digital filters, infinite impulse response (IIR) filters. In
discussing several methods for the design of IIR filters, the reader is introduced to the powerful
digital signal processing analysis tool called the z-transform. Because the z-transform is so closely
related to the continuous Laplace transform, Chapter 6 starts by gently guiding the reader from the
origin, through the properties, and on to the utility of the Laplace transform in preparation for learning
the z-transform. We’ll see how IIR filters are designed and implemented, and why their performance
is so different from that of FIR filters. To indicate under what conditions these filters should be used,
the chapter concludes with a qualitative comparison of the key properties of FIR and IIR filters.
Chapter 7 introduces specialized networks known as digital differentiators, integrators, and
matched filters. In addition, this chapter covers two specialized digital filter types that have not
received their deserved exposure in traditional DSP textbooks. Called interpolated FIR and
frequency sampling filters, providing improved lowpass filtering computational efficiency, they
belong in our arsenal of filter design techniques. Although these are FIR filters, their introduction is
delayed to this chapter because familiarity with the z-transform (in Chapter 6) makes the properties of
these filters easier to understand.
Chapter 8 presents a detailed description of quadrature signals (also called complex signals).
Because quadrature signal theory has become so important in recent years, in both signal analysis and
digital communications implementations, it deserves its own chapter. Using three-dimensional
illustrations, this chapter gives solid physical meaning to the mathematical notation, processing
advantages, and use of quadrature signals. Special emphasis is given to quadrature sampling (also
called complex down-conversion).
Chapter 9 provides a mathematically gentle, but technically thorough, description of the Hilbert
transform—a process used to generate a quadrature (complex) signal from a real signal. In this
chapter we describe the properties, behavior, and design of practical Hilbert transformers.
Chapter 10 presents an introduction to the fascinating and useful process of sample rate conversion
(changing the effective sample rate of discrete data sequences through decimation or interpolation).
Sample rate conversion—so useful in improving the performance and reducing the computational
complexity of many signal processing operations—is essentially an exercise in lowpass filter design.
As such, polyphase and cascaded integrator-comb filters are described in detail in this chapter.



Chapter 11 covers the important topic of signal averaging. There we learn how averaging increases
the accuracy of signal measurement schemes by reducing measurement background noise. This
accuracy enhancement is called processing gain, and the chapter shows how to predict the processing
gain associated with averaging signals in both the time and frequency domains. In addition, the key
differences between coherent and incoherent averaging techniques are explained and demonstrated
with examples. To complete that chapter the popular scheme known as exponential averaging is
covered in some detail.
Chapter 12 presents an introduction to the various binary number formats the reader is likely to
encounter in modern digital signal processing. We establish the precision and dynamic range afforded
by these formats along with the inherent pitfalls associated with their use. Our exploration of the
critical subject of binary data word width (in bits) naturally leads to a discussion of the numerical
resolution limitations of analog-to-digital (A/D) converters and how to determine the optimum A/D
converter word size for a given application. The problems of data value overflow roundoff errors are
covered along with a statistical introduction to the two most popular remedies for overflow,
truncation and rounding. We end that chapter by covering the interesting subject of floating-point
binary formats that allow us to overcome most of the limitations induced by fixed-point binary
formats, particularly in reducing the ill effects of data overflow.
Chapter 13 provides the literature’s most comprehensive collection of tricks of the trade used by
DSP professionals to make their processing algorithms more efficient. These techniques are compiled
into a chapter at the end of the book for two reasons. First, it seems wise to keep our collection of
tricks in one chapter so that we’ll know where to find them in the future. Second, many of these clever
schemes require an understanding of the material from the previous chapters, making the last chapter
an appropriate place to keep our arsenal of clever tricks. Exploring these techniques in detail verifies
and reiterates many of the important ideas covered in previous chapters.
The appendices include a number of topics to help the beginner understand the nature and
mathematics of digital signal processing. A comprehensive description of the arithmetic of complex
numbers is covered in Appendix A, and Appendix B derives the often used, but seldom explained,
closed form of a geometric series. The subtle aspects and two forms of time reversal in discrete
systems (of which zero-phase digital filtering is an application) are explained in Appendix C. The
statistical concepts of mean, variance, and standard deviation are introduced and illustrated in
Appendix D, and Appendix E provides a discussion of the origin and utility of the logarithmic decibel
scale used to improve the magnitude resolution of spectral representations. Appendix F, in a slightly
different vein, provides a glossary of the terminology used in the field of digital filters. Appendices G
and H provide supplementary information for designing and analyzing specialized digital filters.
Appendix I explains the computation of Chebyshev window sequences.
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Chapter One. Discrete Sequences and Systems

Digital signal processing has never been more prevalent or easier to perform. It wasn’t that long ago
when the fast Fourier transform (FFT), a topic we’ll discuss in Chapter 4, was a mysterious
mathematical process used only in industrial research centers and universities. Now, amazingly, the
FFT is readily available to us all. It’s even a built-in function provided by inexpensive spreadsheet
software for home computers. The availability of more sophisticated commercial signal processing
software now allows us to analyze and develop complicated signal processing applications rapidly
and reliably. We can perform spectral analysis, design digital filters, develop voice recognition, data
communication, and image compression processes using software that’s interactive both in the way
algorithms are defined and how the resulting data are graphically displayed. Since the mid-1980s the
same integrated circuit technology that led to affordable home computers has produced powerful and
inexpensive hardware development systems on which to implement our digital signal processing
designs.† Regardless, though, of the ease with which these new digital signal processing development
systems and software can be applied, we still need a solid foundation in understanding the basics of
digital signal processing. The purpose of this book is to build that foundation.
† During a television interview in the early 1990s, a leading computer scientist stated that had automobile technology made the same
strides as the computer industry, we’d all have a car that would go a half million miles per hour and get a half million miles per gallon.
The cost of that car would be so low that it would be cheaper to throw it away than pay for one day’s parking in San Francisco.

In this chapter we’ll set the stage for the topics we’ll study throughout the remainder of this book by
defining the terminology used in digital signal processing, illustrating the various ways of graphically
representing discrete signals, establishing the notation used to describe sequences of data values,
presenting the symbols used to depict signal processing operations, and briefly introducing the
concept of a linear discrete system.

1.1 Discrete Sequences and Their Notation
In general, the term signal processing refers to the science of analyzing time-varying physical
processes. As such, signal processing is divided into two categories, analog signal processing and
digital signal processing. The term analog is used to describe a waveform that’s continuous in time
and can take on a continuous range of amplitude values. An example of an analog signal is some
voltage that can be applied to an oscilloscope, resulting in a continuous display as a function of time.
Analog signals can also be applied to a conventional spectrum analyzer to determine their frequency
content. The term analog appears to have stemmed from the analog computers used prior to 1980.
These computers solved linear differential equations by means of connecting physical (electronic)
differentiators and integrators using old-style telephone operator patch cords. That way, a continuous
voltage or current in the actual circuit was analogous to some variable in a differential equation, such
as speed, temperature, air pressure, etc. (Although the flexibility and speed of modern-day digital
computers have since made analog computers obsolete, a good description of the short-lived utility of



analog computers can be found in reference [1].) Because present-day signal processing of continuous
radio-type signals using resistors, capacitors, operational amplifiers, etc., has nothing to do with
analogies, the term analog is actually a misnomer. The more correct term is continuous signal
processing for what is today so commonly called analog signal processing. As such, in this book
we’ll minimize the use of the term analog signals and substitute the phrase continuous signals
whenever appropriate.
The term discrete-time signal is used to describe a signal whose independent time variable is
quantized so that we know only the value of the signal at discrete instants in time. Thus a discrete-
time signal is not represented by a continuous waveform but, instead, a sequence of values. In
addition to quantizing time, a discrete-time signal quantizes the signal amplitude. We can illustrate
this concept with an example. Think of a continuous sinewave with a peak amplitude of 1 at a
frequency fo described by the equation

(1-1)

The frequency fo is measured in hertz (Hz). (In physical systems, we usually measure frequency in
units of hertz. One Hz is a single oscillation, or cycle, per second. One kilohertz (kHz) is a thousand
Hz, and a megahertz (MHz) is one million Hz.†) With t in Eq. 1-1 representing time in seconds, the fot
factor has dimensions of cycles, and the complete 2πfot term is an angle measured in radians.
† The dimension for frequency used to be cycles/second; that’s why the tuning dials of old radios indicate frequency as
kilocycles/second (kcps) or megacycles/second (Mcps). In 1960 the scientific community adopted hertz as the unit of measure for
frequency in honor of the German physicist Heinrich Hertz, who first demonstrated radio wave transmission and reception in 1887.

Plotting Eq. (1-1), we get the venerable continuous sinewave curve shown in Figure 1-1(a). If our
continuous sinewave represents a physical voltage, we could sample it once every ts seconds using
an analog-to-digital converter and represent the sinewave as a sequence of discrete values. Plotting
those individual values as dots would give us the discrete waveform in Figure 1-1(b). We say that
Figure 1-1(b) is the “discrete-time” version of the continuous signal in Figure 1-1(a). The
independent variable t in Eq. (1-1) and Figure 1-1(a) is continuous. The independent index variable n
in Figure 1-1(b) is discrete and can have only integer values. That is, index n is used to identify the
individual elements of the discrete sequence in Figure 1-1(b).

Figure 1-1 A time-domain sinewave: (a) continuous waveform representation; (b) discrete sample
representation; (c) discrete samples with connecting lines.



Do not be tempted to draw lines between the dots in Figure 1-1(b). For some reason, people
(particularly those engineers experienced in working with continuous signals) want to connect the
dots with straight lines, or the stair-step lines shown in Figure 1-1(c). Don’t fall into this innocent-
looking trap. Connecting the dots can mislead the beginner into forgetting that the x(n) sequence is
nothing more than a list of numbers. Remember, x(n) is a discrete-time sequence of individual values,
and each value in that sequence plots as a single dot. It’s not that we’re ignorant of what lies between
the dots of x(n); there is nothing between those dots.
We can reinforce this discrete-time sequence concept by listing those Figure 1-1(b) sampled values
as follows:

(1-2)

where n represents the time index integer sequence 0, 1, 2, 3, etc., and ts is some constant time period
between samples. Those sample values can be represented collectively, and concisely, by the
discrete-time expression

(1-3)



(Here again, the 2πfonts term is an angle measured in radians.) Notice that the index n in Eq. (1-2)
started with a value of 0, instead of 1. There’s nothing sacred about this; the first value of n could just
as well have been 1, but we start the index n at zero out of habit because doing so allows us to
describe the sinewave starting at time zero. The variable x(n) in Eq. (1-3) is read as “the sequence x
of n.” Equations (1-1) and (1-3) describe what are also referred to as time-domain signals because
the independent variables, the continuous time t in Eq. (1-1), and the discrete-time nts values used in
Eq. (1-3) are measures of time.
With this notion of a discrete-time signal in mind, let’s say that a discrete system is a collection of
hardware components, or software routines, that operate on a discrete-time signal sequence. For
example, a discrete system could be a process that gives us a discrete output sequence y(0), y(1),
y(2), etc., when a discrete input sequence of x(0), x(1), x(2), etc., is applied to the system input as
shown in Figure 1-2(a). Again, to keep the notation concise and still keep track of individual elements
of the input and output sequences, an abbreviated notation is used as shown in Figure 1-2(b) where n
represents the integer sequence 0, 1, 2, 3, etc. Thus, x(n) and y(n) are general variables that represent
two separate sequences of numbers. Figure 1-2(b) allows us to describe a system’s output with a
simple expression such as

(1-4)

Figure 1-2 With an input applied, a discrete system provides an output: (a) the input and output are
sequences of individual values; (b) input and output using the abbreviated notation of x(n) and y(n).

Illustrating Eq. (1-4), if x(n) is the five-element sequence x(0) = 1, x(1) = 3, x(2) = 5, x(3) = 7, and
x(4) = 9, then y(n) is the five-element sequence y(0) = 1, y(1) = 5, y(2) = 9, y(3) = 13, and y(4) = 17.
Equation (1-4) is formally called a difference equation. (In this book we won’t be working with
differential equations or partial differential equations. However, we will, now and then, work with
partially difficult equations.)
The fundamental difference between the way time is represented in continuous and discrete systems
leads to a very important difference in how we characterize frequency in continuous and discrete
systems. To illustrate, let’s reconsider the continuous sinewave in Figure 1-1(a). If it represented a
voltage at the end of a cable, we could measure its frequency by applying it to an oscilloscope, a
spectrum analyzer, or a frequency counter. We’d have a problem, however, if we were merely given
the list of values from Eq. (1-2) and asked to determine the frequency of the waveform they represent.
We’d graph those discrete values, and, sure enough, we’d recognize a single sinewave as in Figure 1-
1(b). We can say that the sinewave repeats every 20 samples, but there’s no way to determine the
exact sinewave frequency from the discrete sequence values alone. You can probably see the point



we’re leading to here. If we knew the time between samples—the sample period ts—we’d be able to
determine the absolute frequency of the discrete sinewave. Given that the ts sample period is, say,
0.05 milliseconds/sample, the period of the sinewave is

(1-5)

Because the frequency of a sinewave is the reciprocal of its period, we now know that the sinewave’s
absolute frequency is 1/(1 ms), or 1 kHz. On the other hand, if we found that the sample period was,
in fact, 2 milliseconds, the discrete samples in Figure 1-1(b) would represent a sinewave whose
period is 40 milliseconds and whose frequency is 25 Hz. The point here is that when dealing with
discrete systems, absolute frequency determination in Hz is dependent on the sampling frequency

(1-5′)

We’ll be reminded of this dependence throughout the remainder of this book.
In digital signal processing, we often find it necessary to characterize the frequency content of
discrete time-domain signals. When we do so, this frequency representation takes place in what’s
called the frequency domain. By way of example, let’s say we have a discrete sinewave sequence
x1(n) with an arbitrary frequency fo Hz as shown on the left side of Figure 1-3(a). We can also
characterize x1(n) by showing its spectral content, the X1(m) sequence on the right side of Figure 1-
3(a), indicating that it has a single spectral component, and no other frequency content. Although we
won’t dwell on it just now, notice that the frequency-domain representations in Figure 1-3 are
themselves discrete.
Figure 1-3 Time- and frequency-domain graphical representations: (a) sinewave of frequency fo; (b)

reduced amplitude sinewave of frequency 2fo; (c) sum of the two sinewaves.



To illustrate our time- and frequency-domain representations further, Figure 1-3(b) shows another
discrete sinewave x2(n), whose peak amplitude is 0.4, with a frequency of 2fo. The discrete sample
values of x2(n) are expressed by the equation

(1-6)

When the two sinewaves, x1(n) and x2(n), are added to produce a new waveform xsum(n), its time-
domain equation is

(1-7)

and its time- and frequency-domain representations are those given in Figure 1-3(c). We interpret the
Xsum(m) frequency-domain depiction, the spectrum, in Figure 1-3(c) to indicate that xsum(n) has a
frequency component of fo Hz and a reduced-amplitude frequency component of 2fo Hz.

Notice three things in Figure 1-3. First, time sequences use lowercase variable names like the “x” in
x1(n), and uppercase symbols for frequency-domain variables such as the “X” in X1(m). The term
X1(m) is read as “the spectral sequence X sub one of m.” Second, because the X1(m) frequency-
domain representation of the x1(n) time sequence is itself a sequence (a list of numbers), we use the
index “m” to keep track of individual elements in X1(m). We can list frequency-domain sequences just
as we did with the time sequence in Eq. (1-2). For example, Xsum(m) is listed as



where the frequency index m is the integer sequence 0, 1, 2, 3, etc. Third, because the x1(n) + x2(n)
sinewaves have a phase shift of zero degrees relative to each other, we didn’t really need to bother
depicting this phase relationship in Xsum(m) in Figure 1-3(c). In general, however, phase relationships
in frequency-domain sequences are important, and we’ll cover that subject in Chapters 3 and 5.
A key point to keep in mind here is that we now know three equivalent ways to describe a discrete-
time waveform. Mathematically, we can use a time-domain equation like Eq. (1-6). We can also
represent a time-domain waveform graphically as we did on the left side of Figure 1-3, and we can
depict its corresponding, discrete, frequency-domain equivalent as that on the right side of Figure 1-3.
As it turns out, the discrete time-domain signals we’re concerned with are not only quantized in time;
their amplitude values are also quantized. Because we represent all digital quantities with binary
numbers, there’s a limit to the resolution, or granularity, that we have in representing the values of
discrete numbers. Although signal amplitude quantization can be an important consideration—we
cover that particular topic in Chapter 12—we won’t worry about it just now.

1.2 Signal Amplitude, Magnitude, Power
Let’s define two important terms that we’ll be using throughout this book: amplitude and magnitude.
It’s not surprising that, to the layman, these terms are typically used interchangeably. When we check
our thesaurus, we find that they are synonymous.† In engineering, however, they mean two different
things, and we must keep that difference clear in our discussions. The amplitude of a variable is the
measure of how far, and in what direction, that variable differs from zero. Thus, signal amplitudes can
be either positive or negative. The time-domain sequences in Figure 1-3 presented the sample value
amplitudes of three different waveforms. Notice how some of the individual discrete amplitude
values were positive and others were negative.
† Of course, laymen are “other people.” To the engineer, the brain surgeon is the layman. To the brain surgeon, the engineer is the
layman.

The magnitude of a variable, on the other hand, is the measure of how far, regardless of direction, its
quantity differs from zero. So magnitudes are always positive values. Figure 1-4 illustrates how the
magnitude of the x1(n) time sequence in Figure 1-3(a) is equal to the amplitude, but with the sign
always being positive for the magnitude. We use the modulus symbol (||) to represent the magnitude of
x1(n). Occasionally, in the literature of digital signal processing, we’ll find the term magnitude
referred to as the absolute value.

Figure 1-4 Magnitude samples, |x1(n)|, of the time waveform in Figure 1-3(a).



When we examine signals in the frequency domain, we’ll often be interested in the power level of
those signals. The power of a signal is proportional to its amplitude (or magnitude) squared. If we
assume that the proportionality constant is one, we can express the power of a sequence in the time or
frequency domains as

(1-8)

or
(1-8′)

Very often we’ll want to know the difference in power levels of two signals in the frequency domain.
Because of the squared nature of power, two signals with moderately different amplitudes will have a
much larger difference in their relative powers. In Figure 1-3, for example, signal x1(n)’s amplitude
is 2.5 times the amplitude of signal x2(n), but its power level is 6.25 that of x2(n)’s power level. This
is illustrated in Figure 1-5 where both the amplitude and power of Xsum(m) are shown.
Figure 1-5 Frequency-domain amplitude and frequency-domain power of the xsum(n) time waveform

in Figure 1-3(c).

Because of their squared nature, plots of power values often involve showing both very large and
very small values on the same graph. To make these plots easier to generate and evaluate,
practitioners usually employ the decibel scale as described in Appendix E.

1.3 Signal Processing Operational Symbols
We’ll be using block diagrams to graphically depict the way digital signal processing operations are
implemented. Those block diagrams will comprise an assortment of fundamental processing symbols,
the most common of which are illustrated and mathematically defined in Figure 1-6.

Figure 1-6 Terminology and symbols used in digital signal processing block diagrams.



Figure 1-6(a) shows the addition, element for element, of two discrete sequences to provide a new
sequence. If our sequence index n begins at 0, we say that the first output sequence value is equal to
the sum of the first element of the b sequence and the first element of the c sequence, or a(0) = b(0) +
c(0). Likewise, the second output sequence value is equal to the sum of the second element of the b
sequence and the second element of the c sequence, or a(1) = b(1) + c(1). Equation (1-7) is an
example of adding two sequences. The subtraction process in Figure 1-6(b) generates an output
sequence that’s the element-for-element difference of the two input sequences. There are times when
we must calculate a sequence whose elements are the sum of more than two values. This operation,
illustrated in Figure 1-6(c), is called summation and is very common in digital signal processing.
Notice how the lower and upper limits of the summation index k in the expression in Figure 1-6(c)
tell us exactly which elements of the b sequence to sum to obtain a given a(n) value. Because we’ll
encounter summation operations so often, let’s make sure we understand their notation. If we repeat
the summation equation from Figure 1-6(c) here, we have

(1-9)

This means that
(1-10)



We’ll begin using summation operations in earnest when we discuss digital filters in Chapter 5.
The multiplication of two sequences is symbolized in Figure 1-6(d). Multiplication generates an
output sequence that’s the element-for-element product of two input sequences: a(0) = b(0)c(0), a(1)
= b(1)c(1), and so on. The last fundamental operation that we’ll be using is called the unit delay in
Figure 1-6(e). While we don’t need to appreciate its importance at this point, we’ll merely state that
the unit delay symbol signifies an operation where the output sequence a(n) is equal to a delayed
version of the b(n) sequence. For example, a(5) = b(4), a(6) = b(5), a(7) = b(6), etc. As we’ll see in
Chapter 6, due to the mathematical techniques used to analyze digital filters, the unit delay is very
often depicted using the term z−1.
The symbols in Figure 1-6 remind us of two important aspects of digital signal processing. First, our
processing operations are always performed on sequences of individual discrete values, and second,
the elementary operations themselves are very simple. It’s interesting that, regardless of how
complicated they appear to be, the vast majority of digital signal processing algorithms can be
performed using combinations of these simple operations. If we think of a digital signal processing
algorithm as a recipe, then the symbols in Figure 1-6 are the ingredients.

1.4 Introduction to Discrete Linear Time-Invariant Systems
In keeping with tradition, we’ll introduce the subject of linear time-invariant (LTI) systems at this
early point in our text. Although an appreciation for LTI systems is not essential in studying the next
three chapters of this book, when we begin exploring digital filters, we’ll build on the strict
definitions of linearity and time invariance. We need to recognize and understand the notions of
linearity and time invariance not just because the vast majority of discrete systems used in practice
are LTI systems, but because LTI systems are very accommodating when it comes to their analysis.
That’s good news for us because we can use straightforward methods to predict the performance of
any digital signal processing scheme as long as it’s linear and time invariant. Because linearity and
time invariance are two important system characteristics having very special properties, we’ll
discuss them now.

1.5 Discrete Linear Systems
The term linear defines a special class of systems where the output is the superposition, or sum, of
the individual outputs had the individual inputs been applied separately to the system. For example,
we can say that the application of an input x1(n) to a system results in an output y1(n). We symbolize
this situation with the following expression:

(1-11)

Given a different input x2(n), the system has a y2(n) output as
(1-12)



For the system to be linear, when its input is the sum x1(n) + x2(n), its output must be the sum of the
individual outputs so that

(1-13)

One way to paraphrase expression (1-13) is to state that a linear system’s output is the sum of the
outputs of its parts. Also, part of this description of linearity is a proportionality characteristic. This
means that if the inputs are scaled by constant factors c1 and c2, then the output sequence parts are
also scaled by those factors as

(1-14)

In the literature, this proportionality attribute of linear systems in expression (1-14) is sometimes
called the homogeneity property. With these thoughts in mind, then, let’s demonstrate the concept of
system linearity.

1.5.1 Example of a Linear System
To illustrate system linearity, let’s say we have the discrete system shown in Figure 1-7(a) whose
output is defined as

(1-15)

Figure 1-7 Linear system input-to-output relationships: (a) system block diagram where y(n) =
−x(n)/2; (b) system input and output with a 1 Hz sinewave applied; (c) with a 3 Hz sinewave applied;

(d) with the sum of 1 Hz and 3 Hz sinewaves applied.



that is, the output sequence is equal to the negative of the input sequence with the amplitude reduced
by a factor of two. If we apply an x1(n) input sequence representing a 1 Hz sinewave sampled at a
rate of 32 samples per cycle, we’ll have a y1(n) output as shown in the center of Figure 1-7(b). The
frequency-domain spectral amplitude of the y1(n) output is the plot on the right side of Figure 1-7(b),
indicating that the output comprises a single tone of peak amplitude equal to −0.5 whose frequency is
1 Hz. Next, applying an x2(n) input sequence representing a 3 Hz sinewave, the system provides a
y2(n) output sequence, as shown in the center of Figure 1-7(c). The spectrum of the y2(n) output,
Y2(m), confirming a single 3 Hz sinewave output is shown on the right side of Figure 1-7(c). Finally
—here’s where the linearity comes in—if we apply an x3(n) input sequence that’s the sum of a 1 Hz
sinewave and a 3 Hz sinewave, the y3(n) output is as shown in the center of Figure 1-7(d). Notice
how y3(n) is the sample-for-sample sum of y1(n) and y2(n). Figure 1-7(d) also shows that the output
spectrum Y3(m) is the sum of Y1(m) and Y2(m). That’s linearity.

1.5.2 Example of a Nonlinear System
It’s easy to demonstrate how a nonlinear system yields an output that is not equal to the sum of y1(n)
and y2(n) when its input is x1(n) + x2(n). A simple example of a nonlinear discrete system is that in
Figure 1-8(a) where the output is the square of the input described by

(1-16)

Figure 1-8 Nonlinear system input-to-output relationships: (a) system block diagram where y(n) =
[x(n)]2; (b) system input and output with a 1 Hz sinewave applied; (c) with a 3 Hz sinewave applied;



(d) with the sum of 1 Hz and 3 Hz sinewaves applied.

We’ll use a well-known trigonometric identity and a little algebra to predict the output of this
nonlinear system when the input comprises simple sinewaves. Following the form of Eq. (1-3), let’s
describe a sinusoidal sequence, whose frequency fo = 1 Hz, by

(1-17)

Equation (1-17) describes the x1(n) sequence on the left side of Figure 1-8(b). Given this x1(n) input
sequence, the y1(n) output of the nonlinear system is the square of a 1 Hz sinewave, or

(1-18)

We can simplify our expression for y1(n) in Eq. (1-18) by using the following trigonometric identity:
(1-19)

Using Eq. (1-19), we can express y1(n) as
(1-20)



which is shown as the all-positive sequence in the center of Figure 1-8(b). Because Eq. (1-19) results
in a frequency sum (α + β) and frequency difference (α − β) effect when multiplying two sinusoids,
the y1(n) output sequence will be a cosine wave of 2 Hz and a peak amplitude of −0.5, added to a
constant value of 1/2. The constant value of 1/2 in Eq. (1-20) is interpreted as a zero Hz frequency
component, as shown in the Y1(m) spectrum in Figure 1-8(b). We could go through the same algebraic
exercise to determine that when a 3 Hz sinewave x2(n) sequence is applied to this nonlinear system,
the output y2(n) would contain a zero Hz component and a 6 Hz component, as shown in Figure 1-
8(c).
System nonlinearity is evident if we apply an x3(n) sequence comprising the sum of a 1 Hz and a 3 Hz
sinewave as shown in Figure 1-8(d). We can predict the frequency content of the y3(n) output
sequence by using the algebraic relationship

(1-21)

where a and b represent the 1 Hz and 3 Hz sinewaves, respectively. From Eq. (1-19), the a2 term in
Eq. (1-21) generates the zero Hz and 2 Hz output sinusoids in Figure 1-8(b). Likewise, the b2 term
produces in y3(n) another zero Hz and the 6 Hz sinusoid in Figure 1-8(c). However, the 2ab term
yields additional 2 Hz and 4 Hz sinusoids in y3(n). We can show this algebraically by using Eq. (1-
19) and expressing the 2ab term in Eq. (1-21) as

(1-22)

† The first term in Eq. (1-22) is cos(2π · nts − 6π · nts) = cos(−4π · nts) = cos(−2π · 2 · nts). However, because the cosine function is
even, cos(−α) = cos(α), we can express that first term as cos(2π · 2 · nts).

Equation (1-22) tells us that two additional sinusoidal components will be present in y3(n) because of
the system’s nonlinearity, a 2 Hz cosine wave whose amplitude is +1 and a 4 Hz cosine wave having
an amplitude of −1. These spectral components are illustrated in Y3(m) on the right side of Figure 1-
8(d).
Notice that when the sum of the two sinewaves is applied to the nonlinear system, the output
contained sinusoids, Eq. (1-22), that were not present in either of the outputs when the individual
sinewaves alone were applied. Those extra sinusoids were generated by an interaction of the two
input sinusoids due to the squaring operation. That’s nonlinearity; expression (1-13) was not satisfied.
(Electrical engineers recognize this effect of internally generated sinusoids as intermodulation



distortion.) Although nonlinear systems are usually difficult to analyze, they are occasionally used in
practice. References [2], [3], and [4], for example, describe their application in nonlinear digital
filters. Again, expressions (1-13) and (1-14) state that a linear system’s output resulting from a sum of
individual inputs is the superposition (sum) of the individual outputs. They also stipulate that the
output sequence y1(n) depends only on x1(n) combined with the system characteristics, and not on the
other input x2(n); i.e., there’s no interaction between inputs x1(n) and x2(n) at the output of a linear
system.

1.6 Time-Invariant Systems
A time-invariant system is one where a time delay (or shift) in the input sequence causes an
equivalent time delay in the system’s output sequence. Keeping in mind that n is just an indexing
variable we use to keep track of our input and output samples, let’s say a system provides an output
y(n) given an input of x(n), or

(1-23)

For a system to be time invariant, with a shifted version of the original x(n) input applied, x′(n), the
following applies:

(1-24)

where k is some integer representing k sample period time delays. For a system to be time invariant,
Eq. (1-24) must hold true for any integer value of k and any input sequence.

1.6.1 Example of a Time-Invariant System
Let’s look at a simple example of time invariance illustrated in Figure 1-9. Assume that our initial
x(n) input is a unity-amplitude 1 Hz sinewave sequence with a y(n) output, as shown in Figure 1-9(b).
Consider a different input sequence x′(n), where

(1-25)

Figure 1-9 Time-invariant system input/output relationships: (a) system block diagram, y(n) =
−x(n)/2; (b) system input/output with a sinewave input; (c) input/output when a sinewave, delayed by

four samples, is the input.



Equation (1-25) tells us that the input sequence x′(n) is equal to sequence x(n) shifted to the right by k
= −4 samples. That is, x′(4) = x(0), x′(5) = x(1), x′(6) = x(2), and so on as shown in Figure 1-9(c).
The discrete system is time invariant because the y′(n) output sequence is equal to the y(n) sequence
shifted to the right by four samples, or y′(n) = y(n−4). We can see that y′(4) = y(0), y′(5) = y(1), y′(6)
= y(2), and so on as shown in Figure 1-9(c). For time-invariant systems, the time shifts in x′(n) and y′
(n) are equal. Take careful notice of the minus sign in Eq. (1-25). In later chapters, that is the notation
we’ll use to algebraically describe a time-delayed discrete sequence.
Some authors succumb to the urge to define a time-invariant system as one whose parameters do not
change with time. That definition is incomplete and can get us in trouble if we’re not careful. We’ll
just stick with the formal definition that a time-invariant system is one where a time shift in an input
sequence results in an equal time shift in the output sequence. By the way, time-invariant systems in
the literature are often called shift-invariant systems.†
† An example of a discrete process that’s not time invariant is the downsampling, or decimation, process described in Chapter 10.

1.7 The Commutative Property of Linear Time-Invariant Systems
Although we don’t substantiate this fact until we reach Section 6.11, it’s not too early to realize that
LTI systems have a useful commutative property by which their sequential order can be rearranged
with no change in their final output. This situation is shown in Figure 1-10 where two different LTI
systems are configured in series. Swapping the order of two cascaded systems does not alter the final
output. Although the intermediate data sequences f(n) and g(n) will usually not be equal, the two pairs
of LTI systems will have identical y(n) output sequences. This commutative characteristic comes in
handy for designers of digital filters, as we’ll see in Chapters 5 and 6.
Figure 1-10 Linear time-invariant (LTI) systems in series: (a) block diagram of two LTI systems; (b)

swapping the order of the two systems does not change the resultant output y(n).



1.8 Analyzing Linear Time-Invariant Systems
As previously stated, LTI systems can be analyzed to predict their performance. Specifically, if we
know the unit impulse response of an LTI system, we can calculate everything there is to know about
the system; that is, the system’s unit impulse response completely characterizes the system. By “unit
impulse response” we mean the system’s time-domain output sequence when the input is a single
unity-valued sample (unit impulse) preceded and followed by zero-valued samples as shown in
Figure 1-11(b).
Figure 1-11 LTI system unit impulse response sequences: (a) system block diagram; (b) impulse input

sequence x(n) and impulse response output sequence y(n).

Knowing the (unit) impulse response of an LTI system, we can determine the system’s output sequence
for any input sequence because the output is equal to the convolution of the input sequence and the
system’s impulse response. Moreover, given an LTI system’s time-domain impulse response, we can
find the system’s frequency response by taking the Fourier transform in the form of a discrete Fourier
transform of that impulse response[5]. The concepts in the two previous sentences are among the
most important principles in all of digital signal processing!
Don’t be alarmed if you’re not exactly sure what is meant by convolution, frequency response, or the
discrete Fourier transform. We’ll introduce these subjects and define them slowly and carefully as we
need them in later chapters. The point to keep in mind here is that LTI systems can be designed and
analyzed using a number of straightforward and powerful analysis techniques. These techniques will
become tools that we’ll add to our signal processing toolboxes as we journey through the subject of
digital signal processing.
In the testing (analyzing) of continuous linear systems, engineers often use a narrow-in-time impulsive
signal as an input signal to their systems. Mechanical engineers give their systems a little whack with



a hammer, and electrical engineers working with analog-voltage systems generate a very narrow
voltage spike as an impulsive input. Audio engineers, who need an impulsive acoustic test signal,
sometimes generate an audio impulse by firing a starter pistol.
In the world of DSP, an impulse sequence called a unit impulse takes the form

(1-26)

The value A is often set equal to one. The leading sequence of zero-valued samples, before the A-
valued sample, must be a bit longer than the length of the transient response of the system under test in
order to initialize the system to its zero state. The trailing sequence of zero-valued samples, following
the A-valued sample, must be a bit longer than the transient response of the system under test in order
to capture the system’s entire y(n) impulse response output sequence.
Let’s further explore this notion of impulse response testing to determine the frequency response of a
discrete system (and take an opportunity to start using the operational symbols introduced in Section
1.3). Consider the block diagram of a 4-point moving averager shown in Figure 1-12(a). As the x(n)
input samples march their way through the system, at each time index n four successive input samples
are averaged to compute a single y(n) output. As we’ll learn in subsequent chapters, a moving
averager behaves like a digital lowpass filter. However, we can quickly illustrate that fact now.
Figure 1-12 Analyzing a moving averager: (a) averager block diagram; (b) impulse input and impulse

response; (c) averager frequency magnitude response.

If we apply an impulse input sequence to the system, we’ll obtain its y(n) impulse response output
shown in Figure 1-12(b). The y(n) output is computed using the following difference equation:

(1-27)



If we then perform a discrete Fourier transform (a process we cover in much detail in Chapter 3) on
y(n), we obtain the Y(m) frequency-domain information, allowing us to plot the frequency magnitude
response of the 4-point moving averager as shown in Figure 1-12(c). So we see that a moving
averager indeed has the characteristic of a lowpass filter. That is, the averager attenuates (reduces the
amplitude of) high-frequency signal content applied to its input.
OK, this concludes our brief introduction to discrete sequences and systems. In later chapters we’ll
learn the details of discrete Fourier transforms, discrete system impulse responses, and digital filters.
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Chapter 1 Problems
1.1 This problem gives us practice in thinking about sequences of numbers. For centuries

mathematicians have developed clever ways of computing π. In 1671 the Scottish mathematician
James Gregory proposed the following very simple series for calculating π:

Thinking of the terms inside the parentheses as a sequence indexed by the variable n, where n = 0,
1, 2, 3, . . ., 100, write Gregory’s algorithm in the form

replacing the “?” characters with expressions in terms of index n.
1.2 One of the ways to obtain discrete sequences, for follow-on processing, is to digitize a continuous

(analog) signal with an analog-to-digital (A/D) converter. A 6-bit A/D converter’s output words
(6-bit binary words) can only represent 26=64 different numbers. (We cover this digitization,
sampling, and A/D converters in detail in upcoming chapters.) Thus we say the A/D converter’s
“digital” output can only represent a finite number of amplitude values. Can you think of a
continuous time-domain electrical signal that only has a finite number of amplitude values? If so,
draw a graph of that continuous-time signal.



1.3 On the Internet, the author once encountered the following line of C-language code
PI = 2*asin(1.0);

whose purpose was to define the constant π. In standard mathematical notation, that line of code
can be described by

π = 2 · sin−1(1).
Under what assumption does the above expression correctly define the constant π?

1.4 Many times in the literature of signal processing you will encounter the identity

x0 = 1.
That is, x raised to the zero power is equal to one. Using the Laws of Exponents, prove the above
expression to be true.

1.5 Recall that for discrete sequences the ts sample period (the time period between samples) is the
reciprocal of the sample frequency fs. Write the equations, as we did in the text’s Eq. (1-3),
describing time-domain sequences for unity-amplitude cosine waves whose fo frequencies are

(a) fo = fs/2, one-half the sample rate,

(b) fo = fs/4, one-fourth the sample rate,

(c) fo = 0 (zero) Hz.

1.6 Draw the three time-domain cosine wave sequences, where a sample value is represented by a
dot, described in Problem 1.5. The correct solution to Part (a) of this problem is a useful sequence
used to convert some lowpass digital filters into highpass filters. (Chapter 5 discusses that topic.)
The correct solution to Part (b) of this problem is an important discrete sequence used for
frequency translation (both for signal down-conversion and up-conversion) in modern-day
wireless communications systems. The correct solution to Part (c) of this problem should convince
us that it’s perfectly valid to describe a cosine sequence whose frequency is zero Hz.

1.7 Draw the three time-domain sequences of unity-amplitude sinewaves (not cosine waves) whose
frequencies are
(a) fo = fs/2, one-half the sample rate,

(b) fo = fs/4, one-fourth the sample rate,

(c) fo = 0 (zero) Hz.

The correct solutions to Parts (a) and (c) show us that the two frequencies, 0 Hz and fs/2 Hz, are
special frequencies in the world of discrete signal processing. What is special about the sinewave
sequences obtained from the above Parts (a) and (c)?

1.8 Consider the infinite-length time-domain sequence x(n) in Figure P1-8. Draw the first eight
samples of a shifted time sequence defined by

xshift(n) = x(n+1).

Figure P1-8



1.9 Assume, during your reading of the literature of DSP, you encounter the process shown in Figure
P1-9. The x(n) input sequence, whose fs sample rate is 2500 Hz, is multiplied by a sinusoidal m(n)
sequence to produce the y(n) output sequence. What is the frequency, measured in Hz, of the
sinusoidal m(n) sequence?

Figure P1-9

1.10 There is a process in DSP called an “N-point running sum” (a kind of digital lowpass filter,
actually) that is described by the following equation:

Write out, giving the indices of all the x() terms, the algebraic expression that describes the
computations needed to compute y(9) when N=6.

1.11 A 5-point moving averager can be described by the following difference equation:
(P1-1)

The averager’s signal-flow block diagram is shown in Figure P1-11, where the x(n) input samples
flow through the averager from left to right.

Figure P1-11

Equation (P1-1) is equivalent to
(P1-2)

(a) Draw the block diagram of the discrete system described by Eq. (P1-2).
(b) The moving average processes described by Eqs. (P1-1) and (P1-2) have identical impulse



responses. Draw that impulse response.
(c) If you had to implement (using programmable hardware or assembling discrete hardware

components) either Eq. (P1-1) or Eq. (P1-2), which would you choose? Explain why.
1.12 In this book we will look at many two-dimensional drawings showing the value of one variable

(y) plotted as a function of another variable (x). Stated in different words, we’ll graphically
display what are the values of a y axis variable for various values of an x axis variable. For
example, Figure P1-12(a) plots the weight of a male child as a function of the child’s age. The
dimension of the x axis is years and the dimension of the y axis is kilograms. What are the
dimensions of the x and y axes of the familiar two-dimensional plot given in Figure P1-12(b)?

Figure P1-12

1.13 Let’s say you are writing software code to generate an x(n) test sequence composed of the sum
of two equal-amplitude discrete cosine waves, as

x(n) = cos(2πfonts + ϕ) + cos(2πfonts)

where ts is the time between your x(n) samples, and ϕ is a constant phase shift measured in radians.
An example x(n) when ϕ = π/2 is shown in Figure P1-13 where the x(n) sequence, represented by
the circular dots, is a single sinusoid whose frequency is fo Hz.

Figure P1-13

Using the trigonometric identity cos(α+β) + cos(α−β) = 2cos(α)cos(β), derive an equation for x(n)
that is of the form

x(n) = 2cos(α)cos(β)
where variables α and β are in terms of 2πfonts and ϕ.

1.14 In your engineering education you’ll often read in some mathematical derivation, or hear



someone say, “For small α, sin(α) = α.” (In fact, you’ll encounter that statement a few times in this
book.) Draw two curves defined by

x = α, and y = sin(α)
over the range of α = −π/2 to α = π/2, and discuss why that venerable “For small α, sin(α) = α”
statement is valid.

1.15 Considering two continuous (analog) sinusoids, having initial phase angles of α radians at time t
= 0, replace the following “?” characters with the correct angle arguments:
(a) sin(2πfot + α) = cos(?).

(b) cos(2πfot + α) = sin(?).

1.16 National Instruments Corp. manufactures an A/D converter, Model #NI USB-5133, that is
capable of sampling an analog signal at an fs sample rate of 100 megasamples per second (100
MHz). The A/D converter has internal memory that can store up to 4×106 discrete samples. What is
the maximum number of cycles of a 25 MHz analog sinewave that can be stored in the A/D
converter’s memory? Show your work.

1.17 In the first part of the text’s Section 1.5 we stated that for a process (or system) to be linear it
must satisfy a scaling property that we called the proportionality characteristic in the text’s Eq. (1-
14). Determine if the following processes have that proportionality characteristic:
(a) ya(n) = x(n−1)/6,

(b) yb(n) = 3 + x(n),

(c) yc(n) = sin[x(n)].

This problem is not “busy work.” Knowing if a process (or system) is linear tells us what signal
processing principles, and algorithms, can be applied in the analysis of that process (or system).

1.18 There is an often-used process in DSP called decimation, and in that process we retain some
samples of an x(n) input sequence and discard other x(n) samples. Decimation by a factor of two
can be described algebraically by

(P1-3)

where index m = 0,1,2,3,. . . The decimation defined by Eq. (P1-3) means that y(m) is equal to
alternate samples (every other sample) of x(n). For example:

y(0) = x(0), y(1) = x(2), y(2) = x(4), y(3) = x(6), . . .
and so on. Here is the question: Is that decimation process time invariant? Illustrate your answer by
decimating a simple sinusoidal x(n) time-domain sequence by a factor of two to obtain y(m). Next,
create a shifted-by-one-sample version of x(n) and call it xshift(n). That new sequence is defined by

(P1-4)

Finally, decimate xshift(n) according to Eq. (P1-3) to obtain yshift(m). The decimation process is



time invariant if yshift(m) is equal to a time-shifted version of y(m). That is, decimation is time
invariant if

yshift(m) = y(m+1).

1.19 In Section 1.7 of the text we discussed the commutative property of linear time-invariant
systems. The two networks in Figure P1-19 exhibit that property. Prove this to be true by showing
that, given the same x(n) input sequence, outputs y1(n) and y2(n) will be equal.

Figure P1-19

1.20 Here we investigate several simple discrete processes that turn out to be useful in a number of
DSP applications. Draw the block diagrams, showing their inputs as x(n), of the processes
described by the following difference equations:
(a) a 4th-order comb filter: yC(n) = x(n) − x(n−4),

(b) an integrator: yI(n) = x(n) + yI(n−1),

(c) a leaky integrator: yLI(n) = Ax(n) + (1−A)yLI(n−1) [the scalar value A is a real-valued constant
in the range 0 < A < 1],

(d) a differentiator: yD(n) = 0.5x(n) − 0.5x(n-2).

1.21 Draw the unit impulse responses (the output sequences when the input is a unit sample impulse
applied at time n = 0) of the four processes listed in Problem 1.20. Let A = 0.5 for the leaky
integrator. Assume that all sample values within the systems are zero at time n = 0.

1.22 DSP engineers involved in building control systems often need to know what is the step
response of a discrete system. The step response, ystep(n), can be defined in two equivalent ways.
One way is to say that ystep(n) is a system’s response to an input sequence of all unity-valued
samples. A second definition is that ystep(n) is the cumulative sum (the accumulation, discrete
integration) of that system’s unit impulse response yimp(n). Algebraically, this second definition of
step response is expressed as

In words, the above ystep(n) expression tells us: “The step response at time index n is equal to the
sum of all the previous impulse response samples up to and including yimp(n).” With that said, what
are the step responses of the four processes listed in Problem 1.20? (Let A = 0.5 for the leaky
integrator.) Assume that all sample values within the system are zero at time n = 0.

1.23 Thinking about the spectra of signals, the ideal continuous (analog) squarewave s(t) in Figure



P1-23, whose fundamental frequency is fo Hz, is equal to the sum of an fo Hz sinewave and all
sinewaves whose frequencies are odd multiples of fo Hz. We call s(t) “ideal” because we assume
the amplitude transitions from plus and minus A occur instantaneously (zero seconds!). Continuous
Fourier analysis of the s(t) squarewave allows us to describe this sum of frequencies as the
following infinite sum:

Figure P1-23

Using a summation symbol, we can express squarewave s(t) algebraically as

for n = odd integers only, showing s(t) to be an infinite sum of sinusoids.
(a) Imagine applying s(t) to a filter that completely removes s(t)’s lowest-frequency spectral

component. Draw the time-domain waveform at the output of such a filter.
(b) Assume s(t) represents a voltage whose fo fundamental frequency is 1 Hz, and we wish to

amplify that voltage to peak amplitudes of ±2A. Over what frequency range must an amplifier
operate (that is, what must be the amplifier’s passband width) in order to exactly double the
ideal 1 Hz squarewave’s peak-peak amplitude?

1.24 This interesting problem illustrates an illegal mathematical operation that we must learn to
avoid in our future algebraic activities. The following claims to be a mathematical proof that 4 = 5.
Which of the following steps is illegal? Explain why.
Proof that 4 = 5:
Step 1: 16 − 36 = 25 − 45
Step 2: 42 − 9 · 4 = 52 − 9 · 5
Step 3: 42 − 9 · 4 + 81/4 = 52 − 9 · 5 + 81/4
Step 4: (4 − 9/2)2 = (5 − 9/2)2

Step 5: 4 − 9/2 = 5 − 9/2
Step 6: 4 = 5





Chapter Two. Periodic Sampling

Periodic sampling, the process of representing a continuous signal with a sequence of discrete data
values, pervades the field of digital signal processing. In practice, sampling is performed by applying
a continuous signal to an analog-to-digital (A/D) converter whose output is a series of digital values.
Because sampling theory plays an important role in determining the accuracy and feasibility of any
digital signal processing scheme, we need a solid appreciation for the often misunderstood effects of
periodic sampling. With regard to sampling, the primary concern is just how fast a given continuous
signal must be sampled in order to preserve its information content. We can sample a continuous
signal at any sample rate we wish, and we’ll obtain a series of discrete values—but the question is,
how well do these values represent the original signal? Let’s learn the answer to that question and, in
doing so, explore the various sampling techniques used in digital signal processing.

2.1 Aliasing: Signal Ambiguity in the Frequency Domain
There is a frequency-domain ambiguity associated with discrete-time signal samples that does not
exist in the continuous signal world, and we can appreciate the effects of this uncertainty by
understanding the sampled nature of discrete data. By way of example, suppose you were given the
following sequence of values,

x(0) = 0
x(1) = 0.866
x(2) = 0.866
x(3) = 0
x(4) = −0.866
x(5) = −0.866
x(6) = 0,

and were told that they represent instantaneous values of a time-domain sinewave taken at periodic
intervals. Next, you were asked to draw that sinewave. You’d start by plotting the sequence of values
shown by the dots in Figure 2-1(a). Next, you’d be likely to draw the sinewave, illustrated by the
solid line in Figure 2-1(b), that passes through the points representing the original sequence.

Figure 2-1 Frequency ambiguity: (a) discrete-time sequence of values; (b) two different sinewaves
that pass through the points of the discrete sequence.



Another person, however, might draw the sinewave shown by the shaded line in Figure 2-1(b). We
see that the original sequence of values could, with equal validity, represent sampled values of both
sinewaves. The key issue is that if the data sequence represents periodic samples of a sinewave, we
cannot unambiguously determine the frequency of the sinewave from those sample values alone.
Reviewing the mathematical origin of this frequency ambiguity enables us not only to deal with it, but
to use it to our advantage. Let’s derive an expression for this frequency-domain ambiguity and, then,
look at a few specific examples. Consider the continuous time-domain sinusoidal signal defined as

(2-1)

This x(t) signal is a garden-variety sinewave whose frequency is fo Hz. Now let’s sample x(t) at a
rate of fs samples/second, i.e., at regular periods of ts seconds where ts = 1/fs. If we start sampling at
time t = 0, we will obtain samples at times 0ts, 1ts, 2ts, and so on. So, from Eq. (2-1), the first n
successive samples have the values

(2-2)

Equation (2-2) defines the value of the nth sample of our x(n) sequence to be equal to the original
sinewave at the time instant nts. Because two values of a sinewave are identical if they’re separated
by an integer multiple of 2π radians, i.e., sin(ø) = sin(ø+2πm) where m is any integer, we can modify
Eq. (2-2) as

(2-3)



If we let m be an integer multiple of n, m = kn, we can replace the m/n ratio in Eq. (2-3) with k so
that

(2-4)

Because fs = 1/ts, we can equate the x(n) sequences in Eqs. (2-2) and (2-4) as
(2-5)

The fo and (fo+kfs) factors in Eq. (2-5) are therefore equal. The implication of Eq. (2-5) is critical. It
means that an x(n) sequence of digital sample values, representing a sinewave of fo Hz, also exactly
represents sinewaves at other frequencies, namely, fo + kfs. This is one of the most important
relationships in the field of digital signal processing. It’s the thread with which all sampling schemes
are woven. In words, Eq. (2-5) states:

When sampling at a rate of fs samples/second, if k is any positive or negative integer, we
cannot distinguish between the sampled values of a sinewave of fo Hz and a sinewave of
(fo+kfs) Hz.

It’s true. No sequence of values stored in a computer, for example, can unambiguously represent one
and only one sinusoid without additional information. This fact applies equally to A/D-converter
output samples as well as signal samples generated by computer software routines. The sampled
nature of any sequence of discrete values makes that sequence also represent an infinite number of
different sinusoids.
Equation (2-5) influences all digital signal processing schemes. It’s the reason that, although we’ve
only shown it for sinewaves, we’ll see in Chapter 3 that the spectrum of any discrete series of
sampled values contains periodic replications of the original continuous spectrum. The period
between these replicated spectra in the frequency domain will always be fs, and the spectral
replications repeat all the way from DC to daylight in both directions of the frequency spectrum.
That’s because k in Eq. (2-5) can be any positive or negative integer. (In Chapters 5 and 6, we’ll
learn that Eq. (2-5) is the reason that all digital filter frequency responses are periodic in the
frequency domain and is crucial to analyzing and designing a popular type of digital filter known as
the infinite impulse response filter.)
To illustrate the effects of Eq. (2-5), let’s build on Figure 2-1 and consider the sampling of a 7 kHz
sinewave at a sample rate of 6 kHz. A new sample is determined every 1/6000 seconds, or once
every 167 microseconds, and their values are shown as the dots in Figure 2-2(a).
Figure 2-2 Frequency ambiguity effects of Eq. (2-5): (a) sampling a 7 kHz sinewave at a sample rate
of 6 kHz; (b) sampling a 4 kHz sinewave at a sample rate of 6 kHz; (c) spectral relationships showing

aliasing of the 7 and 4 kHz sinewaves.



Notice that the sample values would not change at all if, instead, we were sampling a 1 kHz
sinewave. In this example fo = 7 kHz, fs = 6 kHz, and k = −1 in Eq. (2-5), such that fo+kfs = [7+
(−1·6)] = 1 kHz. Our problem is that no processing scheme can determine if the sequence of sampled
values, whose amplitudes are represented by the dots, came from a 7 kHz or a 1 kHz sinusoid. If these
amplitude values are applied to a digital process that detects energy at 1 kHz, the detector output
would indicate energy at 1 kHz. But we know that there is no 1 kHz tone there—our input is a
spectrally pure 7 kHz tone. Equation (2-5) is causing a sinusoid, whose name is 7 kHz, to go by the
alias of 1 kHz. Asking someone to determine which sinewave frequency accounts for the sample
values in Figure 2-2(a) is like asking, “When I add two numbers I get a sum of four. What are the two
numbers?” The answer is that there is an infinite number of number pairs that can add up to four.
Figure 2-2(b) shows another example of frequency ambiguity that we’ll call aliasing, where a 4 kHz
sinewave could be mistaken for a −2 kHz sinewave. In Figure 2-2(b), fo = 4 kHz, fs = 6 kHz, and k =
−1 in Eq. (2-5), so that fo+kfs = [4+(−1 · 6)] = −2 kHz. Again, if we examine a sequence of numbers
representing the dots in Figure 2-2(b), we could not determine if the sampled sinewave was a 4 kHz
tone or a −2 kHz tone. (Although the concept of negative frequencies might seem a bit strange, it
provides a beautifully consistent methodology for predicting the spectral effects of sampling. Chapter
8 discusses negative frequencies and how they relate to real and complex signals.)
Now, if we restrict our spectral band of interest to the frequency range of ±fs/2, the previous two
examples take on a special significance. The frequency fs/2 is an important quantity in sampling



theory and is referred to by different names in the literature, such as critical Nyquist, half Nyquist,
and folding frequency. A graphical depiction of our two frequency aliasing examples is provided in
Figure 2-2(c). We’re interested in signal components that are aliased into the frequency band between
−fs/2 and +fs/2. Notice in Figure 2-2(c) that within the spectral band of interest (±3 kHz, because fs =
6 kHz), there is energy at −2 kHz and +1 kHz, aliased from 4 kHz and 7 kHz, respectively. Note also
that the vertical positions of the dots in Figure 2-2(c) have no amplitude significance but that their
horizontal positions indicate which frequencies are related through aliasing.
A general illustration of aliasing is provided in the shark’s tooth pattern in Figure 2-3(a). Note how
the peaks of the pattern are located at integer multiples of fs Hz. The pattern shows how signals
residing at the intersection of a horizontal line and a sloped line will be aliased to all of the
intersections of that horizontal line and all other lines with like slopes. For example, the pattern in
Figure 2-3(b) shows that our sampling of a 7 kHz sinewave at a sample rate of 6 kHz will provide a
discrete sequence of numbers whose spectrum ambiguously represents tones at 1 kHz, 7 kHz, 13 kHz,
19 kHz, etc. Let’s pause for a moment and let these very important concepts soak in a bit. Again,
discrete sequence representations of a continuous signal have unavoidable ambiguities in their
frequency domains. These ambiguities must be taken into account in all practical digital signal
processing algorithms.

Figure 2-3 Shark’s tooth pattern: (a) aliasing at multiples of the sampling frequency; (b) aliasing of
the 7 kHz sinewave to 1 kHz, 13 kHz, and 19 kHz.

OK, let’s review the effects of sampling signals that are more interesting than just simple sinusoids.

2.2 Sampling Lowpass Signals
Consider the situation of sampling a signal such as a continuous real-valued lowpass x(t) signal
whose spectrum is shown in Figure 2-4(a). Notice that the spectrum is symmetrical around zero Hz,
and the spectral amplitude is zero above +B Hz and below −B Hz; i.e., the signal is band-limited.
(From a practical standpoint, the term band-limited signal merely implies that any signal energy
outside the range of ±B Hz is below the sensitivity of our system.) The x(t) time signal is called a
lowpass signal because its spectral energy is low in frequency.

Figure 2-4 Spectral replications: (a) original continuous lowpass signal spectrum; (b) spectral
replications of the sampled lowpass signal when fs/2 > B; (c) frequency overlap and aliasing when



the sampling rate is too low because fs/2 < B.

Pausing for a moment, if the continuous x(t) signal were a voltage on a coax cable applied to the input
of an analog spectrum analyzer, we would only see the spectral energy over the positive-frequency
range of 0 to +B Hz on the analyzer’s screen. However, in our world of discrete signals (DSP) we
show the spectrum of real-valued signals as having both positive- and negative-frequency spectral
energy. Throughout this book we’ll repeatedly see why such spectral representations are often useful,
and sometimes mandatory in our work. The mathematical justification for two-sided spectral
diagrams is provided in both Chapters 3 and 8. For now, we request the reader’s acceptance that
Figure 2-4(a) is a valid representation of the spectrum of the continuous x(t) signal.
Given that the continuous x(t) signal, whose spectrum is shown in Figure 2-4(a), is sampled at a rate
of fs samples/second, we can see the spectral replication effects of sampling in Figure 2-4(b)
showing the original spectrum in addition to an infinite number of replications. The period of spectral
replication is fs Hz. Figure 2-4(b) is the spectrum of the sequence of x(n) sampled values of the
continuous x(t) signal. (Although we stated in Section 1.1 that frequency-domain representations of
discrete time-domain sequences are themselves discrete, the replicated spectra in Figure 2-4(b) are
shown as continuous lines, instead of discrete dots, merely to keep the figure from looking too
cluttered. We’ll cover the full implications of discrete frequency spectra in Chapter 3.)
Let’s step back a moment and understand Figure 2-4 for all it’s worth. Figure 2-4(a) is the spectrum
of a continuous signal, a signal that can only exist in one of two forms. Either it’s a continuous signal
that can be sampled, through A/D conversion, or it is merely an abstract concept such as a
mathematical expression for a signal. It cannot be represented in a digital machine in its current
band-limited form. Once the signal is represented by a sequence of discrete sample values, its
spectrum takes the replicated form of Figure 2-4(b).



The replicated spectra are not just figments of the mathematics; they exist and have a profound effect
on subsequent digital signal processing.† The replications may appear harmless, and it’s natural to
ask, “Why care about spectral replications? We’re only interested in the frequency band within
±fs/2.” Well, if we perform a frequency translation operation or induce a change in sampling rate
through decimation or interpolation, the spectral replications will shift up or down right in the middle
of the frequency range of interest ±fs/2 and could cause problems[1]. Let’s see how we can control
the locations of those spectral replications.
† Toward the end of Section 5.9, as an example of using the convolution theorem, another derivation of periodic sampling’s replicated
spectra will be presented.

In practical A/D conversion schemes, fs is always greater than 2B to separate spectral replications at
the folding frequencies of ±fs/2. This very important relationship of fs ≥ 2B is known as the Nyquist
criterion. To illustrate why the term folding frequency is used, let’s lower our sampling frequency to
fs = 1.5B Hz. The spectral result of this undersampling is illustrated in Figure 2-4(c). The spectral
replications are now overlapping the original baseband spectrum centered at zero Hz. Limiting our
attention to the band ±fs/2 Hz, we see two very interesting effects. First, the lower edge and upper
edge of the spectral replications centered at +fs and −fs now lie in our band of interest. This situation
is equivalent to the original spectrum folding to the left at +fs/2 and folding to the right at −fs/2.
Portions of the spectral replications now combine with the original spectrum, and the result is
aliasing errors. The discrete sampled values associated with the spectrum of Figure 2-4(c) no longer
truly represent the original input signal. The spectral information in the bands of −B to −B/2 and B/2
to B Hz has been corrupted. We show the amplitude of the aliased regions in Figure 2-4(c) as shaded
lines because we don’t really know what the amplitudes will be if aliasing occurs.
The second effect illustrated by Figure 2-4(c) is that the entire spectral content of the original
continuous signal is now residing in the band of interest between −fs/2 and +fs/2. This key property
was true in Figure 2-4(b) and will always be true, regardless of the original signal or the sample rate.
This effect is particularly important when we’re digitizing (A/D converting) continuous signals. It
warns us that any signal energy located above +B Hz and below −B Hz in the original continuous
spectrum of Figure 2-4(a) will always end up in the band of interest after sampling, regardless of the
sample rate. For this reason, continuous (analog) lowpass filters are necessary in practice.
We illustrate this notion by showing a continuous signal of bandwidth B accompanied by noise energy
in Figure 2-5(a). Sampling this composite continuous signal at a rate that’s greater than 2B prevents
replications of the signal of interest from overlapping each other, but all of the noise energy still ends
up in the range between −fs/2 and +fs/2 of our discrete spectrum shown in Figure 2-5(b). This
problem is solved in practice by using an analog lowpass anti-aliasing filter prior to A/D conversion
to attenuate any unwanted signal energy above +B and below −B Hz as shown in Figure 2-6. An
example lowpass filter response shape is shown as the dotted line superimposed on the original
continuous signal spectrum in Figure 2-6. Notice how the output spectrum of the lowpass filter has
been band-limited, and spectral aliasing is avoided at the output of the A/D converter.

Figure 2-5 Spectral replications: (a) original continuous signal-plus-noise spectrum; (b) discrete
spectrum with noise contaminating the signal of interest.



Figure 2-6 Lowpass analog filtering prior to sampling at a rate of fs Hz.

As a historical note, the notion of periodic sampling was studied by various engineers, scientists, and
mathematicians such as the Russian V. Kotelnikov, the Swedish-born H. Nyquist, the Scottish E.
Whittaker, and the Japanese I. Someya[2]. But it was the American Claude Shannon, acknowledging
the work of others, that formalized the concept of periodic sampling as we know it today and brought
it to the broad attention of communications engineers[3]. That was in 1948—the birth year of the
transistor, marshmallows, and this author.
This completes the discussion of simple lowpass sampling. Now let’s go on to a more advanced
sampling topic that’s proven so useful in practice.

2.3 Sampling Bandpass Signals
Although satisfying the majority of sampling requirements, the sampling of lowpass signals, as in
Figure 2-6, is not the only sampling scheme used in practice. We can use a technique known as
bandpass sampling to sample a continuous bandpass signal that is centered about some frequency
other than zero Hz. When a continuous input signal’s bandwidth and center frequency permit us to do
so, bandpass sampling not only reduces the speed requirement of A/D converters below that
necessary with traditional lowpass sampling; it also reduces the amount of digital memory necessary
to capture a given time interval of a continuous signal.
By way of example, consider sampling the band-limited signal shown in Figure 2-7(a) centered at fc
= 20 MHz, with a bandwidth B = 5 MHz. We use the term bandpass sampling for the process of
sampling continuous signals whose center frequencies have been translated up from zero Hz. What
we’re calling bandpass sampling goes by various other names in the literature, such as IF sampling,
harmonic sampling[4], sub-Nyquist sampling, and undersampling[5]. In bandpass sampling, we’re
more concerned with a signal’s bandwidth than its highest-frequency component. Note that the



negative frequency portion of the signal, centered at −fc, is the mirror image of the positive frequency
portion—as it must be for real signals. Our bandpass signal’s highest-frequency component is 22.5
MHz. Conforming to the Nyquist criterion (sampling at twice the highest-frequency content of the
signal) implies that the sampling frequency must be a minimum of 45 MHz. Consider the effect if the
sample rate is 17.5 MHz shown in Figure 2-7(b). Note that the original spectral components remain
located at ±fc, and spectral replications are located exactly at baseband, i.e., butting up against each
other at zero Hz. Figure 2-7(b) shows that sampling at 45 MHz was unnecessary to avoid aliasing—
instead we’ve used the spectral replicating effects of Eq. (2-5) to our advantage.

Figure 2-7 Bandpass signal sampling: (a) original continuous signal spectrum; (b) sampled signal
spectrum replications when sample rate is 17.5 MHz.

Bandpass sampling performs digitization and frequency translation in a single process, often called
sampling translation. The processes of sampling and frequency translation are intimately bound
together in the world of digital signal processing, and every sampling operation inherently results in
spectral replications. The inquisitive reader may ask, “Can we sample at some still lower rate and
avoid aliasing?” The answer is yes, but, to find out how, we have to grind through the derivation of an
important bandpass sampling relationship. Our reward, however, will be worth the trouble because
here’s where bandpass sampling really gets interesting.
Let’s assume we have a continuous input bandpass signal of bandwidth B. Its carrier frequency is fc
Hz, i.e., the bandpass signal is centered at fc Hz, and its sampled value spectrum is that shown in
Figure 2-8(a). We can sample that continuous signal at a rate, say fs′ Hz, so the spectral replications of
the positive and negative bands, Q and P, just butt up against each other exactly at zero Hz. This
situation, depicted in Figure 2-8(a), is reminiscent of Figure 2-7(b). With an arbitrary number of
replications, say m, in the range of 2fc − B, we see that

(2-6)

Figure 2-8 Bandpass sampling frequency limits: (a) sample rate fs′ = (2fc − B)/6; (b) sample rate is
less than fs′; (c) minimum sample rate fs″ < fs′.



In Figure 2-8(a), m = 6 for illustrative purposes only. Of course m can be any positive integer so long
as fs′ is never less than 2B. If the sample rate fs′ is increased, the original spectra (bold) do not shift,
but all the replications will shift. At zero Hz, the P band will shift to the right, and the Q band will
shift to the left. These replications will overlap and aliasing occurs. Thus, from Eq. (2-6), for an
arbitrary m, there is a frequency that the sample rate must not exceed, or

(2-7)

If we reduce the sample rate below the fs′ value shown in Figure 2-8(a), the spacing between
replications will decrease in the direction of the arrows in Figure 2-8(b). Again, the original spectra
do not shift when the sample rate is changed. At some new sample rate fs″, where fs″ < fs′, the
replication P′ will just butt up against the positive original spectrum centered at fc as shown in Figure
2-8(c). In this condition, we know that

(2-8)

Should fs″ be decreased in value, P′ will shift further down in frequency and start to overlap with the
positive original spectrum at fc and aliasing occurs. Therefore, from Eq. (2-8) and for m+1, there is a
frequency that the sample rate must always exceed, or

(2-9)

We can now combine Eqs. (2-7) and (2-9) to say that fs may be chosen anywhere in the range between
fs″ and fs′ to avoid aliasing, or

(2-10)

where m is an arbitrary, positive integer ensuring that fs ≥ 2B. (For this type of periodic sampling of



real signals, known as real or 1st-order sampling, the Nyquist criterion fs ≥ 2B must still be
satisfied.)
To appreciate the important relationships in Eq. (2-10), let’s return to our bandpass signal example,
where Eq. (2-10) enables the generation of Table 2-1. This table tells us that our sample rate can be
anywhere in the range of 22.5 to 35 MHz, anywhere in the range of 15 to 17.5 MHz, or anywhere in
the range of 11.25 to 11.66 MHz. Any sample rate below 11.25 MHz is unacceptable because it will
not satisfy Eq. (2-10) as well as fs ≥ 2B. The spectra resulting from several of the sampling rates from
Table 2-1 are shown in Figure 2-9 for our bandpass signal example. Notice in Figure 2-9(f) that when
fs equals 7.5 MHz (m = 5), we have aliasing problems because neither the greater-than relationships
in Eq. (2-10) nor fs ≥ 2B have been satisfied. The m = 4 condition is also unacceptable because fs ≥
2B is not satisfied. The last column in Table 2-1 gives the optimum sampling frequency for each
acceptable m value. Optimum sampling frequency is defined here as that frequency where spectral
replications butt up against each other at zero Hz. For example, in the m = 1 range of permissible
sampling frequencies, it is much easier to perform subsequent digital filtering or other processing on
the signal samples whose spectrum is that of Figure 2-9(b), as opposed to the spectrum in Figure 2-
9(a).

Table 2-1 Equation (2-10) Applied to the Bandpass Signal Example

Figure 2-9 Various spectral replications from Table 2-1: (a) fs = 35 MHz; (b) fs = 22.5 MHz; (c) fs =
17.5 MHz; (d) fs = 15 MHz; (e) fs = 11.25 MHz; (f) fs = 7.5 MHz.



2.4 Practical Aspects of Bandpass Sampling
Now that we’re familiar with the theory of bandpass sampling, let’s discuss a few aspects of
bandpass sampling in practical applications.

2.4.1 Spectral Inversion in Bandpass Sampling
Some of the permissible fs values from Eq. (2-10) will, although avoiding aliasing problems, provide
a sampled baseband spectrum (located near zero Hz) that is inverted from the original analog signal’s
positive and negative spectral shapes. That is, the positive-frequency sampled baseband will have the
inverted shape of the negative half from the original analog spectrum. This spectral inversion happens
whenever m, in Eq. (2-10), is an odd integer, as illustrated in Figures 2-9(c) and 2-9(d). When the
original positive spectral bandpass components are symmetrical about the fc frequency, spectral
inversion presents no problem and any nonaliasing value for fs from Eq. (2-10) may be chosen.
However, if spectral inversion is something to be avoided, for example, when single sideband signals
are being processed, the applicable sample rates to avoid spectral inversion are defined by Eq. (2-
10) with the restriction that m is an even integer and fs > 2B is satisfied.

Now here’s some good news. With a little additional digital processing we can sample at rates
defined by Eq. (2-10) with odd m, with their spectral inversion, and easily reinvert the spectrum back
to its original orientation. The discrete spectrum of any digital signal can be inverted by multiplying



the signal’s discrete-time samples by a sequence of alternating plus ones and minus ones (1, −1, 1,
−1, etc.), indicated in the literature by the succinct expression (−1)n.
Although multiplying time samples by (−1)n is explored in detail in Section 13.1, all we need to
remember at this point is the simple rule that multiplication of real signal samples by (−1)n flips the
positive-frequency band of interest, from zero to +fs/2 Hz, where the center of the flipping is fs/4 Hz.
Likewise, the multiplication flips the negative frequency band of interest, from −fs/2 to zero Hz,
where the center of the flipping is −fs/4 Hz as shown in Figure 2-10. In the literature of DSP,
occasionally you’ll see the (−1)n sequence expressed by the equivalent expression cos(πn).

Figure 2-10 Spectral inversion through multiplication by (−1)n: (a) spectrum of original x(n); (b)
spectrum of (−1)n · x(n).

2.4.2 Positioning Sampled Spectra at fs/4

In many signal processing applications we’ll find it useful to use an fs bandpass sampling rate that
forces the sampled spectra to be centered exactly at ±fs/4 as shown in Figure 2-10(a). As we’ll see in
later chapters, this scenario greatly simplifies certain common operations such as digital filtering,
complex down-conversion, and Hilbert transformations.
To ensure that sampled spectra reside at ±fs/4, we select fs using

(2-11)

where fc is the center frequency of the original analog signal’s bandpass signal.

2.4.3 Noise in Bandpass-Sampled Signals
We have painted a rosy picture of bandpass sampling, with its analog signal capture capabilities at
reduced sample rates. However, there is a negative aspect associated with bandpass sampling. The
signal-to-noise ratio (SNR), the ratio of the power of a signal over the total background noise power,
of our digitized signal is degraded when we perform bandpass sampling. (A general discussion of
SNR is provided in Appendix D.)
Here’s the story. The spectrum of an analog lowpass signal, output from an analog anti-aliasing



lowpass filter, is that shown in Figure 2-11(a). That lowpass signal contains some amount of
background noise power. Now if an analog bandpass signal is likewise contaminated with
background noise, as shown by the spectral plot in Figure 2-11(b), the bandpass-sampled signal will
have an increased level of background noise as shown in Figure 2-11(c). That’s because all of the
background spectral noise in Figure 2-11(b) must now reside in the range of −fs/2 to fs/2 in Figure 2-
11(c). As such, the bandpass-sampled signal’s SNR is reduced (degraded).

Figure 2-11 Sampling SNR degradation: (a) analog lowpass signal spectral power; (b) analog
bandpass signal spectral power; (c) bandpass-sampled signal spectral power when m = 1.

As detailed in reference [6], if the analog bandpass signal’s background noise spectral power level is
relatively flat, as in Figure 2-11(b), the bandpass-sampled background noise power increases by a
factor of m + 1 (the denominator of the right-side ratio in Eq. (2-10)) while the desired signal power
P remains unchanged. As such, the bandpass-sampled signal’s SNR, measured in decibels, is reduced
by

(2-12)

below the SNR of the original analog signal. So for the Figure 2-11 example, when m = 1, the
bandpass-sampled signal’s background noise power doubles, and the total bandpass-sampled signal’s
SNR is DSNR = 3 dB less than the analog bandpass signal’s SNR.

The notion of using decibels, a very convenient method of comparing the power of two signals (the
two signals, in this case, are our bandpass signal and the background noise signal), is discussed in
Appendix E.

References
[1] Crochiere, R., and Rabiner, L. “Optimum FIR Digital Implementations for Decimation,

Interpolation, and Narrow-band Filtering,” IEEE Trans. on Acoust. Speech, and Signal Proc., Vol.
ASSP-23, No. 5, October 1975.

[2] Luke, H. “The Origins of the Sampling Theorem,” IEEE Communications Magazine, April 1999,



pp. 106–109.
[3] Shannon, C. “A Mathematical Theory of Communication,” Bell Sys. Tech. Journal, Vol. 27, 1948,

pp. 379–423, 623–656.
[4] Steyskal, H. “Digital Beamforming Antennas,” Microwave Journal, January 1987.
[5] Hill, G. “The Benefits of Undersampling,” Electronic Design, July 11, 1994.
[6] Vaughan, R., et al., “The Theory of Bandpass Sampling,” IEEE Trans. on Signal Processing, Vol.

39, No. 9, September 1991, pp. 1973–1984.

Chapter 2 Problems
2.1 Suppose you have a mechanical clock that has a minute hand, but no hour hand. Next, suppose you

took a photograph of the clock when the minute hand was pointed at 12:00 noon and then took
additional photos every 55 minutes. Upon showing those photos, in time order, to someone:
(a) What would that person think about the direction of motion of the minute hand as time

advances?
(b) With the idea of lowpass sampling in mind, how often would you need to take photos, measured

in photos/hour, so that the successive photos show proper (true) clockwise minute-hand rotation?
2.2 Assume we sampled a continuous x(t) signal and obtained 100 x(n) time-domain samples. What

important information (parameter that we need to know in order to analyze x(t)) is missing from the
x(n) sequence?

2.3 National Instruments Corporation produces an analog-to-digital (A/D) converter (Model #NI-
5154) that can sample (digitize) an analog signal at a sample rate of fs = 2.0 GHz (gigahertz).

(a) What is the ts period of the output samples of such a device?

(b) Each A/D output sample is an 8-bit binary word (one byte), and the converter is able to store
256 million samples. What is the maximum time interval over which the converter can
continuously sample an analog signal?

2.4 Consider a continuous time-domain sinewave, whose cyclic frequency is 500 Hz, defined by
x(t) = cos[2π(500)t + π/7].

Write the equation for the discrete x(n) sinewave sequence that results from sampling x(t) at an fs
sample rate of 4000 Hz.
Note: This problem is not “busy work.” If you ever want to model the x(t) signal using software
(MathCAD, MATLAB, Octave, etc.), then it is the desired x(n) equation that you program into your
software.

2.5 If we sampled a single continuous sinewave whose frequency is fo Hz, over what range must ts
(the time between digital samples) be to satisfy the Nyquist criterion? Express that ts range in terms
of fo.

2.6 Suppose we used the following statement to describe the Nyquist criterion for lowpass sampling:
“When sampling a single continuous sinusoid (a single analog tone), we must obtain no fewer than
N discrete samples per continuous sinewave cycle.” What is the value of this integer N?



2.7 The Nyquist criterion, regarding the sampling of lowpass signals, is sometimes stated as “The
sampling rate fs must be equal to, or greater than, twice the highest spectral component of the
continuous signal being sampled.” Can you think of how a continuous sinusoidal signal can be
sampled in accordance with that Nyquist criterion definition to yield all zero-valued discrete
samples?

2.8 Stock market analysts study time-domain charts (plots) of the closing price of stock shares. A
typical plot takes the form of that in Figure P2-8, where instead of plotting discrete closing price
sample values as dots, they draw straight lines connecting the closing price value samples. What is
the ts period for such stock market charts?

Figure P2-8

2.9 Consider a continuous time-domain sinewave defined by
x(t) = cos(4000πt)

that was sampled to produce the discrete sinewave sequence defined by
x(n) = cos(nπ/2).

What is the fs sample rate, measured in Hz, that would result in sequence x(n)?

2.10 Consider the two continuous signals defined by
a(t) = cos(4000πt) and b(t) = cos(200πt)

whose product yields the x(t) signal shown in Figure P2-10. What is the minimum fs sample rate,
measured in Hz, that would result in a sequence x(n) with no aliasing errors (no spectral
replication overlap)?

Figure P2-10

2.11 Consider a discrete time-domain sinewave sequence defined by
x(n) = sin(nπ/4)

that was obtained by sampling an analog x(t) = sin(2πfot) sinewave signal whose frequency is fo
Hz. If the sample rate of x(n) is fs = 160 Hz, what are three possible positive frequency values,
measured in Hz, for fo that would result in sequence x(n)?

2.12 In the text we discussed the notion of spectral folding that can take place when an xa(t) analog



signal is sampled to produce a discrete xd(n) sequence. We also stated that all of the analog
spectral energy contained in Xa(f) will reside within the frequency range of ±fs/2 of the Xd(f)
spectrum of the sampled xd(n) sequence. Given those concepts, consider the spectrum of an analog
signal shown in Figure P2-12(a) whose spectrum is divided into the six segments marked as 1 to 6.
Fill in the following table showing which of the A-to-F spectral segments of Xd(f), shown in Figure
P2-12(b), are aliases of the 1-to-6 spectral segments of Xa(f).

Figure P2-12

2.13 Consider the simple analog signal defined by x(t) = sin(2π700t) shown in Figure P2-13. Draw
the spectrum of x(n) showing all spectral components, labeling their frequency locations, in the
frequency range −2fs to +2fs.

Figure P2-13

2.14 The Nançay Observatory, in France, uses a radio astronomy receiver that generates a wideband



analog s(t) signal whose spectral magnitude is represented in Figure P2-14. The Nançay scientists
bandpass sample the analog s(t) signal, using an analog-to-digital (A/D) converter to produce an
x(n) discrete sequence, at a sample rate of fs = 56 MHz.

Figure P2-14

(a) Draw the spectrum of the x(n) sequence, X(f), showing its spectral energy over the frequency
range −70 MHz to 70 MHz.

(b) What is the center frequency of the first positive-frequency spectral replication in X(f)?
(c) How is your solution to Part (b) related to the fs sample rate?

Hint: How is your solution to Part (b) related to fs/2?

2.15 Think about the continuous (analog) signal x(t) that has the spectral magnitude shown in Figure
P2-15. What is the minimum fs sample rate for lowpass sampling such that no spectral overlap
occurs in the frequency range of 2 to 9 kHz in the spectrum of the discrete x(n) samples?

Figure P2-15

2.16 If a person wants to be classified as a soprano in classical opera, she must be able to sing notes
in the frequency range of 247 Hz to 1175 Hz. What is the minimum fs sampling rate allowable for
bandpass sampling of the full audio spectrum of a singing soprano?

2.17 This problem requires the student to have some knowledge of electronics and how a mixer
operates inside a radio. (The definition of a bandpass filter is given in Appendix F.) Consider the
simplified version of what is called a superheterodyne digital radio depicted in Figure P2-17.

Figure P2-17

(a) For what local oscillator frequency, fLO, would an image (a copy, or duplication) of the w(t)
signal’s spectrum be centered at 15 MHz (megahertz) in signal u(t)?



(b) What is the purpose of the analog bandpass filter #2?
(c) Fill in the following table showing all ranges of acceptable fs bandpass sampling rates to avoid

aliasing errors in the discrete x(n) sequence. Also list, in the rightmost column, for which values
of m the sampled spectrum, centered at 15 MHz, will be inverted.

(d) In digital receivers, to simplify AM and FM demodulation, it is advantageous to have the
spectrum of the discrete x(n) sequence be centered at one-quarter of the sample rate. The text’s
Eq. 2-11 describes how to achieve this situation. If we were constrained to have fs equal to 12
MHz, what would be the maximum fLO local oscillator frequency such that the spectra of u(t),
x(t), and x(n) are centered at fs/4? (Note: In this scenario, the fc center frequency of analog
bandpass filter #2 will no longer be 15 MHz.)

2.18 Think about the analog anti-aliasing filter given in Figure P2-18(a), having a one-sided
bandwidth of B Hz. A wideband analog signal passed through that filter, and then sampled, would
have an |X(m)| spectrum as shown in Figure P2-18(b), where the dashed curves represent spectral
replications.

Figure P2-18

Suppose we desired that all aliased spectral components in |X(m)| over our B Hz bandwidth of
interest must be attenuated by at least 60 dB. Determine the equation, in terms of B and the fs
sampling rate, for the frequency at which the anti-aliasing filter must have an attenuation value of
−60 dB. The solution to this problem gives us a useful rule of thumb we can use in specifying the
desired performance of analog anti-aliasing filters.

2.19 This problem demonstrates a popular way of performing frequency down-conversion
(converting a bandpass signal into a lowpass signal) by way of bandpass sampling. Consider the
continuous 250-Hz-wide bandpass x(t) signal whose spectral magnitude is shown in Figure P2-19.



Draw the spectrum, over the frequency range of −1.3fs to +1.3fs, of the x(n) sampled sequence
obtained when x(t) is sampled at fs = 1000 samples/second.

Figure P2-19

2.20 Here’s a problem to test your understanding of bandpass sampling. Think about the continuous
(analog) signal x(t) that has the spectral magnitude shown in Figure P2-20.

Figure P2-20

(a) What is the minimum fc center frequency, in terms of x(t)’s bandwidth B, that enables bandpass
sampling of x(t)? Show your work.

(b) Given your results in Part (a) above, determine if it is possible to perform bandpass sampling
of the full spectrum of the commercial AM (amplitude modulation) broadcast radio band in North
America. Explain your solution.

2.21 Suppose we want to perform bandpass sampling of a continuous 5 kHz-wide bandpass signal
whose spectral magnitude is shown in Figure P2-21.

Figure P2-21

Fill in the following table showing the various ranges of acceptable fs bandpass sampling rates,
similar to the text’s Table 2-1, to avoid aliasing errors. Also list, in the rightmost column, for
which values of m the sampled spectrum in the vicinity of zero Hz is inverted.

Acceptable Bandpass Sample Rate Ranges



2.22 I recently encountered an Internet website that allegedly gave an algorithm for the minimum fs
bandpass sampling rate for an analog bandpass signal centered at fc Hz, whose bandwidth is B Hz.
The algorithm is

where

In the above notation,  means the integer part of x. Here’s the problem: Is the above fs,min algorithm
correct in computing the absolute minimum possible nonaliasing fs bandpass sampling rate for an
analog bandpass signal centered at fc Hz, whose bandwidth is B Hz? Verify your answer with an
example.





Chapter Three. The Discrete Fourier Transform

The discrete Fourier transform (DFT) is one of the two most common, and powerful, procedures
encountered in the field of digital signal processing. (Digital filtering is the other.) The DFT enables
us to analyze, manipulate, and synthesize signals in ways not possible with continuous (analog) signal
processing. Even though it’s now used in almost every field of engineering, we’ll see applications for
DFT continue to flourish as its utility becomes more widely understood. Because of this, a solid
understanding of the DFT is mandatory for anyone working in the field of digital signal processing.
The DFT is a mathematical procedure used to determine the harmonic, or frequency, content of a
discrete signal sequence. Although, for our purposes, a discrete signal sequence is a set of values
obtained by periodic sampling of a continuous signal in the time domain, we’ll find that the DFT is
useful in analyzing any discrete sequence regardless of what that sequence actually represents. The
DFT’s origin, of course, is the continuous Fourier transform X(f) defined as

(3-1)

where x(t) is some continuous time-domain signal.†
† Fourier is pronounced ‘for-y . In engineering school, we called Eq. (3-1) the “four-year” transform because it took about four years to
do one homework problem.

In the field of continuous signal processing, Eq. (3-1) is used to transform an expression of a
continuous time-domain function x(t) into a continuous frequency-domain function X(f). Subsequent
evaluation of the X(f) expression enables us to determine the frequency content of any practical signal
of interest and opens up a wide array of signal analysis and processing possibilities in the fields of
engineering and physics. One could argue that the Fourier transform is the most dominant and
widespread mathematical mechanism available for the analysis of physical systems. (A prominent
quote from Lord Kelvin better states this sentiment: “Fourier’s theorem is not only one of the most
beautiful results of modern analysis, but it may be said to furnish an indispensable instrument in the
treatment of nearly every recondite question in modern physics.” By the way, the history of Fourier’s
original work in harmonic analysis, relating to the problem of heat conduction, is fascinating.
References [1] and [2] are good places to start for those interested in the subject.)
With the advent of the digital computer, the efforts of early digital processing pioneers led to the
development of the DFT defined as the discrete frequency-domain sequence X(m), where

(3-2)



For our discussion of Eq. (3-2), x(n) is a discrete sequence of time-domain sampled values of the
continuous variable x(t). The “e” in Eq. (3-2) is, of course, the base of natural logarithms and .

3.1 Understanding the DFT Equation
Equation (3-2) has a tangled, almost unfriendly, look about it. Not to worry. After studying this
chapter, Eq. (3-2) will become one of our most familiar and powerful tools in understanding digital
signal processing. Let’s get started by expressing Eq. (3-2) in a different way and examining it
carefully. From Euler’s relationship, e−jø = cos(ø) −jsin(ø), Eq. (3-2) is equivalent to

(3-3)

We have separated the complex exponential of Eq. (3-2) into its real and imaginary components
where

X(m) = the mth DFT output component, i.e., X(0), X(1), X(2), X(3), etc.,
     m = the index of the DFT output in the frequency domain, m = 0, 1, 2, 3, . . ., N−1,
 x(n) = the sequence of input samples, x(0), x(1), x(2), x(3), etc.,
     n = the time-domain index of the input samples, n = 0, 1, 2, 3, . . ., N−1,

     , and
    N = the number of samples of the input sequence and the number of frequency points in the DFT

output.
Although it looks more complicated than Eq. (3-2), Eq. (3-3) turns out to be easier to understand. (If
you’re not too comfortable with it, don’t let the  concept bother you too much. It’s merely a
convenient abstraction that helps us compare the phase relationship between various sinusoidal
components of a signal. Chapter 8 discusses the j operator in some detail.)† The indices for the input
samples (n) and the DFT output samples (m) always go from 0 to N−1 in the standard DFT notation.
This means that with N input time-domain sample values, the DFT determines the spectral content of
the input at N equally spaced frequency points. The value N is an important parameter because it
determines how many input samples are needed, the resolution of the frequency-domain results, and
the amount of processing time necessary to calculate an N-point DFT.
† Instead of the letter j, be aware that mathematicians often use the letter i to represent the  operator.

It’s useful to see the structure of Eq. (3-3) by eliminating the summation and writing out all the terms.
For example, when N = 4, n and m both go from 0 to 3, and Eq. (3-3) becomes

(3-4a)

Writing out all the terms for the first DFT output term corresponding to m = 0,



(3-4b)

For the second DFT output term corresponding to m = 1, Eq. (3-4a) becomes
(3-4c)

For the third output term corresponding to m = 2, Eq. (3-4a) becomes
(3-4d)

Finally, for the fourth and last output term corresponding to m = 3, Eq. (3-4a) becomes
(3-4e)

The above multiplication symbol “·” in Eq. (3-4) is used merely to separate the factors in the sine and
cosine terms. The pattern in Eqs. (3-4b) through (3-4e) is apparent now, and we can certainly see
why it’s convenient to use the summation sign in Eq. (3-3). Each X(m) DFT output term is the sum of
the point-for-point product between an input sequence of signal values and a complex sinusoid of the
form cos(ø) − jsin(ø). The exact frequencies of the different sinusoids depend on both the sampling
rate fs at which the original signal was sampled, and the number of samples N. For example, if we are
sampling a continuous signal at a rate of 500 samples/second and, then, perform a 16-point DFT on
the sampled data, the fundamental frequency of the sinusoids is fs/N = 500/16 or 31.25 Hz. The other
X(m) analysis frequencies are integral multiples of the fundamental frequency, i.e.,
X(0) = 1st frequency term, with analysis frequency = 0 · 31.25 = 0 Hz,
X(1) = 2nd frequency term, with analysis frequency = 1 · 31.25 = 31.25 Hz,
X(2) = 3rd frequency term, with analysis frequency = 2 · 31.25 = 62.5 Hz,
X(3) = 4th frequency term, with analysis frequency = 3 · 31.25 = 93.75 Hz,

. . .

. . .
X(15) = 16th frequency term, with analysis frequency = 15 · 31.25 = 468.75 Hz.
The N separate DFT analysis frequencies are

(3-5)



So, in this example, the X(0) DFT term tells us the magnitude of any 0 Hz DC (direct current)
component contained in the input signal, the X(1) term specifies the magnitude of any 31.25 Hz
component in the input signal, and the X(2) term indicates the magnitude of any 62.5 Hz component in
the input signal, etc. Moreover, as we’ll soon show by example, the DFT output terms also determine
the phase relationship between the various analysis frequencies contained in an input signal.
Quite often we’re interested in both the magnitude and the power (magnitude squared) contained in
each X(m) term, and the standard definitions for right triangles apply here as depicted in Figure 3-1.

Figure 3-1 Trigonometric relationships of an individual DFT X(m) complex output value.

If we represent an arbitrary DFT output value, X(m), by its real and imaginary parts
(3-6)

the magnitude of X(m) is
(3-7)

By definition, the phase angle of X(m), Xø(m), is
(3-8)

The power of X(m), referred to as the power spectrum, is the magnitude squared where
(3-9)

3.1.1 DFT Example 1
The above Eqs. (3-2) and (3-3) will become more meaningful by way of an example, so let’s go
through a simple one step by step. Let’s say we want to sample and perform an 8-point DFT on a
continuous input signal containing components at 1 kHz and 2 kHz, expressed as

(3-10)

To make our example input signal xin(t) a little more interesting, we have the 2 kHz term shifted in



phase by 135° (3π/4 radians) relative to the 1 kHz sinewave. With a sample rate of fs, we sample the
input every 1/fs = ts seconds. Because N = 8, we need 8 input sample values on which to perform the
DFT. So the 8-element sequence x(n) is equal to xin(t) sampled at the nts instants in time so that

(3-11)

If we choose to sample xin(t) at a rate of fs = 8000 samples/second from Eq. (3-5), our DFT results
will indicate what signal amplitude exists in x(n) at the analysis frequencies of mfs/N, or 0 kHz, 1
kHz, 2 kHz, . . ., 7 kHz. With fs = 8000 samples/second, our eight x(n) samples are

(3-11′)

These x(n) sample values are the dots plotted on the solid continuous xin(t) curve in Figure 3-2(a).
(Note that the sum of the sinusoidal terms in Eq. (3-10), shown as the dashed curves in Figure 3-2(a),
is equal to xin(t).)

Figure 3-2 DFT Example 1: (a) the input signal; (b) the input signal and the m = 1 sinusoids; (c) the
input signal and the m = 2 sinusoids; (d) the input signal and the m = 3 sinusoids.



Now we’re ready to apply Eq. (3-3) to determine the DFT of our x(n) input. We’ll start with m = 1
because the m = 0 case leads to a special result that we’ll discuss shortly. So, for m = 1, or the 1 kHz
(mfs/N = 1·8000/8) DFT frequency term, Eq. (3-3) for this example becomes

(3-12)

Next we multiply x(n) by successive points on the cosine and sine curves of the first analysis
frequency that have a single cycle over our eight input samples. In our example, for m = 1, we’ll sum
the products of the x(n) sequence with a 1 kHz cosine wave and a 1 kHz sinewave evaluated at the
angular values of 2πn/8. Those analysis sinusoids are shown as the dashed curves in Figure 3-2(b).
Notice how the cosine and sinewaves have m = 1 complete cycles in our sample interval.
Substituting our x(n) sample values into Eq. (3-12) and listing the cosine terms in the left column and
the sine terms in the right column, we have



So we now see that the input x(n) contains a signal component at a frequency of 1 kHz. Using Eqs. (3-
7), (3-8), and (3-9) for our X(1) result, Xmag(1) = 4, XPS(1) = 16, and X(1)’s phase angle relative to a
1 kHz cosine is Xø(1) = −90°.
For the m = 2 frequency term, we correlate x(n) with a 2 kHz cosine wave and a 2 kHz sinewave.
These waves are the dashed curves in Figure 3-2(c). Notice here that the cosine and sinewaves have
m = 2 complete cycles in our sample interval in Figure 3-2(c). Substituting our x(n) sample values in
Eq. (3-3) for m = 2 gives

Here our input x(n) contains a signal at a frequency of 2 kHz whose relative amplitude is 2, and
whose phase angle relative to a 2 kHz cosine is 45°. For the m = 3 frequency term, we correlate x(n)
with a 3 kHz cosine wave and a 3 kHz sinewave. These waves are the dashed curves in Figure 3-
2(d). Again, see how the cosine and sinewaves have m = 3 complete cycles in our sample interval in
Figure 3-2(d). Substituting our x(n) sample values in Eq. (3-3) for m = 3 gives



Our DFT indicates that x(n) contained no signal at a frequency of 3 kHz. Let’s continue our DFT for
the m = 4 frequency term using the sinusoids in Figure 3-3(a).

Figure 3-3 DFT Example 1: (a) the input signal and the m = 4 sinusoids; (b) the input and the m = 5
sinusoids; (c) the input and the m = 6 sinusoids; (d) the input and the m = 7 sinusoids.



So Eq. (3-3) is



Our DFT for the m = 5 frequency term using the sinusoids in Figure 3-3(b) yields

For the m = 6 frequency term using the sinusoids in Figure 3-3(c), Eq. (3-3) is

For the m = 7 frequency term using the sinusoids in Figure 3-3(d), Eq. (3-3) is



If we plot the X(m) output magnitudes as a function of frequency, we produce the magnitude spectrum
of the x(n) input sequence, shown in Figure 3-4(a). The phase angles of the X(m) output terms are
depicted in Figure 3-4(b).

Figure 3-4 DFT results from Example 1: (a) magnitude of X(m); (b) phase of X(m); (c) real part of
X(m); (d) imaginary part of X(m).

Hang in there; we’re almost finished with our example. We’ve saved the calculation of the m = 0
frequency term to the end because it has a special significance. When m = 0, we correlate x(n) with
cos(0) − jsin(0) so that Eq. (3-3) becomes

(3-13)

Because cos(0) = 1, and sin(0) = 0,
(3-13′)



We can see that Eq. (3-13′) is the sum of the x(n) samples. This sum is, of course, proportional to the
average of x(n). (Specifically, X(0) is equal to N times x(n)’s average value.) This makes sense
because the X(0) frequency term is the non-time-varying (DC) component of x(n). If X(0) were
nonzero, this would tell us that the x(n) sequence is riding on a DC bias and has some nonzero
average value. For our specific example input from Eq. (3-10), the sum, however, is zero. The input
sequence has no DC component, so we know that X(0) will be zero. But let’s not be lazy—we’ll
calculate X(0) anyway just to be sure. Evaluating Eq. (3-3) or Eq. (3-13′) for m = 0, we see that

So our x(n) had no DC component, and, thus, its average value is zero. Notice that Figure 3-4
indicates that xin(t), from Eq. (3-10), has signal components at 1 kHz (m = 1) and 2 kHz (m = 2).
Moreover, the 1 kHz tone has a magnitude twice that of the 2 kHz tone. The DFT results depicted in
Figure 3-4 tell us exactly the spectral content of the signal defined by Eqs. (3-10) and (3-11).
While looking at Figure 3-4(b), we might notice that the phase of X(1) is −90 degrees and ask, “This
−90 degrees phase is relative to what?” The answer is: The DFT phase at the frequency mfs/N is
relative to a cosine wave at that same frequency of mfs/N Hz where m = 1, 2, 3, ..., N−1. For example,
the phase of X(1) is −90 degrees, so the input sinusoid whose frequency is 1 · fs/N = 1000 Hz was a
cosine wave having an initial phase shift of −90 degrees. From the trigonometric identity cos(α−90°)
= sin(α), we see that the 1000 Hz input tone was a sinewave having an initial phase of zero. This
agrees with our Eq. (3-11). The phase of X(2) is 45 degrees so the 2000 Hz input tone was a cosine
wave having an initial phase of 45 degrees, which is equivalent to a sinewave having an initial phase
of 135 degrees (3π/4 radians from Eq. (3-11)).
When the DFT input signals are real-valued, the DFT phase at 0 Hz (m = 0, DC) is always zero
because X(0) is always real-only as shown by Eq. (3-13′).
The perceptive reader should be asking two questions at this point. First, what do those nonzero
magnitude values at m = 6 and m = 7 in Figure 3-4(a) mean? Also, why do the magnitudes seem four
times larger than we would expect? We’ll answer those good questions shortly. The above 8-point
DFT example, although admittedly simple, illustrates two very important characteristics of the DFT
that we should never forget. First, any individual X(m) output value is nothing more than the sum of
the term-by-term products, a correlation, of an input signal sample sequence with a cosine and a
sinewave whose frequencies are m complete cycles in the total sample interval of N samples. This is



true no matter what the fs sample rate is and no matter how large N is in an N-point DFT. The second
important characteristic of the DFT of real input samples is the symmetry of the DFT output terms.

3.2 DFT Symmetry
Looking at Figure 3-4(a) again, we see that there is an obvious symmetry in the DFT results. Although
the standard DFT is designed to accept complex input sequences, most physical DFT inputs (such as
digitized values of some continuous signal) are referred to as real; that is, real inputs have nonzero
real sample values, and the imaginary sample values are assumed to be zero. When the input sequence
x(n) is real, as it will be for all of our examples, the complex DFT outputs for m = 1 to m = (N/2) − 1
are redundant with frequency output values for m > (N/2). The mth DFT output will have the same
magnitude as the (N−m)th DFT output. The phase angle of the DFT’s mth output is the negative of the
phase angle of the (N−m)th DFT output. So the mth and (N−m)th outputs are related by the following

(3-14)

for 1 ≤ m ≤ (N/2)−1. We can state that when the DFT input sequence is real, X(m) is the complex
conjugate of X(N−m), or

(3-14′)

† Using our notation, the complex conjugate of x = a + jb is defined as x* = a − jb; that is, we merely change the sign of the imaginary
part of x. In an equivalent form, if x = ejø, then x* = e−jø.

where the superscript “*” symbol denotes conjugation, and m = 1, 2, 3, . . . , N−1.
In our example above, notice in Figures 3-4(b) and 3-4(d) that X(5), X(6), and X(7) are the complex
conjugates of X(3), X(2), and X(1), respectively. Like the DFT’s magnitude symmetry, the real part of
X(m) has what is called even symmetry, as shown in Figure 3-4(c), while the DFT’s imaginary part
has odd symmetry, as shown in Figure 3-4(d). This relationship is what is meant when the DFT is
called conjugate symmetric in the literature. It means that if we perform an N-point DFT on a real
input sequence, we’ll get N separate complex DFT output terms, but only the first N/2+1 terms are
independent. So to obtain the DFT of x(n), we need only compute the first N/2+1 values of X(m)
where 0 ≤ m ≤ (N/2); the X(N/2+1) to X(N−1) DFT output terms provide no additional information
about the spectrum of the real sequence x(n).
The above N-point DFT symmetry discussion applies to DFTs, whose inputs are real-valued, where
N is an even number. If N happens to be an odd number, then only the first (N+1)/2 samples of the
DFT are independent. For example, with a 9-point DFT only the first five DFT samples are
independent.
Although Eqs. (3-2) and (3-3) are equivalent, expressing the DFT in the exponential form of Eq. (3-2)
has a terrific advantage over the form of Eq. (3-3). Not only does Eq. (3-2) save pen and paper, but
Eq. (3-2)’s exponentials are much easier to manipulate when we’re trying to analyze DFT
relationships. Using Eq. (3-2), products of terms become the addition of exponents and, with due
respect to Euler, we don’t have all those trigonometric relationships to memorize. Let’s demonstrate
this by proving Eq. (3-14) to show the symmetry of the DFT of real input sequences. Substituting N−m



for m in Eq. (3-2), we get the expression for the (N−m)th component of the DFT:
(3-15)

Because e−j2πn = cos(2πn) −jsin(2πn) = 1 for all integer values of n,
(3-15′)

We see that X(N−m) in Eq. (3-15′) is merely X(m) in Eq. (3-2) with the sign reversed on X(m)’s
exponent—and that’s the definition of the complex conjugate. This is illustrated by the DFT output
phase-angle plot in Figure 3-4(b) for our DFT Example 1. Try deriving Eq. (3-15′) using the cosines
and sines of Eq. (3-3), and you’ll see why the exponential form of the DFT is so convenient for
analytical purposes.
There’s an additional symmetry property of the DFT that deserves mention at this point. In practice,
we’re occasionally required to determine the DFT of real input functions where the input index n is
defined over both positive and negative values. If that real input function is even, then X(m) is always
real and even; that is, if the real x(n) = x(−n), then, Xreal(m) is in general nonzero and Ximag(m) is
zero. Conversely, if the real input function is odd, x(n) = −x(−n), then Xreal(m) is always zero and
Ximag(m) is, in general, nonzero. This characteristic of input function symmetry is a property that the
DFT shares with the continuous Fourier transform, and (don’t worry) we’ll cover specific examples
of it later in Section 3.13 and in Chapter 5.

3.3 DFT Linearity
The DFT has a very important property known as linearity. This property states that the DFT of the
sum of two signals is equal to the sum of the transforms of each signal; that is, if an input sequence
x1(n) has a DFT X1(m) and another input sequence x2(n) has a DFT X2(m), then the DFT of the sum of
these sequences xsum(n) = x1(n) + x2(n) is

(3-16)

This is certainly easy enough to prove. If we plug xsum(n) into Eq. (3-2) to get Xsum(m), then

Without this property of linearity, the DFT would be useless as an analytical tool because we could



transform only those input signals that contain a single sinewave. The real-world signals that we want
to analyze are much more complicated than a single sinewave.

3.4 DFT Magnitudes
The DFT Example 1 results of |X(1)| = 4 and |X(2)| = 2 may puzzle the reader because our input x(n)
signal, from Eq. (3-11), had peak amplitudes of 1.0 and 0.5, respectively. There’s an important point
to keep in mind regarding DFTs defined by Eq. (3-2). When a real input signal contains a sinewave
component, whose frequency is less than half the fs sample rate, of peak amplitude Ao with an integral
number of cycles over N input samples, the output magnitude of the DFT for that particular sinewave
is Mr where

(3-17)

If the DFT input is a complex sinusoid of magnitude Ao (i.e., Aoej2πfnts) with an integer number of
cycles over N samples, the Mc output magnitude of the DFT for that particular sinewave is

(3-17′)

As stated in relation to Eq. (3-13′), if the DFT input was riding on a DC bias value equal to Do, the
magnitude of the DFT’s X(0) output will be DoN.

Looking at the real input case for the 1000 Hz component of Eq. (3-11), Ao = 1 and N = 8, so that Mreal
= 1 · 8/2 = 4, as our example shows. Equation (3-17) may not be so important when we’re using
software or floating-point hardware to perform DFTs, but if we’re implementing the DFT with fixed-
point hardware, we have to be aware that the output can be as large as N/2 times the peak value of the
input. This means that, for real inputs, hardware memory registers must be able to hold values as
large as N/2 times the maximum amplitude of the input sample values. We discuss DFT output
magnitudes in further detail later in this chapter. The DFT magnitude expressions in Eqs. (3-17) and
(3-17′) are why we occasionally see the DFT defined in the literature as

(3-18)

The 1/N scale factor in Eq. (3-18) makes the amplitudes of X′(m) equal to half the time-domain input
sinusoid’s peak value at the expense of the additional division by N computation. Thus, hardware or
software implementations of the DFT typically use Eq. (3-2) as opposed to Eq. (3-18). Of course,
there are always exceptions. There are commercial software packages using

(3-18′)



for the forward and inverse DFTs. (In Section 3.7, we discuss the meaning and significance of the
inverse DFT.) The  scale factors in Eqs. (3-18′) seem a little strange, but they’re used so that
there’s no scale change when transforming in either direction. When analyzing signal spectra in
practice, we’re normally more interested in the relative magnitudes rather than absolute magnitudes of
the individual DFT outputs, so scaling factors aren’t usually that important to us.

3.5 DFT Frequency Axis
The frequency axis m of the DFT result in Figure 3-4 deserves our attention once again. Suppose we
hadn’t previously seen our DFT Example 1, were given the eight input sample values, from Eq. (3-
11′), and were asked to perform an 8-point DFT on them. We’d grind through Eq. (3-2) and obtain the
X(m) values shown in Figure 3-4. Next we ask, “What’s the frequency of the highest magnitude
component in X(m) in Hz?” The answer is not “1” kHz. The answer depends on the original sample
rate fs. Without prior knowledge, we have no idea over what time interval the samples were taken, so
we don’t know the absolute scale of the X(m) frequency axis. The correct answer to the question is to
take fs and plug it into Eq. (3-5) with m = 1. Thus, if fs = 8000 samples/second, then the frequency
associated with the largest DFT magnitude term is

If we said the sample rate fs was 75 samples/second, we’d know, from Eq. (3-5), that the frequency
associated with the largest magnitude term is now

OK, enough of this—just remember that the DFT’s frequency spacing (resolution) is fs/N.

To recap what we’ve learned so far:
• Each DFT output term is the sum of the term-by-term products of an input time-domain sequence
with sequences representing a sine and a cosine wave.

• For real inputs, an N-point DFT’s output provides only N/2+1 independent terms.
• The DFT is a linear operation.
• The magnitude of the DFT results is directly proportional to N.
• The DFT’s frequency resolution is fs/N.

It’s also important to realize, from Eq. (3-5), that X(N/2), when m = N/2, corresponds to half the
sample rate, i.e., the folding (Nyquist) frequency fs/2.

3.6 DFT Shifting Theorem
There’s an important property of the DFT known as the shifting theorem. It states that a shift in time
of a periodic x(n) input sequence manifests itself as a constant phase shift in the angles associated
with the DFT results. (We won’t derive the shifting theorem equation here because its derivation is
included in just about every digital signal processing textbook in print.) If we decide to sample x(n)
starting at n equals some integer k, as opposed to n = 0, the DFT of those time-shifted sample values
is Xshifted(m) where

(3-19)



Equation (3-19) tells us that if the point where we start sampling x(n) is shifted to the right by k
samples, the DFT output spectrum of Xshifted(m) is X(m) with each of X(m)’s complex terms
multiplied by the linear phase shift ej2πkm/N, which is merely a phase shift of 2πkm/N radians or
360km/N degrees. Conversely, if the point where we start sampling x(n) is shifted to the left by k
samples, the spectrum of Xshifted(m) is X(m) multiplied by e−j2πkm/N. Let’s illustrate Eq. (3-19) with an
example.

3.6.1 DFT Example 2
Suppose we sampled our DFT Example 1 input sequence later in time by k = 3 samples. Figure 3-5
shows the original input time function,

xin(t) = sin(2π1000t) + 0.5sin(2π2000t+3π/4).

Figure 3-5 Comparison of sampling times between DFT Example 1 and DFT Example 2.

We can see that Figure 3-5 is a continuation of Figure 3-2(a). Our new x(n) sequence becomes the
values represented by the solid black dots in Figure 3-5 whose values are

(3-20)

Performing the DFT on Eq. (3-20), Xshifted(m) is
(3-21)



The values in Eq. (3-21) are illustrated as the dots in Figure 3-6. Notice that Figure 3-6(a) is
identical to Figure 3-4(a). Equation (3-19) told us that the magnitude of Xshifted(m) should be
unchanged from that of X(m). That’s a comforting thought, isn’t it? We wouldn’t expect the DFT
magnitude of our original periodic xin(t) to change just because we sampled it over a different time
interval. The phase of the DFT result does, however, change depending on the instant at which we
started to sample xin(t).
Figure 3-6 DFT results from Example 2: (a) magnitude of Xshifted(m); (b) phase of Xshifted(m); (c) real

part of Xshifted(m); (d) imaginary part of Xshifted(m).

By looking at the m = 1 component of Xshifted(m), for example, we can double-check to see that phase
values in Figure 3-6(b) are correct. Using Eq. (3-19) and remembering that X(1) from DFT Example
1 had a magnitude of 4 at a phase angle of −90° (or −π/2 radians), k = 3 and N = 8 so that

(3-22)

So Xshifted(1) has a magnitude of 4 and a phase angle of π/4 or +45°, which is what we set out to
prove using Eq. (3-19).

3.7 Inverse DFT
Although the DFT is the major topic of this chapter, it’s appropriate, now, to introduce the inverse
discrete Fourier transform (IDFT). Typically we think of the DFT as transforming time-domain data
into a frequency-domain representation. Well, we can reverse this process and obtain the original
time-domain signal by performing the IDFT on the X(m) frequency-domain values. The standard
expressions for the IDFT are



(3-23)

and equally,
(3-23′)

Remember the statement we made in Section 3.1 that a discrete time-domain signal can be considered
the sum of various sinusoidal analytical frequencies and that the X(m) outputs of the DFT are a set of
N complex values indicating the magnitude and phase of each analysis frequency comprising that sum.
Equations (3-23) and (3-23′) are the mathematical expressions of that statement. It’s very important
for the reader to understand this concept. If we perform the IDFT by plugging our results from DFT
Example 1 into Eq. (3-23), we’ll go from the frequency domain back to the time domain and get our
original real Eq. (3-11′) x(n) sample values of

Notice that Eq. (3-23)’s IDFT expression differs from the DFT’s Eq. (3-2) only by a 1/N scale factor
and a change in the sign of the exponent. Other than the magnitude of the results, every characteristic
that we’ve covered thus far regarding the DFT also applies to the IDFT.

3.8 DFT Leakage
Hold on to your seat now. Here’s where the DFT starts to get really interesting. The two previous
DFT examples gave us correct results because the input x(n) sequences were very carefully chosen
sinusoids. As it turns out, the DFT of sampled real-world signals provides frequency-domain results
that can be misleading. A characteristic known as leakage causes our DFT results to be only an
approximation of the true spectra of the original input signals prior to digital sampling. Although there
are ways to minimize leakage, we can’t eliminate it entirely. Thus, we need to understand exactly
what effect it has on our DFT results.
Let’s start from the beginning. DFTs are constrained to operate on a finite set of N input values,
sampled at a sample rate of fs, to produce an N-point transform whose discrete outputs are associated
with the individual analytical frequencies fanalysis(m), with

(3-24)

Equation (3-24), illustrated in DFT Example 1, may not seem like a problem, but it is. The DFT
produces correct results only when the input data sequence contains energy precisely at the analysis
frequencies given in Eq. (3-24), at integral multiples of our fundamental frequency fs/N. If the input
has a signal component at some intermediate frequency between our analytical frequencies of mfs/N,
say 1.5fs/N, this input signal will show up to some degree in all of the N output analysis frequencies
of our DFT! (We typically say that input signal energy shows up in all of the DFT’s output bins, and



we’ll see, in a moment, why the phrase “output bins” is appropriate. Engineers often refer to DFT
samples as “bins.” So when you see, or hear, the word bin it merely means a frequency-domain
sample.) Let’s understand the significance of this problem with another DFT example.
Assume we’re taking a 64-point DFT of the sequence indicated by the dots in Figure 3-7(a). The
sequence is a sinewave with exactly three cycles contained in our N = 64 samples. Figure 3-7(b)
shows the first half of the DFT of the input sequence and indicates that the sequence has an average
value of zero (X(0) = 0) and no signal components at any frequency other than the m = 3 frequency.
No surprises so far. Figure 3-7(a) also shows, for example, the m = 4 sinewave analysis frequency,
superimposed over the input sequence, to remind us that the analytical frequencies always have an
integral number of cycles over our total sample interval of 64 points. The sum of the products of the
input sequence and the m = 4 analysis frequency is zero. (Or we can say, the correlation of the input
sequence and the m = 4 analysis frequency is zero.) The sum of the products of this particular three-
cycle input sequence and any analysis frequency other than m = 3 is zero. Continuing with our leakage
example, the dots in Figure 3-8(a) show an input sequence having 3.4 cycles over our N = 64
samples. Because the input sequence does not have an integral number of cycles over our 64-sample
interval, input energy has leaked into all the other DFT output bins as shown in Figure 3-8(b). The m
= 4 bin, for example, is not zero because the sum of the products of the input sequence and the m = 4
analysis frequency is no longer zero. This is leakage—it causes any input signal whose frequency is
not exactly at a DFT bin center to leak into all of the other DFT output bins. Moreover, leakage is an
unavoidable fact of life when we perform the DFT on real-world finite-length time sequences.
Figure 3-7 Sixty-four-point DFT: (a) input sequence of three cycles and the m = 4 analysis frequency

sinusoid; (b) DFT output magnitude.

Figure 3-8 Sixty-four-point DFT: (a) 3.4 cycles input sequence and the m = 4 analysis frequency
sinusoid; (b) DFT output magnitude.



Now, as the English philosopher Douglas Adams would say, “Don’t panic.” Let’s take a quick look at
the cause of leakage to learn how to predict and minimize its unpleasant effects. To understand the
effects of leakage, we need to know the amplitude response of a DFT when the DFT’s input is an
arbitrary, real sinusoid. Although Sections 3.13 discusses this issue in detail, for our purposes, here,
we’ll just say that for a real cosine input having k cycles (k need not be an integer) in the N-point
input time sequence, the amplitude response of an N-point DFT bin in terms of the bin index m is
approximated by the sinc function

(3-25)

where Ao is the peak value of the DFT’s input sinusiod. For our examples here, Ao is unity. We’ll use
Eq. (3-25), illustrated in Figure 3-9(a), to help us determine how much leakage occurs in DFTs. We
can think of the curve in Figure 3-9(a), comprising a main lobe and periodic peaks and valleys known
as sidelobes, as the continuous positive spectrum of an N-point, real cosine time sequence having k
cycles in the N-point input time interval. The DFT’s outputs are discrete samples that reside on the
curves in Figure 3-9; that is, our DFT output will be a sampled version of the continuous spectrum.
(We show the DFT’s magnitude response to a real input in terms of frequency (Hz) in Figure 3-9(b).)
When the DFT’s input sequence has exactly an integral k number of cycles (centered exactly in the m
= k bin), no leakage occurs, as in Figure 3-9, because when the angle in the numerator of Eq. (3-25) is
a nonzero integral multiple of π, the sine of that angle is zero.
Figure 3-9 DFT positive-frequency response due to an N-point input sequence containing k cycles of

a real cosine: (a) amplitude response as a function of bin index m; (b) magnitude response as a
function of frequency in Hz.



By way of example, we can illustrate again what happens when the input frequency k is not located at
a bin center. Assume that a real 8 kHz sinusoid, having unity amplitude, has been sampled at a rate of
fs = 32000 samples/second. If we take a 32-point DFT of the samples, the DFT’s frequency
resolution, or bin spacing, is fs/N = 32000/32 Hz = 1.0 kHz. We can predict the DFT’s magnitude
response by centering the input sinusoid’s spectral curve at the positive frequency of 8 kHz, as shown
in Figure 3-10(a). The dots show the DFT’s output bin magnitudes.

Figure 3-10 DFT bin positive-frequency responses: (a) DFT input frequency = 8.0 kHz; (b) DFT
input frequency = 8.5 kHz; (c) DFT input frequency = 8.75 kHz.



Again, here’s the important point to remember: the DFT output is a sampled version of the continuous
spectral curve in Figure 3-10(a). Those sampled values in the frequency domain, located at mfs/N, are
the dots in Figure 3-10(a). Because the input signal frequency is exactly at a DFT bin center, the DFT
results have only one nonzero value. Stated in another way, when an input sinusoid has an integral
number of cycles over N time-domain input sample values, the DFT outputs reside on the continuous
spectrum at its peak and exactly at the curve’s zero crossing points. From Eq. (3-25) we know the
peak output magnitude is 32/2 = 16. (If the real input sinusoid had an amplitude of 2, the peak of the
response curve would be 2 · 32/2, or 32.) Figure 3-10(b) illustrates DFT leakage where the input
frequency is 8.5 kHz, and we see that the frequency-domain sampling results in nonzero magnitudes
for all DFT output bins. An 8.75 kHz input sinusoid would result in the leaky DFT output shown in
Figure 3-10(c). If we’re sitting at a computer studying leakage by plotting the magnitude of DFT
output values, of course, we’ll get the dots in Figure 3-10 and won’t see the continuous spectral
curves.
At this point, the attentive reader should be thinking: “If the continuous spectra that we’re sampling
are symmetrical, why does the DFT output in Figure 3-8(b) look so asymmetrical?” In Figure 3-8(b),
the bins to the right of the third bin are decreasing in amplitude faster than the bins to the left of the
third bin. “And another thing, with k = 3.4 and m = 3, from Eq. (3-25) the X(3) bin’s magnitude should
be approximately equal to 24.2—but Figure 3-8(b) shows the X(3) bin magnitude to be slightly
greater than 25. What’s going on here?” We answer this by remembering what Figure 3-8(b) really
represents. When examining a DFT output, we’re normally interested only in the m = 0 to m =
(N/2−1) bins. Thus, for our 3.4 cycles per sample interval example in Figure 3-8(b), only the first 32
bins are shown. Well, the DFT is periodic in the frequency domain as illustrated in Figure 3-11. (We
address this periodicity issue in Section 3.14.) Upon examining the DFT’s output for higher and
higher frequencies, we end up going in circles, and the spectrum repeats itself forever.
Figure 3-11 Cyclic representation of the DFT’s spectral replication when the DFT input is 3.4 cycles

per sample interval.



The more conventional way to view a DFT output is to unwrap the spectrum in Figure 3-11 to get the
spectrum in Figure 3-12. Figure 3-12 shows some of the additional replications in the spectrum for
the 3.4 cycles per sample interval example. Concerning our DFT output asymmetry problem, as some
of the input 3.4-cycle signal amplitude leaks into the 2nd bin, the 1st bin, and the 0th bin, leakage
continues into the −1st bin, the −2nd bin, the −3rd bin, etc. Remember, the 63rd bin is the −1st bin, the
62nd bin is the −2nd bin, and so on. These bin equivalencies allow us to view the DFT output bins as
if they extend into the negative-frequency range, as shown in Figure 3-13(a). The result is that the
leakage wraps around the m = 0 frequency bin, as well as around the m = N frequency bin. This is not
surprising, because the m = 0 frequency is the m = N frequency. The leakage wraparound at the m = 0
frequency accounts for the asymmetry around the DFT’s m = 3 bin in Figure 3-8(b).

Figure 3-12 Spectral replication when the DFT input is 3.4 cycles per sample interval.

Figure 3-13 DFT output magnitude: (a) when the DFT input is 3.4 cycles per sample interval; (b)
when the DFT input is 28.6 cycles per sample interval.



Recall from the DFT symmetry discussion that when a DFT input sequence x(n) is real, the DFT
outputs from m = 0 to m = (N/2−1) are redundant with frequency bin values for m > (N/2), where N is
the DFT size. The mth DFT output will have the same magnitude as the (N−m)th DFT output. That is,
|X(m)| = |X(N−m)|. What this means is that leakage wraparound also occurs around the m = N/2 bin.
This can be illustrated using an input of 28.6 cycles per sample interval (32 − 3.4) whose spectrum is
shown in Figure 3-13(b). Notice the similarity between Figures 3-13(a) and 3-13(b). So the DFT
exhibits leakage wraparound about the m = 0 and m = N/2 bins. Minimum leakage asymmetry will
occur near the N/4th bin as shown in Figure 3-14(a) where the full spectrum of a 16.4 cycles per
sample interval input is provided. Figure 3-14(b) shows a close-up view of the first 32 bins of the
16.4 cycles per sample interval spectrum.

Figure 3-14 DFT output magnitude when the DFT input is 16.4 cycles per sample interval: (a) full
output spectrum view; (b) close-up view showing minimized leakage asymmetry at frequency m =

N/4.



You could read about leakage all day. However, the best way to appreciate its effects is to sit down at
a computer and use a software program to take DFTs, in the form of fast Fourier transforms (FFTs), of
your personally generated test signals like those in Figures 3-7 and 3-8. You can then experiment with
different combinations of input frequencies and various DFT sizes. You’ll be able to demonstrate that
the DFT leakage effect is troublesome because the bins containing low-level signals are corrupted by
the sidelobe levels from neighboring bins containing high-amplitude signals.
Although there’s no way to eliminate leakage completely, an important technique known as
windowing is the most common remedy to reduce its unpleasant effects. Let’s look at a few DFT
window examples.

3.9 Windows
Windowing reduces DFT leakage by minimizing the magnitude of Eq. (3-25)’s sinc function’s sin(x)/x
sidelobes shown in Figure 3-9. We do this by forcing the amplitude of the input time sequence at both
the beginning and the end of the sample interval to go smoothly toward a single common amplitude
value. Figure 3-15 shows how this process works. If we consider the infinite-duration time signal
shown in Figure 3-15(a), a DFT can only be performed over a finite-time sample interval like that
shown in Figure 3-15(c). We can think of the DFT input signal in Figure 3-15(c) as the product of an
input signal existing for all time, Figure 3-15(a), and the rectangular window whose magnitude is 1
over the sample interval shown in Figure 3-15(b). Anytime we take the DFT of a finite-extent input
sequence, we are, by default, multiplying that sequence by a window of all ones and effectively
multiplying the input values outside that window by zeros. As it turns out, Eq. (3-25)’s sinc function’s
sin(x)/x shape, shown in Figure 3-9, is caused by this rectangular window because the continuous
Fourier transform of the rectangular window in Figure 3-15(b) is the sinc function.



Figure 3-15 Minimizing sample interval end-point discontinuities: (a) infinite-duration input
sinusoid; (b) rectangular window due to finite-time sample interval; (c) product of rectangular

window and infinite-duration input sinusoid; (d) triangular window function; (e) product of triangular
window and infinite-duration input sinusoid; (f) Hanning window function; (g) product of Hanning

window and infinite-duration input sinusoid; (h) Hamming window function.

As we’ll soon see, it’s the rectangular window’s abrupt changes between one and zero that are the
cause of the sidelobes in the the sin(x)/x sinc function. To minimize the spectral leakage caused by
those sidelobes, we have to reduce the sidelobe amplitudes by using window functions other than the
rectangular window. Imagine if we multiplied our DFT input, Figure 3-15(c), by the triangular
window function shown in Figure 3-15(d) to obtain the windowed input signal shown in Figure 3-
15(e). Notice that the values of our final input signal appear to be the same at the beginning and end of
the sample interval in Figure 3-15(e). The reduced discontinuity decreases the level of relatively
high-frequency components in our overall DFT output; that is, our DFT bin sidelobe levels are
reduced in magnitude using a triangular window. There are other window functions that reduce
leakage even more than the triangular window, such as the Hanning window in Figure 3-15(f). The
product of the window in Figure 3-15(f) and the input sequence provides the signal shown in Figure



3-15(g) as the input to the DFT. Another common window function is the Hamming window shown in
Figure 3-15(h). It’s much like the Hanning window, but it’s raised on a pedestal.
Before we see exactly how well these windows minimize DFT leakage, let’s define them
mathematically. Assuming that our original N input signal samples are indexed by n, where 0 ≤ n ≤ N
−1, we’ll call the N time-domain window coefficients w(n); that is, an input sequence x(n) is
multiplied by the corresponding window w(n) coefficients before the DFT is performed. So the DFT
of the windowed x(n) input sequence, Xw(m), takes the form of

(3-26)

To use window functions, we need mathematical expressions of them in terms of n. The following
expressions define our window function coefficients:

(3-27)

(3-28)

(3-29)

(3-30)

If we plot the w(n) values from Eqs. (3-27) through (3-30), we’d get the corresponding window
functions like those in Figures 3-15(b), 3-15(d), 3-15(f), and 3-15(h).†
† In the literature, the equations for window functions depend on the range of the sample index n. We define n to be in the range 0 < n <
N−1. Some authors define n to be in the range −N/2 ≤ n ≤ N/2−1, in which case, for example, the expression for the Hanning window
would have a sign change and be w(n) = 0.5 + 0.5cos(2πn/N).

The rectangular window’s amplitude response is the yardstick we normally use to evaluate another
window function’s amplitude response; that is, we typically get an appreciation for a window’s
response by comparing it to the rectangular window that exhibits the magnitude response shown in
Figure 3-9(b). The rectangular window’s sin(x)/x magnitude response, |W(m)|, is repeated in Figure
3-16(a). Also included in Figure 3-16(a) are the Hamming, Hanning, and triangular window
magnitude responses. (The frequency axis in Figure 3-16 is such that the curves show the response of
a single N-point DFT bin when the various window functions are used.) We can see that the last three



windows give reduced sidelobe levels relative to the rectangular window. Because the Hamming,
Hanning, and triangular windows reduce the time-domain signal levels applied to the DFT, their main
lobe peak values are reduced relative to the rectangular window. (Because of the near-zero w(n)
coefficients at the beginning and end of the sample interval, this signal level loss is called the
processing gain, or loss, of a window.) Be that as it may, we’re primarily interested in the windows’
sidelobe levels, which are difficult to see in Figure 3-16(a)’s linear scale. We will avoid this
difficulty by plotting the windows’ magnitude responses on a logarithmic decibel scale, and
normalize each plot so its main lobe peak values are zero dB. (Appendix E provides a discussion of
the origin and utility of measuring frequency-domain responses on a logarithmic scale using
decibels.) Defining the log magnitude response to be |WdB(m)|, we get |WdB(m)| by using the
expression

(3-31)

Figure 3-16 Window magnitude responses: (a) |W(m)| on a linear scale; (b) |WdB(m)| on a normalized
logarithmic scale.



(The |W(0)| term in the denominator of Eq. (3-31) is the value of W(m) at the peak of the main lobe
when m = 0.) The |WdB(m)| curves for the various window functions are shown in Figure 3-16(b).
Now we can really see how the various window sidelobe responses compare to each other.
Looking at the rectangular window’s magnitude response, we see that its main lobe is the most
narrow, fs/N. However, unfortunately, its first sidelobe level is only −13 dB below the main lobe
peak, which is not so good. (Notice that we’re only showing the positive-frequency portion of the
window responses in Figure 3-16.) The triangular window has reduced sidelobe levels, but the price
we’ve paid is that the triangular window’s main lobe width is twice as wide as that of the rectangular
window’s. The various nonrectangular windows’ wide main lobes degrade the windowed DFT’s
frequency resolution by almost a factor of two. However, as we’ll see, the important benefits of
leakage reduction usually outweigh the loss in DFT frequency resolution.
Notice the further reduction of the first sidelobe level, and the rapid sidelobe roll-off of the Hanning
window. The Hamming window has even lower first sidelobe levels, but this window’s sidelobes
roll off slowly relative to the Hanning window. This means that leakage three or four bins away from
the center bin is lower for the Hamming window than for the Hanning window, and leakage a half-
dozen or so bins away from the center bin is lower for the Hanning window than for the Hamming
window.
When we apply the Hanning window to Figure 3-8(a)’s 3.4 cycles per sample interval example, we
end up with the DFT input shown in Figure 3-17(a) under the Hanning window envelope. The DFT
outputs for the windowed waveform are shown in Figure 3-17(b) along with the DFT results with no
windowing, i.e., the rectangular window. As we expected, the shape of the Hanning window’s
response looks broader and has a lower peak amplitude, but its sidelobe leakage is noticeably
reduced from that of the rectangular window.

Figure 3-17 Hanning window: (a) 64-sample product of a Hanning window and a 3.4 cycles per
sample interval input sinewave; (b) Hanning DFT output response versus rectangular window DFT

output response.



We can demonstrate the benefit of using a window function to help us detect a low-level signal in the
presence of a nearby high-level signal. Let’s add 64 samples of a 7 cycles per sample interval
sinewave, with a peak amplitude of only 0.1, to Figure 3-8(a)’s unity-amplitude 3.4 cycles per
sample sinewave. When we apply a Hanning window to the sum of these sinewaves, we get the time-
domain input shown in Figure 3-18(a). Had we not windowed the input data, our DFT output would
be the squares in Figure 3-18(b) where DFT leakage causes the input signal component at m = 7 to be
barely discernible. However, the DFT of the windowed data shown as the triangles in Figure 3-18(b)
makes it easier for us to detect the presence of the m = 7 signal component. From a practical
standpoint, people who use the DFT to perform real-world signal detection have learned that their
overall frequency resolution and signal sensitivity are affected much more by the size and shape of
their window function than the mere size of their DFTs.
Figure 3-18 Increased signal detection sensitivity afforded using windowing: (a) 64-sample product
of a Hanning window and the sum of a 3.4 cycles and a 7 cycles per sample interval sinewaves; (b)

reduced leakage Hanning DFT output response versus rectangular window DFT output response.



As we become more experienced using window functions on our DFT input data, we’ll see how
different window functions have their own individual advantages and disadvantages. Furthermore,
regardless of the window function used, we’ve decreased the leakage in our DFT output from that of
the rectangular window. There are many different window functions described in the literature of
digital signal processing—so many, in fact, that they’ve been named after just about everyone in the
digital signal processing business. It’s not that clear that there’s a great deal of difference among many
of these window functions. What we find is that window selection is a trade-off between main lobe
widening, first sidelobe levels, and how fast the sidelobes decrease with increased frequency. The
use of any particular window depends on the application[5], and there are many applications.
Windows are used to improve DFT spectrum analysis accuracy[6], to design digital filters[7,8], to
simulate antenna radiation patterns, and even in the hardware world to improve the performance of
certain mechanical force to voltage conversion devices[9]. So there’s plenty of window information
available for those readers seeking further knowledge. (The mother of all technical papers on
windows is that by Harris[10]. A useful paper by Nuttall corrected and extended some portions of
Harris’s paper[11].) Again, the best way to appreciate windowing effects is to have access to a
computer software package that contains DFT, or FFT, routines and start analyzing windowed signals.
(By the way, while we delayed their discussion until Section 5.3, there are two other commonly used
window functions that can be used to reduce DFT leakage. They’re the Chebyshev and Kaiser



window functions, which have adjustable parameters, enabling us to strike a compromise between
widening main lobe width and reducing sidelobe levels.)

3.10 DFT Scalloping Loss
Scalloping is the name used to describe fluctuations in the overall magnitude response of an N-point
DFT. Although we derive this fact in Section 3.16, for now we’ll just say that when no input
windowing function is used, the sin(x)/x shape of the sinc function’s magnitude response applies to
each DFT output bin. Figure 3-19(a) shows a DFT’s aggregate magnitude response by superimposing
several sin(x)/x bin magnitude responses.† (Because the sinc function’s sidelobes are not key to this
discussion, we don’t show them in Figure 3-19(a).) Notice from Figure 3-19(b) that the overall DFT
frequency-domain response is indicated by the bold envelope curve. This rippled curve, also called
the picket fence effect, illustrates the processing loss for input frequencies between the bin centers.
† Perhaps Figure 3-19(a) is why individual DFT outputs are called “bins.” Any signal energy under a sin(x)/x curve will show up in the
enclosed storage compartment of that DFT’s output sample.

Figure 3-19 DFT bin magnitude response curves: (a) individual sin(x)/x responses for each DFT bin;
(b) equivalent overall DFT magnitude response.

From Figure 3-19(b), we can determine that the magnitude of the DFT response fluctuates from 1.0, at
bin center, to 0.637 halfway between bin centers. If we’re interested in DFT output power levels, this
envelope ripple exhibits a scalloping loss of almost −4 dB halfway between bin centers. Figure 3-19
illustrates a DFT output when no window (i.e., a rectangular window) is used. Because
nonrectangular window functions broaden the DFT’s main lobe, their use results in a scalloping loss
that will not be as severe as with the rectangular window[10,12]. That is, their wider main lobes
overlap more and fill in the valleys of the envelope curve in Figure 3-19(b). For example, the
scalloping loss of a Hanning window is approximately 0.82, or −1.45 dB, halfway between bin



centers. Scalloping loss is not, however, a severe problem in practice. Real-world signals normally
have bandwidths that span many frequency bins so that DFT magnitude response ripples can go
almost unnoticed. Let’s look at a scheme called zero padding that’s used to both alleviate scalloping
loss effects and to improve the DFT’s frequency granularity.

3.11 DFT Resolution, Zero Padding, and Frequency-Domain Sampling
One popular method used to improve DFT spectral estimation is known as zero padding. This
process involves the addition of zero-valued data samples to an original DFT input sequence to
increase the total number of input data samples. Investigating this zero-padding technique illustrates
the DFT’s important property of frequency-domain sampling alluded to in the discussion on leakage.
When we sample a continuous time-domain function, having a continuous Fourier transform (CFT),
and take the DFT of those samples, the DFT results in a frequency-domain sampled approximation of
the CFT. The more points in our DFT, the better our DFT output approximates the CFT.
To illustrate this idea, suppose we want to approximate the CFT of the continuous f(t) function in
Figure 3-20(a). This f(t) waveform extends to infinity in both directions but is nonzero only over the
time interval of T seconds. If the nonzero portion of the time function is a sinewave of three cycles in
T seconds, the magnitude of its CFT is shown in Figure 3-20(b). (Because the CFT is taken over an
infinitely wide time interval, the CFT has infinitesimally small frequency resolution, resolution so
fine-grained that it’s continuous.) It’s this CFT that we’ll approximate with a DFT.
Figure 3-20 Continuous Fourier transform: (a) continuous time-domain f(t) of a truncated sinusoid of

frequency 3/T; (b) continuous Fourier transform of f(t).

Suppose we want to use a 16-point DFT to approximate the CFT of f(t) in Figure 3-20(a). The 16
discrete samples of f(t), spanning the three periods of f(t)’s sinusoid, are those shown on the left side
of Figure 3-21(a). Applying those time samples to a 16-point DFT results in discrete frequency-
domain samples, the positive frequencies of which are represented by the dots on the right side of
Figure 3-21(a). We can see that the DFT output comprises samples of Figure 3-20(b)’s CFT. If we
append (or zero-pad) 16 zeros to the input sequence and take a 32-point DFT, we get the output
shown on the right side of Figure 3-21(b), where we’ve increased our DFT frequency sampling by a
factor of two. Our DFT is sampling the input function’s CFT more often now. Adding 32 more zeros
and taking a 64-point DFT, we get the output shown on the right side of Figure 3-21(c). The 64-point
DFT output now begins to show the true shape of the CFT. Adding 64 more zeros and taking a 128-
point DFT, we get the output shown on the right side of Figure 3-21(d). The DFT frequency-domain



sampling characteristic is obvious now, but notice that the bin index for the center of the main lobe is
different for each of the DFT outputs in Figure 3-21.

Figure 3-21 DFT frequency-domain sampling: (a) 16 input data samples and N = 16; (b) 16 input
data samples, 16 padded zeros, and N = 32; (c) 16 input data samples, 48 padded zeros, and N = 64;

(d) 16 input data samples, 112 padded zeros, and N = 128.

Does this mean we have to redefine the DFT’s frequency axis when using the zero-padding technique?
Not really. If we perform zero padding on L nonzero input samples to get a total of N time samples for
an N-point DFT, the zero-padded DFT output bin center frequencies are related to the original fs by
our old friend Eq. (3-5), or

(3-32)

So in our Figure 3-21(a) example, we use Eq. (3-32) to show that although the zero-padded DFT
output bin index of the main lobe changes as N increases, the zero-padded DFT output frequency
associated with the main lobe remains the same. The following list shows how this works:



Do we gain anything by appending more zeros to the input sequence and taking larger DFTs? Not
really, because our 128-point DFT is sampling the input’s CFT sufficiently now in Figure 3-21(d).
Sampling it more often with a larger DFT won’t improve our understanding of the input’s frequency
content. The issue here is that adding zeros to an input sequence will improve our DFT’s output
resolution, but there’s a practical limit on how much we gain by adding more zeros. For our example
here, a 128-point DFT shows us the detailed content of the input spectrum. We’ve hit a law of
diminishing returns here. Performing a 256-point or 512-point DFT, in our case, would serve little
purpose.† There’s no reason to oversample this particular input sequence’s CFT. Of course, there’s
nothing sacred about stopping at a 128-point DFT. Depending on the number of samples in some
arbitrary input sequence and the sample rate, we might, in practice, need to append any number of
zeros to get some desired DFT frequency resolution.
† Notice that the DFT sizes (N) we’ve discussed are powers of 2 (64, 128, 256, 512). That’s because we actually perform DFTs using a
special algorithm known as the fast Fourier transform (FFT). As we’ll see in Chapter 4, the typical implementation of the FFT requires
that N be a power of two.

There are two final points to be made concerning zero padding. First, the DFT magnitude expressions
in Eqs. (3-17) and (3-17′) don’t apply if zero padding is being used. If we perform zero padding on L
nonzero samples of a sinusoid whose frequency is located at a bin center to get a total of N input
samples for an N-point DFT, we must replace the N with L in Eqs. (3-17) and (3-17′) to predict the
DFT’s output magnitude for that particular sinewave. Second, in practical situations, if we want to
perform both zero padding and windowing on a sequence of input data samples, we must be careful
not to apply the window to the entire input including the appended zero-valued samples. The window
function must be applied only to the original nonzero time samples; otherwise the padded zeros will
zero out and distort part of the window function, leading to erroneous results. (Section 4.2 gives
additional practical pointers on performing the DFT using the FFT algorithm to analyze real-world
signals.)
To digress slightly, now’s a good time to define the term discrete-time Fourier transform (DTFT)
which the reader may encounter in the literature. The DTFT is the continuous Fourier transform of an
L-point discrete time-domain sequence, and some authors use the DTFT to describe many of the
digital signal processing concepts we’ve covered in this chapter. On a computer we can’t perform the
DTFT because it has an infinitely fine frequency resolution—but we can approximate the DTFT by
performing an N-point DFT on an L-point discrete time sequence where N > L. That is, in fact, what
we did in Figure 3-21 when we zero-padded the original 16-point time sequence. (When N = L, the
DTFT approximation is identical to the DFT.)
To make the connection between the DTFT and the DFT, know that the infinite-resolution DTFT
magnitude (i.e., continuous Fourier transform magnitude) of the 16 nonzero time samples in Figure 3-
21(a) is the shaded sin(x)/x-like spectral function in Figure 3-21. Our DFTs approximate (sample)
that function. Increased zero padding of the 16 nonzero time samples merely interpolates our DFT’s



sampled version of the DTFT function with smaller and smaller frequency-domain sample spacing.
Please keep in mind, however, that zero padding does not improve our ability to resolve, to
distinguish between, two closely spaced signals in the frequency domain. (For example, the main
lobes of the various spectra in Figure 3-21 do not change in width, if measured in Hz, with increased
zero padding.) To improve our true spectral resolution of two signals, we need more nonzero time
samples. The rule by which we must live is: To realize Fres Hz spectral resolution, we must collect
1/Fres seconds, worth of nonzero time samples for our DFT processing.
We’ll discuss applications of time-domain zero padding in Section 13.15, revisit the DTFT in Section
3.14, and frequency-domain zero padding in Section 13.28.

3.12 DFT Processing Gain
There are two types of processing gain associated with DFTs. People who use the DFT to detect
signal energy embedded in noise often speak of the DFT’s processing gain because the DFT can pull
signals out of background noise. This is due to the inherent correlation gain that takes place in any N-
point DFT. Beyond this natural processing gain, additional integration gain is possible when
multiple DFT outputs are averaged. Let’s look at the DFT’s inherent processing gain first.

3.12.1 Processing Gain of a Single DFT
The concept of the DFT having processing gain is straightforward if we think of a particular DFT bin
output as the output of a narrowband filter. Because a DFT output bin has the amplitude response of
the sin(x)/x function, that bin’s output is primarily due to input energy residing under, or very near, the
bin’s main lobe. It’s valid to think of a DFT bin as a kind of bandpass filter whose band center is
located at mfs/N. We know from Eq. (3-17) that the maximum possible DFT output magnitude
increases as the number of points (N) in a DFT increases. Also, as N increases, the DFT output bin
main lobes become narrower. So a DFT output bin can be treated as a bandpass filter whose gain can
be increased and whose bandwidth can be reduced by increasing the value of N. Decreasing a
bandpass filter’s bandwidth is useful in energy detection because the frequency resolution improves
in addition to the filter’s ability to minimize the amount of background noise that resides within its
passband. We can demonstrate this by looking at the DFT of a spectral tone (a constant-frequency
sinewave) added to random noise. Figure 3-22(a) is a logarithmic plot showing the first 32 outputs of
a 64-point DFT when the input tone is at the center of the DFT’s m = 20th bin. The output power
levels (DFT magnitude squared) in Figure 3-22(a) are normalized so that the highest bin output power
is set to 0 dB. Because the tone’s original signal power is below the average noise power level, the
tone is a bit difficult to detect when N = 64. (The time-domain noise, used to generate Figure 3-22(a),
has an average value of zero, i.e., no DC bias or amplitude offset.) If we quadruple the number of
input samples and increase the DFT size to N = 256, we can now see the tone power raised above the
average background noise power as shown for m = 80 in Figure 3-22(b). Increasing the DFT’s size to
N = 1024 provides additional processing gain to pull the tone further up out of the noise as shown in
Figure 3-22(c).

Figure 3-22 Single DFT processing gain: (a) N = 64; (b) N = 256; (c) N = 1024.



To quantify the idea of DFT processing gain, we can define a signal-to-noise ratio (SNR) as the
DFT’s output signal-power level over the average output noise-power level. (In practice, of course,
we like to have this ratio as large as possible.) For several reasons, it’s hard to say what any given
single DFT output SNR will be. That’s because we can’t exactly predict the energy in any given N
samples of random noise. Also, if the input signal frequency is not at bin center, leakage will raise the
effective background noise and reduce the DFT’s output SNR. In addition, any window being used
will have some effect on the leakage and, thus, on the output SNR. What we’ll see is that the DFT’s
output SNR increases as N gets larger because a DFT bin’s output noise standard deviation (rms)
value is proportional to , and the DFT’s output magnitude for the bin containing the signal tone is
proportional to N.† More generally for real inputs, if N > N′, an N-point DFT’s output SNRN increases
over the N′-point DFT SNRN by the following relationship:
† rms = root mean square.

(3-33)



If we increase a DFT’s size from N′ to N = 2N′, from Eq. (3-33), the DFT’s output SNR increases by
3 dB. So we say that a DFT’s processing gain increases by 3 dB whenever N is doubled. Be aware
that we may double a DFT’s size and get a resultant processing gain of less than 3 dB in the presence
of random noise; then again, we may gain slightly more than 3 dB. That’s the nature of random noise.
If we perform many DFTs, we’ll see an average processing gain, shown in Figure 3-23(a), for
various input signal SNRs. Because we’re interested in the slope of the curves in Figure 3-23(a), we
plot those curves on a logarithmic scale for N in Figure 3-23(b) where the curves straighten out and
become linear. Looking at the slope of the curves in Figure 3-23(b), we can now see the 3 dB
increase in processing gain as N doubles so long as N is greater than 20 or 30 and the signal is not
overwhelmed by noise. There’s nothing sacred about the absolute values of the curves in Figures 3-
23(a) and 3-23(b). They were generated through a simulation of noise and a tone whose frequency
was at a DFT bin center. Had the tone’s frequency been between bin centers, the processing gain
curves would have been shifted downward, but their shapes would still be the same;† that is, Eq. (3-
33) is still valid regardless of the input tone’s frequency.
† The curves would be shifted downward, indicating a lower SNR, because leakage would raise the average noise-power level, and
scalloping loss would reduce the DFT bin’s output power level.

Figure 3-23 DFT processing gain versus number of DFT points N for various input signal-to-noise
ratios: (a) linear N axis; (b) logarithmic N axis.

3.12.2 Integration Gain Due to Averaging Multiple DFTs
Theoretically, we could get very large DFT processing gains by increasing the DFT size arbitrarily.
The problem is that the number of necessary DFT multiplications increases proportionally to N2, and
larger DFTs become very computationally intensive. Because addition is easier and faster to perform
than multiplication, we can average the outputs of multiple DFTs to obtain further processing gain and



signal detection sensitivity. The subject of averaging multiple DFT outputs is covered in Section 11.3.

3.13 The DFT of Rectangular Functions
We continue this chapter by providing the mathematical details of two important aspects of the DFT.
First, we obtain the expressions for the DFT of a rectangular function (rectangular window), and then
we’ll use these results to illustrate the magnitude response of the DFT. We’re interested in the DFT’s
magnitude response because it provides an alternate viewpoint to understand the leakage that occurs
when we use the DFT as a signal analysis tool.
One of the most prevalent and important computations encountered in digital signal processing is the
DFT of a rectangular function. We see it in sampling theory, window functions, discussions of
convolution, spectral analysis, and in the design of digital filters. As common as it is, however, the
literature covering the DFT of rectangular functions can be confusing to the digital signal processing
beginner for several reasons. The standard mathematical notation is a bit hard to follow at first, and
sometimes the equations are presented with too little explanation. Compounding the problem, for the
beginner, are the various expressions of this particular DFT. In the literature, we’re likely to find any
one of the following forms for the DFT of a rectangular function:

(3-34)

In this section we’ll show how the forms in Eq. (3-34) were obtained, see how they’re related, and
create a kind of Rosetta Stone table allowing us to move back and forth between the various DFT
expressions. Take a deep breath and let’s begin our discussion with the definition of a rectangular
function.

3.13.1 DFT of a General Rectangular Function
A general rectangular function x(n) can be defined as N samples containing K unity-valued samples as
shown in Figure 3-24. The full N-point sequence, x(n), is the rectangular function that we want to
transform. We call this the general form of a rectangular function because the K unity samples begin at
an arbitrary index value of −no. Let’s take the DFT of x(n) in Figure 3-24 to get our desired X(m).
Using m as our frequency-domain sample index, the expression for an N-point DFT is

(3-35)

Figure 3-24 Rectangular function of width K samples defined over N samples where K < N.

With x(n) being nonzero only over the range of −no ≤ n ≤ −no + (K−1), we can modify the summation



limits of Eq. (3-35) to express X(m) as
(3-36)

because only the K samples contribute to X(m). That last step is important because it allows us to
eliminate the x(n) terms and make Eq. (3-36) easier to handle. To keep the following equations from
being too messy, let’s use the dummy variable q = 2πm/N.
OK, here’s where the algebra comes in. Over our new limits of summation, we eliminate the factor of
one and Eq. (3-36) becomes

(3-37)

The series inside the brackets of Eq. (3-37) allows the use of a summation, such as
(3-38)

Equation (3-38) certainly doesn’t look any simpler than Eq. (3-36), but it is. Equation (3-38) is a
geometric series and, from the discussion in Appendix B, it can be evaluated to the closed form of

(3-39)

We can now simplify Eq. (3-39)—here’s the clever step. If we multiply and divide the numerator and
denominator of Eq. (3-39)’s right-hand side by the appropriate half-angled exponentials, we break the
exponentials into two parts and get

(3-40)



Let’s pause for a moment here to remind ourselves where we’re going. We’re trying to get Eq. (3-40)
into a usable form because it’s part of Eq. (3-38) that we’re using to evaluate X(m) in Eq. (3-36) in
our quest for an understandable expression for the DFT of a rectangular function.
Equation (3-40) looks even more complicated than Eq. (3-39), but things can be simplified inside the
parentheses. From Euler’s equation, sin(ø) = (ejø − e−jø)/2j, Eq. (3-40) becomes

(3-41)

Substituting Eq. (3-41) for the summation in Eq. (3-38), our expression for X(q) becomes
(3-42)

Returning our dummy variable q to its original value of 2πm/N,

(3-43)

So there it is (whew!). Equation (3-43) is the general expression for the DFT of the rectangular
function as shown in Figure 3-24. Our X(m) is a complex expression (pun intended) where a ratio of
sine terms is the amplitude of X(m) and the exponential term is the phase angle of X(m).† The ratio of
sines factor in Eq. (3-43) lies on the periodic curve shown in Figure 3-25(a), and like all N-point
DFT representations, the periodicity of X(m) is N. This curve is known as the Dirichlet kernel (or the
aliased sinc function) and has been thoroughly described in the literature[10,13,14]. (It’s named after
the nineteenth-century German mathematician Peter Dirichlet [pronounced dee-ree-’klay], who
studied the convergence of trigonometric series used to represent arbitrary functions.)



† N was an even number in Figure 3-24 depicting the x(n). Had N been an odd number, the limits on the summation in Eq. (3-35) would
have been −(N−1)/2 ≤ n ≤ (N−1)/2. Using these alternate limits would have led us to exactly the same X(m) as in Eq. (3-43).

Figure 3-25 The Dirichlet kernel of X(m): (a) periodic continuous curve on which the X(m) samples
lie; (b) X(m) amplitudes about the m = 0 sample; (c) |X(m)| magnitudes about the m = 0 sample.

We can zoom in on the curve at the m = 0 point and see more detail in Figure 3-25(b). The dots are
shown in Figure 3-25(b) to remind us that the DFT of our rectangular function results in discrete
amplitude values that lie on the curve. So when we perform DFTs, our discrete results are sampled
values of the continuous sinc function’s curve in Figure 3-25(a). As we’ll show later, we’re primarily
interested in the absolute value, or magnitude, of the Dirichlet kernel in Eq. (3-43). That magnitude,
|X(m)|, is shown in Figure 3-25(c). Although we first saw the sinc function’s curve in Figure 3-9 in
Section 3.8, where we introduced the topic of DFT leakage, we’ll encounter this curve often in our
study of digital signal processing.
For now, there are just a few things we need to keep in mind concerning the Dirichlet kernel. First,
the DFT of a rectangular function has a main lobe, centered about the m = 0 point. The peak amplitude
of the main lobe is K. This peak value makes sense, right? The m = 0 sample of a DFT X(0) is the sum
of the original samples, and the sum of K unity-valued samples is K. We can show this in a more
substantial way by evaluating Eq. (3-43) for m = 0. A difficulty arises when we plug m = 0 into Eq.
(3-43) because we end up with sin(0)/sin(0), which is the indeterminate ratio 0/0. Well, hardcore
mathematics to the rescue here. We can use L’Hopital’s Rule to take the derivative of the numerator
and the denominator of Eq. (3-43), and then set m = 0 to determine the peak value of the magnitude of
the Dirichlet kernel.† We proceed as
† L’Hopital is pronounced , like baby doll.



(3-44)

which is what we set out to show. (We could have been clever and evaluated Eq. (3-35) with m = 0 to
get the result of Eq. (3-44). Try it, and keep in mind that ej0 = 1.) Had the amplitudes of the nonzero
samples of x(n) been other than unity, say some amplitude Ao, then, of course, the peak value of the
Dirichlet kernel would be AoK instead of just K. The next important thing to notice about the Dirichlet
kernel is the main lobe’s width. The first zero crossing of Eq. (3-43) occurs when the numerator’s
argument is equal to π, that is, when πmK/N = π. So the value of m at the first zero crossing is given
by

(3-45)

as shown in Figure 3-25(b). Thus the main lobe width 2N/K, as shown in Figure 3-25(c), is inversely
proportional to K.††

†† This is a fundamental characteristic of Fourier transforms. The narrower the function in one domain, the wider its transform will be in
the other domain.

Notice that the main lobe in Figure 3-25(a) is surrounded by a series of oscillations, called sidelobes,
as in Figure 3-25(c). These sidelobe magnitudes decrease the farther they’re separated from the main
lobe. However, no matter how far we look away from the main lobe, these sidelobes never reach zero
magnitude—and they cause a great deal of heartache for practitioners in digital signal processing.
These sidelobes cause high-amplitude signals to overwhelm and hide neighboring low-amplitude
signals in spectral analysis, and they complicate the design of digital filters. As we’ll see in Chapter
5, the unwanted ripple in the passband and the poor stopband attenuation in simple digital filters are
caused by the rectangular function’s DFT sidelobes. (The development, analysis, and application of
window functions came about to minimize the ill effects of those sidelobes in Figure 3-25.)
Let’s demonstrate the relationship in Eq. (3-45) by way of a simple but concrete example. Assume
that we’re taking a 64-point DFT of the 64-sample rectangular function, with 11 unity values, shown
in Figure 3-26(a). In this example, N = 64 and K = 11. Taking the 64-point DFT of the sequence in
Figure 3-26(a) results in an X(m) whose real and imaginary parts, Xreal(m) and Ximag(m), are shown in
Figures 3-26(b) and 3-26(c) respectively. Figure 3-26(b) is a good illustration of how the real part of
the DFT of a real input sequence has even symmetry, and Figure 3-26(c) confirms that the imaginary
part of the DFT of a real input sequence has odd symmetry.

Figure 3-26 DFT of a rectangular function: (a) original function x(n) ; (b) real part of the DFT of
x(n), Xreal(m); (c) imaginary part of the DFT of x(n), Ximag(m).



Although Xreal(m) and Ximag(m) tell us everything there is to know about the DFT of x(n), it’s a bit
easier to comprehend the true spectral nature of X(m) by viewing its absolute magnitude. This
magnitude, from Eq. (3-7), is provided in Figure 3-27(a) where the main and sidelobes are clearly
evident now. As we expected, the peak value of the main lobe is 11 because we had K = 11 samples
in x(n). The width of the main lobe from Eq. (3-45) is 64/11, or 5.82. Thus, the first positive-
frequency zero-crossing location lies just below the m = 6 sample of our discrete |X(m)| represented
by the squares in Figure 3-27(a). The phase angles associated with |X(m)|, first introduced in Eqs. (3-
6) and (3-8), are shown in Figure 3-27(b).

Figure 3-27 DFT of a generalized rectangular function: (a) magnitude |X(m)|; (b) phase angle in
radians.

To understand the nature of the DFT of rectangular functions more fully, let’s discuss a few more
examples using less general rectangular functions that are more common in digital signal processing
than the x(n) in Figure 3-24.

3.13.2 DFT of a Symmetrical Rectangular Function
Equation (3-43) is a bit complicated because our original function x(n) was so general. In practice,
special cases of rectangular functions lead to simpler versions of Eq. (3-43). Consider the



symmetrical x(n) rectangular function in Figure 3-28. As shown in Figure 3-28, we often need to
determine the DFT of a rectangular function that’s centered about the n = 0 index point. In this case,
the K unity-valued samples begin at n = −no = −(K−1)/2. So substituting (K−1)/2 for no in Eq. (3-43)
yields

(3-46)

Figure 3-28 Rectangular x(n) with K samples centered about n = 0.

Because ej0 = 1, Eq. (3-46) becomes
(3-47)

Equation (3-47) indicates that the DFT of the symmetrical rectangular function in Figure 3-28 is itself
a real function; that is, there’s no complex exponential in Eq. (3-47), so this particular DFT contains
no imaginary part or phase term. As we stated in Section 3.2, if x(n) is real and even, x(n) = x(−n),
then Xreal(m) is nonzero and Ximag(m) is always zero. We demonstrate this by taking the 64-point DFT
of the sequence in Figure 3-29(a). Our x(n) is 11 unity-valued samples centered about the n = 0 index.
Here the DFT results in an X(m) whose real and imaginary parts are shown in Figures 3-29(b) and 3-
29(c), respectively. As Eq. (3-47) predicted, Xreal(m) is nonzero and Ximag(m) is zero. The magnitude
and phase of X(m) are depicted in Figures 3-29(d) and 3-29(e).

Figure 3-29 DFT of a rectangular function centered about n = 0: (a) original x(n); (b) Xreal(m); (c)
Ximag(m); (d) magnitude of X(m); (e) phase angle of X(m) in radians.



Notice that the magnitudes in Figures 3-27(a) and 3-29(d) are identical. This verifies the very
important shifting theorem of the DFT; that is, the magnitude |X(m)| depends only on the number of
nonzero samples in x(n), K, and not on their position relative to the n = 0 index value. Shifting the K
unity-valued samples to center them about the n = 0 index merely affects the phase angle of X(m), not
its magnitude.
Speaking of phase angles, it’s interesting to realize here that even though Ximag(m) is zero in Figure 3-
29(c), the phase angle of X(m) is not always zero. In this case, X(m)’s individual phase angles in
Figure 3-29(e) are either +π, zero, or −π radians. With ejπ and ej(−π) both being equal to −1, we could
easily reconstruct Xreal(m) from |X(m)| and the phase angle Xø(m) if we must. Xreal(m) is equal to
|X(m)| with the signs of |X(m)|’s alternate sidelobes reversed.† To gain some further appreciation of
how the DFT of a rectangular function is a sampled version of the Dirichlet kernel, let’s increase the
number of our nonzero x(n) samples. Figure 3-30(a) shows a 64-point x(n) where 31 unity-valued
samples are centered about the n = 0 index location. The magnitude of X(m) is provided in Figure 3-
30(b). By broadening the x(n) function, i.e., increasing K, we’ve narrowed the Dirichlet kernel of
X(m). This follows from Eq. (3-45), right? The kernel’s first zero crossing is inversely proportional
to K, so, as we extend the width of K, we squeeze |X(m)| in toward m = 0. In this example, N = 64 and
K = 31. From Eq. (3-45) the first positive zero crossing of X(m) occurs at 64/31, or just slightly to the
right of the m = 2 sample in Figure 3-30(b). Also notice that the peak value of |X(m)| = K = 31, as
mandated by Eq. (3-44).



† The particular pattern of +π and −π values in Figure 3-29(e) is an artifact of the software used to generate that figure. A different
software package may show a different pattern, but as long as the nonzero phase samples are either +π or −π, the phase results will be
correct.

Figure 3-30 DFT of a symmetrical rectangular function with 31 unity values: (a) original x(n); (b)
magnitude of X(m).

3.13.3 DFT of an All-Ones Rectangular Function
The DFT of a special form of x(n) is routinely called for, leading to yet another simplified form of
Eq. (3-43). In the literature, we often encounter a rectangular function where K = N; that is, all N
samples of x(n) are nonzero, as shown in Figure 3-31. In this case, the N unity-valued samples begin
at n = −no = −(N−1)/2. We obtain the expression for the DFT of the function in Figure 3-31 by
substituting K = N and no = (N−1)/2 in Eq. (3-43) to get

(3-48)

Figure 3-31 Rectangular function with N unity-valued samples.

Equation (3-48) takes the first form of Eq. (3-34) that we alluded to at the beginning of Section 3.13.†
Figure 3-32 demonstrates the meaning of Eq. (3-48). The DFT magnitude of the all-ones function,
x(n) in Figure 3-32(a), is shown in Figures 3-32(b) and 3-32(c). Take note that if m is continuous, Eq.
(3-48) describes the shaded curves in Figure 3-32(b) and Figure 3-32(c). If m is restricted to being
integers, then Eq. (3-48) represents the dots in those figures.
† By the way, there’s nothing official about calling Eq. (3-48) a Type 1 Dirichlet kernel. We’re using the phrase Type 1 merely to
distinguish Eq. (3-48) from other mathematical expressions for the Dirichlet kernel that we’re about to encounter.



Figure 3-32 All-ones function: (a) rectangular function with N = 64 unity-valued samples; (b) DFT
magnitude of the all-ones time function; (c) close-up view of the DFT magnitude of an all-ones time

function.

The Dirichlet kernel of X(m) in Figure 3-32(b) is now as narrow as it can get. The main lobe’s first
positive zero crossing occurs at the m = 64/64 = 1 sample in Figure 3-32(b) and the peak value of
|X(m)| = N = 64. With x(n) being all ones, |X(m)| is zero for all m ≠ 0. The sinc function in Eq. (3-48)
is of utmost importance—as we’ll see at the end of this chapter, it defines the overall DFT frequency
response to an input sinusoidal sequence, and it’s also the amplitude response of a single DFT bin.
The form of Eq. (3-48) allows us to go one step further to identify the most common expression for
the DFT of an all-ones rectangular function found in the literature. To do this, we have to use an
approximation principle found in the mathematics of trigonometry that you may have heard before. It
states that when α is small, then sin(α) is approximately equal to α, i.e., sin(α) ≈ α. This idea comes
about when we consider a pie-shaped section of a circle whose radius is 1 as shown in Figure 3-
33(a). That section is defined by the length of the arc α measured in radians and α’s chord b. If we
draw a right triangle inside the section, we can say that a = sin(α). As α gets smaller, the long sides of
our triangle become almost parallel, the length of chord b approaches the length of arc α, and the
length of line a approaches the length of b. So, as depicted in Figure 3-33(b), when α is small, α ≈ b ≈
a = sin(α). We use this sin(α) ≈ α approximation when we look at the denominator of Eq. (3-48).
When πm/N is small, then sin(πm/N) is approximately equal to πm/N. So we can, when N is large,
state

(3-49)

Figure 3-33 Relationships between an angle α, line a = sin(α), and α’s chord b: (a) large angle α; (b)
small angle α.



It has been shown that when N is larger than, say, 10 in Eq. (3-48), Eq. (3-49) accurately describes
the DFT’s output.† Equation (3-49) is often normalized by dividing it by N, so we can express the
normalized DFT of an all-ones rectangular function as
† We can be comfortable with this result because, if we let K = N, we’ll see that the peak value of X(m) in Eq. (3-49), for m = 0, is equal
to N, which agrees with Eq. (3-44).

(3-50)

Equation (3-50), taking the second form of Eq. (3-34) that is so often seen in the literature, also has
the DFT magnitude shown in Figures 3-32(b) and 3-32(c).

3.13.4 Time and Frequency Axes Associated with the DFT
Let’s establish the physical dimensions associated with the n and m index values. So far in our
discussion, the n index was merely an integer enabling us to keep track of individual x(n) sample
values. If the n index represents instants in time, we can identify the time period separating adjacent
x(n) samples to establish the time scale for the x(n) axis and the frequency scale for the X(m) axis.
Consider the time-domain rectangular function given in Figure 3-34(a). That function comprises N
time samples obtained ts seconds apart, and the full sample interval is Nts seconds. Each x(n) sample
occurs at nts seconds for some value of n. For example, the n = 9 sample value, x(9) = 0, occurs at 9ts
seconds.

Figure 3-34 DFT time and frequency axis dimensions: (a) time-domain axis uses time index n; (b)
various representations of the DFT’s frequency axis.



The frequency axis of X(m) can be represented in a number of different ways. Three popular types of
DFT frequency axis labeling are shown in Figure 3-34(b) and listed in Table 3-1. Let’s consider each
representation individually.

Table 3-1 Characteristics of Various DFT Frequency Axis Representations

3.13.4.1 DFT Frequency Axis in Hz

If we decide to relate the frequencies of X(m) to the time sample period ts, or the sample rate fs = 1/ts,
then the frequency axis variable is f = m/Nts = mfs/N Hz. So each X(m) DFT sample is associated
with a frequency of mfs/N Hz. In this case, the sample spacing of X(m) is fs/N Hz. The DFT repetition
period, or periodicity, is fs Hz as shown in Figure 3-34(b). The first row of Table 3-1 illustrates the
characteristics of labeling the frequency axis in Hz.
3.13.4.2 DFT Frequency Axis Normalized by fs

If we think of some frequency f, in Hz, we can divide that frequency by the sampling frequency fs to
create a normalized frequency variable f/fs. The dimensions of such a normalized frequency are
cycles/sample. Using this notation, each X(m) DFT sample is associated with a normalized frequency
of m/N cycles/sample, and our highest frequency are 1/2 cycles/sample as shown in Figure 3-34(b).



In this scenario the sample spacing of X(m) is 1/N cycles/sample, and the DFT repetition period is
one cycle/sample as shown by the expressions in parentheses in Figure 3-34(b). This normalized f/fs
frequency variable only has meaning in sampled-data systems. That is, this type of frequency notation
has no meaning in the world of continuous (analog) systems.
It may seem strange to use such a normalized f/fs frequency variable, but sometimes it’s convenient
for us to do so. Furthermore, the built-in plotting functions of MATLAB (a popular signal processing
software package) often label the frequency axis in terms of the normalized f/fs variable.

3.13.4.3 DFT Frequency Axis Using a Normalized Angle

We can multiply the above normalized f/fs frequency variable by 2π to create a normalized angular
notation representing frequency. Doing so would result in a frequency variable expressed as
ω=2π(f/fs) radians/sample. Using this notation, each X(m) DFT sample is associated with a
normalized frequency of 2πm/N radians/sample, and our highest frequency is π radians/sample as
shown in Figure 3-34(b). In this scenario the sample spacing of X(m) is 2π/N radians/sample, and the
DFT repetition period is one radian/sample as shown by the expressions in brackets in Figure 3-
34(b). Using the normalized angular ω frequency variable is very popular in the literature of DSP, and
its characteristics are described in the last row of Table 3-1.
Unfortunately having three different representations of the DFT’s frequency axis may initially seem a
bit puzzling to a DSP beginner, but don’t worry. You’ll soon become fluent in all three frequency
notations. When reviewing the literature, the reader can learn to convert between these frequency axis
notation schemes by reviewing Figure 3-34 and Table 3-1.

3.13.5 Alternate Form of the DFT of an All-Ones Rectangular Function
Using the radians/sample frequency notation for the DFT axis from the bottom row of Table 3-1 leads
to another prevalent form of the DFT of the all-ones rectangular function in Figure 3-31. Letting our
normalized discrete frequency axis variable be ω = 2πm/N, then πm = Nω/2. Substituting the term
Nω/2 for πm in Eq. (3-48), we obtain

(3-51)

Equation (3-51), taking the third form of Eq. (3-34) sometimes seen in the literature, also has the DFT
magnitude shown in Figures 3-32(b) and 3-32(c).

3.14 Interpreting the DFT Using the Discrete-Time Fourier Transform
Now that we’ve learned about the DFT, it’s appropriate to ensure we understand what the DFT
actually represents and avoid a common misconception regarding its behavior. In the literature of
DSP you’ll encounter the topics of continuous Fourier transform, Fourier series, discrete-time
Fourier transform, discrete Fourier transform, and periodic spectra. It takes effort to keep all those
notions clear in your mind, especially when you read or hear someone say something like “the DFT
assumes its input sequence is periodic in time.” (You wonder how this can be true because it’s easy to
take the DFT of an aperiodic time sequence.) That remark is misleading at best because DFTs don’t
make assumptions. What follows is how I keep the time and frequency periodicity nature of discrete



sequences straight in my mind.
Consider an infinite-length continuous-time signal containing a single finite-width pulse shown in
Figure 3-35(a). The magnitude of its continuous Fourier transform (CFT) is the continuous frequency-
domain function X1(ω). If the single pulse can be described algebraically (with an equation), then the
CFT function X1(ω), also an equation, can be found using Fourier transform calculus. (Chances are
very good that you actually did this as a homework, or test, problem sometime in the past.) The
continuous frequency variable ω is radians per second. If the CFT was performed on the infinite-
length signal of periodic pulses in Figure 3-35(b), the result would be the line spectra known as the
Fourier series X2(ω). Those spectral lines (impulses) are infinitely narrow and X2(ω) is well defined
in between those lines, because X2(ω) is continuous. (A well-known example of this concept is the
CFT of a continuous squarewave, which yields a Fourier series whose frequencies are all the odd
multiples of the squarewave’s fundamental frequency.)

Figure 3-35 Time-domain signals and sequences, and the magnitudes of their transforms in the
frequency domain.

Figure 3-35(b) is an example of a continuous periodic function (in time) having a spectrum that’s a
series of individual spectral components. You’re welcome to think of the X2(ω) Fourier series as a
sampled version of the continuous spectrum in Figure 3-35(a). The time-frequency relationship
between x2(t) and X2(ω) shows how a periodic function in one domain (time) leads to a function in
the other domain (frequency) that is a series of discrete samples.
Next, consider the infinite-length discrete time sequence x(n), containing several nonzero samples, in
Figure 3-35(c). We can perform a CFT of x(n) describing its spectrum as a continuous frequency-
domain function X3(ω). This continuous spectrum is called a discrete-time Fourier transform (DTFT)
defined by (see page 48 of reference [15])



(3-52)

where the ω frequency variable is measured in radians/sample.
To illustrate the notion of the DTFT, let’s say we had a time sequence defined as xo(n) = (0.75)n for n
≥ 0. Its DTFT would be

(3-53)

Equation (3-53) is a geometric series (see Appendix B) and can be evaluated as
(3-53′)

Xo(ω) is continuous and periodic with a period of 2π, whose magnitude is shown in Figure 3-36. This
is an example of a sampled (or discrete) time-domain sequence having a periodic spectrum. For the
curious reader, we can verify the 2π periodicity of the DTFT using an integer k in the following

(3-54)

Figure 3-36 DTFT magnitude |Xo(ω)|.

because e−j2πkn = 1 for integer values of k.
X3(ω) in Figure 3-35(c) also has a 2π periodicity represented by ωs = 2πfs, where the frequency fs is
the reciprocal of the time period between the x(n) samples. The continuous periodic spectral function
X3(ω) is what we’d like to be able to compute in our world of DSP, but we can’t. We’re using
computers and, sadly, we can’t perform continuous signal analysis with the discrete (binary number)
nature of computers. All of our processing comprises discrete numbers stored in our computer’s
memory and, as such, all of our time-domain signals and all of our frequency-domain spectra are
discrete sampled sequences. Consequently the CFT, or inverse CFT, of the sequences with which we



work will all be periodic.
The transforms indicated in Figures 3-35(a) through 3-35(c) are pencil-and-paper mathematics of
calculus. In a computer, using only finite-length discrete sequences, we can only approximate the CFT
(the DTFT) of the infinite-length x(n) time sequence in Figure 3-35(c). That approximation is called
the discrete Fourier transform (DFT), and it’s the only DSP Fourier transform tool we have
available to us. Taking the DFT of x1(n), where x1(n) is a finite-length portion of x(n), we obtain the
discrete periodic X1(m) spectral samples in Figure 3-35(d).
Notice how X1(m) is a sampled version of the continuous periodic X3(ω). That sampling is
represented by

(3-55)

We interpret Eq. (3-55) as follows: X3(ω) is the continuous DTFT of the N−sample time sequence
x1(n). We can evaluate X3(ω) at the N frequencies of ω = 2πm/N, where integer m is 0 ≤ m ≤ N−1,
covering a full period of X3(ω). The result of those N evaluated values is a sequence equal to the
X1(m) DFT of x1(n).

However, and here’s the crucial point, X1(m) is also exactly equal to the CFT of the periodic time
sequence x2(n) in Figure 3-35(d). So when people say “the DFT assumes its input sequence is
periodic in time,” what they really mean is the DFT is equal to the continuous Fourier transform
(the DTFT) of a periodic time-domain discrete sequence. After all this rigmarole, the end of the
story is this: if a function is periodic, its forward/inverse DTFT will be discrete; if a function is
discrete, its forward/inverse DTFT will be periodic.
In concluding this discussion of the DTFT, we mention that in the literature of DSP the reader may
encounter the following expression

(3-56)

as an alternate definition of the DTFT. Eq. (3-56) can be used to evaluate a full period of the DTFT of
an x(n) sequence by letting the frequency variable F, whose dimensions are cycles/sample, be in
either of the ranges of 0 ≤ F ≤ 1 or −0.5 ≤ F ≤ 0.5.
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Chapter 3 Problems
3.1 Let’s assume that we have performed a 20-point DFT on a sequence of real-valued time-domain

samples, and we want to send our X(m) DFT results to a colleague using e-mail. What is the
absolute minimum number of (complex) frequency-domain sample values we will need to type in
our e-mail so that our colleague has complete information regarding our DFT results?

3.2 Assume a systems engineer directs you to start designing a system that performs spectrum analysis
using DFTs. The systems engineer states that the spectrum analysis system’s input data sample rate,
fs, is 1000 Hz and specifies that the DFT’s frequency-domain sample spacing must be exactly 45
Hz.
(a) What is the number of necessary input time samples, N, for a single DFT operation?
(b) What do you tell the systems engineer regarding the spectrum analysis system’s specifications?

3.3 We want to compute an N-point DFT of a one-second-duration compact disc (CD) audio signal
x(n), whose sample rate is fs = 44.1 kHz, with a DFT sample spacing of 1 Hz.

(a) What is the number of necessary x(n) time samples, N?
(b) What is the time duration of the x(n) sequence measured in seconds?



Hint: This Part (b) of the problem is trickier than it first appears. Think carefully.
3.4 Assume we have a discrete x(n) time-domain sequence of samples obtained from lowpass

sampling of an analog signal, x(t). If x(n) contains N = 500 samples, and it was obtained at a
sample rate of fs = 3000 Hz:

(a) What is the frequency spacing of x(n)’s DFT samples, X(m), measured in Hz?
(b) What is the highest-frequency spectral component that can be present in the analog x(t) signal

where no aliasing errors occur in x(n)?
(c) If you drew the full X(m) spectrum and several of its spectral replications, what is the spacing

between the spectral replications measured in Hz?
3.5 What are the magnitudes of the 8-point DFT samples of

(a) the x1(n) = 9, 9, 9, 9, 9, 9, 9, 9 sequence (explain how you arrived at your solution)?

(b) the x2(n) = 1, 0, 0, 0, 0, 0, 0, 0 sequence?

(c) the x3(n) = 0, 1, 0, 0, 0, 0, 0, 0 sequence?

Because the x3(n) sequence in Part (c) is merely a time-shifted version of the x2(n) sequence in
Part (b), comment on the relationship of the |X2(m)| and |X3(m)| DFT samples.

3.6 Consider sampling exactly three cycles of a continuous x(t) sinusoid resulting in an 8-point x(n)
time sequence whose 8-point DFT is the X(m) shown in Figure P3-6. If the sample rate used to
obtain x(n) was 4000 Hz, write the time-domain equation for the discrete x(n) sinusoid in
trigonometric form. Show how you arrived at your answer.

Figure P3-6

3.7 In the text’s Section 3.1 we discussed the computations necessary to compute the X(0) sample of
an N-point DFT. That X(0) output sample represents the zero Hz (DC) spectral component of an
x(n) input sequence. Because it is the DC component, X(0) is real-only and we’re free to say that
an X(0) sample always has zero phase. With that said, here are two interesting DFT problems:
(a) Given that an N-point DFT’s input sequence x(n) is real-only, and N is an even number, is there

any value for m (other than m = 0) for which an X(m) DFT output sample is always real-only?
(b) Given that N is an odd number, is there any value for m (other than m = 0) where an X(m) DFT

output sample is always real-only?
3.8 Using the following rectangular form for the DFT equation:



(a) Prove that the fs/2 spectral sample is X(N/2) = N · sin(θ) when the x(n) input is a sinusoidal
sequence defined by

x(n) = sin[2π(fs/2)nts + θ].

N is an even number, frequency fs is the x(n) sequence’s sample rate in Hz, time index n = 0, 1, 2,
..., N−1, and θ is an initial phase angle measured in radians.
Hint: Recall the trigonometric identity sin(α+β) = sin(α)cos(β) + cos(α)sin(β).

(b) What is X(N/2) when x(n) = sin[2π(fs/2)nts]?

(c) What is X(N/2) when x(n) = cos[2π(fs/2)nts]?

3.9 To gain some practice in using the algebra of discrete signals and the geometric series identities
in Appendix B, and to reinforce our understanding of the output magnitude properties of a DFT
when its input is an exact integer number of sinusoidal cycles:

(a) Prove that when a DFT’s input is a complex sinusoid of magnitude Ao (i.e., x(n) = Aoej2πfnts)
with exactly three cycles over N samples, the output magnitude of the DFT’s m = 3 bin will be
|X(3)| = AoN.

Hint: The first step is to redefine x(n)’s f and ts variables in terms of a sample rate fs and N so
that x(n) has exactly three cycles over N samples. The redefined x(n) is then applied to the
standard DFT equation.

(b) Prove that when a DFT’s input is a real-only sinewave of peak amplitude Ao (i.e., x(n) =
Aosin(2πfnts)) with exactly three cycles over N samples, the output magnitude of the DFT’s m = 3
bin will be |X(3)| = AoN/2.

Hint: Once you redefine x(n)’s f and ts variables in terms of a sample rate fs and N so that x(n)
has exactly three cycles over N samples, you must convert that real sinewave to complex
exponential form so that you can evaluate its DFT for m = 3.

The purpose of this problem is to remind us that DFT output magnitudes are proportional to the
size, N, of the DFT. That fact is important in a great many DSP analysis activities and applications.

3.10 Consider performing the 5-point DFT on the following x1(n) time-domain samples

x1(n) = [1, 2.2, −4, 17, 21],

and the DFT’s first sample is X1(0) = 37.2. Next, consider performing the 5-point DFT on the
following x2(n) time samples

x2(n) = [1, 2.2, −4, 17, Q],

and that DFT’s first sample is X2(0) = 57.2. What is the value of Q in the x2(n) time sequence?
Justify your answer.

3.11 Derive the equation describing X(m), the N-point DFT of the following x(n) sequence:

x(n) = an,            for 0 ≤ n ≤ N−1.



Hint: Recall one of the laws of exponents, pbqbc = (pqc)b, and the geometric series identities in
Appendix B.

3.12 Consider an N-sample x(n) time sequence whose DFT is represented by X(m), where 0 ≤ m ≤ N
−1. Given this situation, an Internet website once stated, “The sum of the X(m) samples is equal to
N times the first x(n) sample.” Being suspicious of anything we read on the Internet, show whether
or not that statement is true.
Hint: Use the inverse DFT process to determine the appropriate x(n) time sample of interest in
terms of X(m).

3.13 Here is a problem whose solution may be useful to you in the future. On the Internet you will find
information suggesting that an inverse DFT can be computed using a forward DFT software routine
in the process shown in Figure P3-13.

Figure P3-13

(a) Using the forward and inverse DFT equations, and the material in Appendix A, show why the
process in Figure P3-13 computes correct inverse DFTs.
Hint: Begin your solution by writing the inverse DFT equation and conjugating both sides of that
equation.

(b) Comment on how the process in Figure P3-13 changes if the original frequency-domain X(m)
sequence is conjugate symmetric.

3.14 One useful way to test the performance of commercial analog-to-digital (A/D) converters is to
digitize an fo Hz analog sinewave, apply the N-sample x(n) sequence to a DFT, and examine the
DFT’s X(m) results. The process is depicted in Figure P3-14. An ideal (A/D) converter will
produce X(m) results showing spectral energy at fo Hz and no spectral energy at any other
frequency. As such, nonzero spectral energy in X(m) at frequencies other than fo Hz indicates real-
world A/D converter performance. However, the DFT’s inherent property of leakage “smears”
spectral energy over multiple X(m) samples, as was shown in the text’s Figure 3-8(b), which
degrades the effectiveness of this A/D converter test method. What can we do to minimize the
DFT’s inherent spectral leakage as much as possible for this type of converter testing?

Figure P3-14



3.15 Here is a real-world spectrum analysis problem. Figure P3-15(a) shows 902 samples of an x(n)
time sequence. (For clarity, we do not show the x(n) samples as individual dots.) That sequence is
the sound of the “A3” note (“A” below middle “C”) from an acoustic guitar, sampled at fs = 22.255
kHz. Figure P3-15(b) shows the X(m) spectral magnitude samples, the DFT of x(n), on a linear
scale for the frequency index range of 0 ≤ m ≤ 59.
(a) Based on the X(m) samples, what is the fundamental frequency, in Hz, of the guitar’s “A3”

note?
(b) When we plot the DFT magnitude samples on a logarithmic scale, as in Figure P3-15(c), we

see spectral harmonics and learn that the guitar note is rich in spectral content. (The harmonics
are integer multiples of the fundamental frequency.) That’s why guitars have their pleasing sound,
depending on the guitarist’s skill, of course. What is the frequency of the highest nonzero spectral
component of the guitar’s “A3” note?

Figure P3-15

3.16 Figure P3-16(a) shows a 16-point Hanning window sequence, h1(n), defined by

The magnitude of its DFT samples, |H1(m)|, is shown in Figure P3-16(b). (For simplicity, we show
only the positive-frequency range of the |H1(m)| samples.) Notice that only the |H1(0)| and the
|H1(1)| frequency-domain samples are nonzero.

(a) Sequence h1(n) comprises two signals. Looking carefully at h1(n), describe what those two
signals are and justify why |H1(m)| looks the way it does.

(b) Given your understanding of the relationship between h1(n) and |H1(m)|, look at h2(n), in Figure
P3-16(c), which is two repetitions of the original h1(n) sequence. Draw a rough sketch of the



spectral magnitude sequence |H2(m)| over its positive-frequency range.

(c) Given that the h3(n) in Figure P3-16(d) is three repetitions of the original h1(n) sequence, draw
the spectral magnitude sequence |H3(m)| over its positive-frequency range.

Figure P3-16

(d) Considering the h1(n), h2(n), and h3(n) sequences, and their |H1(m)|, |H2(m)|, and |H3(m)|
spectral magnitude samples, complete the following important statement: “K repetitions of an
h1(n) sequence result in an extended-length time sequence whose spectral magnitudes have K−1
...”

3.17 In the literature of DSP, you may see an alternate expression for an N-point Hanning window
defined by

Prove that the above alternate expression for a Hanning window is equivalent to the Section 3.9
text’s definition of a Hanning window.

3.18 Considering the DFT of an N-point x(n) sequence, what is the spectral effect of zero-padding the
x(n) sequence to a length of Q samples (with Q being an integer power of two, and Q > N) and
performing a Q-point DFT on the zero-padded sequence?

3.19 Assume that an N-point DFT, performed on an N-sample x(n) time-domain sequence, results in a
DFT frequency-domain sample spacing of 100 Hz. What would be the DFT frequency-domain
sample spacing in Hz if the N-sample x(n) time sequence was padded with 4N zero-valued
samples and we performed a DFT on that extended-time sequence?

3.20 There is a program, in the U.S. and other countries, called “Search for Extraterrestrial
Intelligence” (SETI). These folk point radio antennas around in the night sky searching for
“nonrandom radio” signals, hoping to find evidence of “little green men.” They search for radio-
frequency (RF) signal energy that significantly exceeds the background RF noise energy in the sky.
Their primary method for detecting low-level RF energy is to tune a narrowband receiver to some
RF frequency and collect millions of time-domain samples, and then perform million-point DFTs in
the hope of finding spectral magnitude components that significantly exceed the background
spectral noise. High-level spectral components would indicate the existence of intelligent life



that’s broadcasting radio signals of some sort.
Here’s the question: If a SETI researcher collects one million time samples and performs a one-
million-point DFT, roughly what DFT processing gain (in dB) improvement can that person expect
to achieve in pulling a weak spectral component up above the background galactic spectral noise
in comparison to using a 100-point DFT?

3.21 This problem tests your understanding of the DFT’s frequency-domain axis. Consider sampling
exactly two cycles of an analog x(t) cosine wave resulting in the 8-point x1(n) time sequence in
Figure P3-21(a). The real part of the DFT of x1(n) is the sequence shown in Figure P3-21(b).
Because x1(n) is exactly two cycles of a cosine sequence, the imaginary parts of X1(m) are all
zero-valued samples, making |X1(m)| equal to the real part of X1(m). (Note that no leakage is
apparent in |X1(m)|.) Think, now, of a new frequency-domain sequence X2(m) that is equal to X1(m)
with eight zero-valued samples, the white squares in Figures P3-21(c) and P3-21(d), inserted in
the center of the real and imaginary parts of X1(m).

(a) Draw the x2(n) time sequence that is the inverse DFT of X2(m).

(b) Comment on how the x2(n) time sequence is related to the original analog x(t) signal and the
x1(n) sequence.

Figure P3-21

3.22 There is a useful spectrum analysis process, discussed in Chapter 13, that uses the results of an
N-point DFT, X(m), and requires us to compute

S = P · X(0) − Q · X(N−1) − Q · X(1)
where P and Q are scalar constants. Value S is the sum of three complex numbers. If we represent
the three DFT samples in rectangular form, we can write

S = P · [a + jb] − Q · [c + jd] − Q · [e + jg].
In the general case, the above expression for S requires six real multiply operations. If the DFT’s



x(n) input sequence is real-only, what is the equation for S that requires fewer than six real
multiplies? Show your work.

3.23 For an N-length time-domain sequence x(n), why is the DFT useful in plotting x(n)’s discrete-
time Fourier transform (DTFT) which is a function of the continuous frequency variable ω?

3.24 In Chapter 1 we mentioned a special time-domain sequence called a unit impulse. We’ll be
using that sequence, the ximp(n) shown in Figure P3-24, in later chapters to test digital filters. As
such, it’s useful to know the spectral content of this unit impulse.

Figure P3-24

(a) Draw the continuous Ximp(ω) discrete-time Fourier transform (DTFT), over the frequency range
of 0 ≤ ω ≤ 2π, of the ximp(n) unit impulse sequence.

(b) With your Ximp(ω) solution in mind, assume a person is listening to an AM (amplitude
modulation) radio station centered at 640 kHz in the North American AM Broadcast band and a
neighbor is listening to an international shortwave AM signal on a radio receiver tuned to 5.2
MHz. Can you explain why, when lightning strikes, both people hear the static noise from the
lightning on their radios even though the radios are tuned to very different center frequencies?

3.25 Draw a rough sketch of the magnitude of the discrete-time Fourier transform (DTFT), over the
frequency range of −π ≤ ω ≤ π, of the x(n) sequence in Figure P3-25.

Figure P3-25





Chapter Four. The Fast Fourier Transform

Although the DFT is the most straightforward mathematical procedure for determining the frequency
content of a time-domain sequence, it’s terribly inefficient. As the number of points in the DFT is
increased to hundreds, or thousands, the amount of necessary number crunching becomes excessive. In
1965 a paper was published by Cooley and Tukey describing a very efficient algorithm to implement
the DFT[1]. That algorithm is now known as the fast Fourier transform (FFT).† Before the advent of
the FFT, thousand-point DFTs took so long to perform that their use was restricted to the larger
research and university computer centers. Thanks to Cooley, Tukey, and the semiconductor industry,
1024-point DFTs can now be performed in a few seconds on home computers.
† Actually, the FFT has an interesting history. While analyzing X-ray scattering data, a couple of physicists in the 1940s were taking
advantage of the symmetries of sines and cosines using a mathematical method based on a technique published in the early 1900s.
Remarkably, over 20 years passed before the FFT was (re)discovered. Reference [2] tells the full story.

Volumes have been written about the FFT, and, as for no other innovation, the development of this
algorithm transformed the discipline of digital signal processing by making the power of Fourier
analysis affordable. In this chapter, we’ll show why the most popular FFT algorithm (called the
radix-2 FFT) is superior to the classical DFT algorithm, present a series of recommendations to
enhance our use of the FFT in practice, and provide a list of sources for FFT routines in various
software languages. We conclude this chapter, for those readers wanting to know the internal details,
with a derivation of the radix-2 FFT and introduce several different ways in which this FFT is
implemented.

4.1 Relationship of the FFT to the DFT
Although many different FFT algorithms have been developed, in this section we’ll see why the
radix-2 FFT algorithm is so popular and learn how it’s related to the classical DFT algorithm. The
radix-2 FFT algorithm is a very efficient process for performing DFTs under the constraint that the
DFT size be an integral power of two. (That is, the number of points in the transform is N = 2k, where
k is some positive integer.) Let’s see just why the radix-2 FFT is the favorite spectral analysis
technique used by signal processing practitioners.
Recall that our DFT Example 1 in Section 3.1 illustrated the number of redundant arithmetic
operations necessary for a simple 8-point DFT. (For example, we ended up calculating the product of
1.0607 · 0.707 four separate times.) On the other hand, the radix-2 FFT eliminates these redundancies
and greatly reduces the number of necessary arithmetic operations. To appreciate the FFT’s
efficiency, let’s consider the number of complex multiplications necessary for our old friend, the
expression for an N-point DFT,

(4-1)



For an 8-point DFT, Eq. (4-1) tells us that we’d have to perform N2 or 64 complex multiplications.
(That’s because we assume, in the general case, that x(n) are complex-valued samples and for each of
the eight X(m)s we have to sum eight complex products as n goes from 0 to 7.) As we’ll verify in
later sections of this chapter, the number of complex multiplications, for an N-point FFT, is
approximately

(4-2)

(We say approximately because some multiplications turn out to be multiplications by +1 or −1,
which amount to mere sign changes.) Well, this (N/2)log2N value is a significant reduction from the
N2 complex multiplications required by Eq. (4-1), particularly for large N. To show just how
significant, Figure 4-1 compares the number of complex multiplications required by DFTs and radix-2
FFTs as a function of the number of input data points N. When N = 512, for example, the DFT requires
114 times the number of complex multiplications than needed by the FFT. When N = 8192, the DFT
must calculate 1260 complex multiplications for each complex multiplication in the FFT!

Figure 4-1 Number of complex multiplications in the DFT and the radix-2 FFT as a function of N.

Here’s my favorite example of the efficiency of the radix-2 FFT. Say you perform a two-million-point
FFT (N = 2,097,152) on your desktop computer and it takes 10 seconds. A two-million-point DFT, on
the other hand, using your computer, will take more than three weeks! The publication and
dissemination of the radix-2 FFT algorithm was, arguably, the most important event in digital signal
processing.
It’s appropriate now to make clear that the FFT is not an approximation of the DFT. It’s exactly equal
to the DFT; it is the DFT. Moreover, all of the performance characteristics of the DFT described in
the previous chapter, output symmetry, linearity, output magnitudes, leakage, scalloping loss, etc., also
describe the behavior of the FFT.



4.2 Hints on Using FFTs in Practice
Based on how useful FFTs are, here’s a list of practical pointers, or tips, on acquiring input data
samples and using the radix-2 FFT to analyze real-world signals or data.

4.2.1 Sample Fast Enough and Long Enough
When digitizing continuous signals with an A/D converter, for example, we know, from Chapter 2,
that our sampling rate must be greater than twice the bandwidth of the continuous A/D input signal to
prevent frequency-domain aliasing. Depending on the application, practitioners typically sample at
2.5 to 4 times the signal bandwidth. If we know that the bandwidth of the continuous signal is not too
large relative to the maximum sample rate of our A/D converter, it’s easy to avoid aliasing. If we
don’t know the continuous A/D input signal’s bandwidth, how do we tell if we’re having aliasing
problems? Well, we should mistrust any FFT results that have significant spectral components at
frequencies near half the sample rate. Ideally, we’d like to work with signals whose spectral
amplitudes decrease with increasing frequency. Be very suspicious of aliasing if there are any
spectral components whose frequencies appear to depend on the sample rate. If we suspect that
aliasing is occurring or that the continuous signal contains broadband noise, we’ll have to use an
analog lowpass filter prior to A/D conversion. The cutoff frequency of the lowpass filter must, of
course, be greater than the frequency band of interest but less than half the sample rate.
Although we know that an N-point radix-2 FFT requires N = 2k input samples, just how many samples
must we collect before we perform our FFT? The answer is that the data collection time interval must
be long enough to satisfy our desired FFT frequency resolution for the given sample rate fs. The data
collection time interval is the reciprocal of the desired FFT frequency resolution, and the longer we
sample at a fixed fs sample rate, the finer our frequency resolution will be; that is, the total data
collection time interval is N/fs seconds, and our N-point FFT bin-to-bin (sample-to-sample)
frequency resolution is fs/N Hz. So, for example, if we need a spectral resolution of 5 Hz, then fs/N =
5 Hz, and

(4-3)

In this case, if fs is, say, 10 kHz, then N must be at least 2000, and we’d choose N equal to 2048
because this number is a power of two.

4.2.2 Manipulating the Time Data Prior to Transformation
When using the radix-2 FFT, if we don’t have control over the length of our time-domain data
sequence, and that sequence length is not an integral power of two, we have two options. We could
discard enough data samples so that the remaining FFT input sequence length is some integral power
of two. This scheme is not recommended because ignoring data samples degrades our resultant
frequency-domain resolution. (The larger N is, the better our frequency resolution, right?) A better
approach is to append enough zero-valued samples to the end of the time data sequence to match the
number of points of the next largest radix-2 FFT. For example, if we have 1000 time samples to
transform, rather than analyzing only 512 of them with a 512-point FFT, we should add 24 trailing
zero-valued samples to the original sequence and use a 1024-point FFT. (This zero-padding



technique is discussed in more detail in Section 3.11.)
FFTs suffer the same ill effects of spectral leakage that we discussed for the DFT in Section 3.8. We
can multiply the time data by a window function to alleviate this leakage problem. Be prepared,
though, for the frequency resolution degradation inherent when windows are used. By the way, if
appending zeros is necessary to extend a time sequence, we have to make sure that we append the
zeros after multiplying the original time data sequence by a window function. Applying a window
function to the appended zeros will distort the resultant window and worsen our FFT leakage
problems.
Although windowing will reduce leakage problems, it will not eliminate them altogether. Even when
windowing is employed, high-level spectral components can obscure nearby low-level spectral
components. This is especially evident when the original time data has a nonzero average, i.e., it’s
riding on a DC bias. When the FFT is performed in this case, a large-amplitude DC spectral
component at 0 Hz will overshadow its spectral neighbors. We can eliminate this problem by
calculating the average of the time sequence and subtracting that average value from each sample in
the original sequence. (The averaging and subtraction process must be performed before windowing.)
This technique makes the new time sequence’s average (mean) value equal to zero and eliminates any
high-level, zero Hz component in the FFT results.

4.2.3 Enhancing FFT Results
If we’re using the FFT to detect signal energy in the presence of noise and enough time-domain data is
available, we can improve the sensitivity of our processing by averaging multiple FFTs. This
technique, discussed in Section 11.3, can be implemented to detect signal energy that’s actually below
the average noise level; that is, given enough time-domain data, we can detect signal components that
have negative signal-to-noise ratios.
If our original time-domain data is real-valued only, we can take advantage of the 2N-Point Real FFT
technique in Section 13.5 to speed up our processing; that is, a 2N-point real sequence can be
transformed with a single N-point complex radix-2 FFT. Thus we can get the frequency resolution of a
2N-point FFT for just about the computational price of performing a standard N-point FFT. Another
FFT speed enhancement is the possible use of the frequency-domain windowing technique discussed
in Section 13.3. If we need the FFT of unwindowed time-domain data and, at the same time, we also
want the FFT of that same time data with a window function applied, we don’t have to perform two
separate FFTs. We can perform the FFT of the unwindowed data, and then we can perform frequency-
domain windowing to reduce spectral leakage on any, or all, of the FFT bin outputs.

4.2.4 Interpreting FFT Results
The first step in interpreting FFT results is to compute the absolute frequency of the individual FFT
bin centers. Like the DFT, the FFT bin spacing is the ratio of the sampling rate (fs) over the number of
points in the FFT, or fs/N. With our FFT output designated by X(m), where m = 0, 1, 2, 3, . . ., N−1,
the absolute frequency of the mth bin center is mfs/N. If the FFT’s input time samples are real, only the
X(m) outputs from m = 0 to m = N/2 are independent. So, in this case, we need determine only the
absolute FFT bin frequencies for m over the range of 0 ≤ m ≤ N/2. If the FFT input samples are
complex, all N of the FFT outputs are independent, and we should compute the absolute FFT bin
frequencies for m over the full range of 0 ≤ m ≤ N−1.



If necessary, we can determine the true amplitude of time-domain signals from their FFT spectral
results. To do so, we have to keep in mind that radix-2 FFT outputs are complex and of the form

(4-4)

Also, the FFT output magnitude samples,
(4-5)

are all inherently multiplied by the factor N/2, as described in Section 3.4, when the input samples
are real. If the FFT input samples are complex, the scaling factor is N. So to determine the correct
amplitudes of the time-domain sinusoidal components, we’d have to divide the FFT magnitudes by
the appropriate scale factor, N/2 for real inputs and N for complex inputs.
If a window function was used on the original time-domain data, some of the FFT input samples will
be attenuated. This reduces the resultant FFT output magnitudes from their true unwindowed values.
To calculate the correct amplitudes of various time-domain sinusoidal components, then, we’d have
to further divide the FFT magnitudes by the appropriate processing loss factor associated with the
window function used. Processing loss factors for the most popular window functions are listed in
reference [3].
Should we want to determine the power spectrum XPS(m) of an FFT result, we’d calculate the
magnitude-squared values using

(4-6)

Doing so would allow us to compute the power spectrum in dB with
(4-7)

The normalized power spectrum in decibels can be calculated using
(4-8)

or
(4-9)

In Eqs. (4-8) and (4-9), the term |X(m)|max is the largest FFT output magnitude sample. In practice, we
find that plotting XdB(m) is very informative because of the enhanced low-magnitude resolution
afforded by the logarithmic decibel scale, as described in Appendix E. If either Eq. (4-8) or Eq. (4-9)
is used, no compensation need be performed for the above-mentioned N or N/2 FFT scale or window
processing loss factors. Normalization through division by (|X(m)|max)2 or |X(m)|max eliminates the



effect of any absolute FFT or window scale factors.
Knowing that the phase angles Xø(m) of the individual FFT outputs are given by

(4-10)

it’s important to watch out for Xreal(m) values that are equal to zero. That would invalidate our phase-
angle calculations in Eq. (4-10) due to division by a zero condition. In practice, we want to make
sure that our calculations (or software compiler) detect occurrences of Xreal(m) = 0 and set the
corresponding Xø(m) to 90° if Ximag(m) is positive, set Xø(m) to 0° if Ximag(m) is zero, and set Xø(m)
to −90° if Ximag(m) is negative. While we’re on the subject of FFT output phase angles, be aware that
FFT outputs containing significant noise components can cause large fluctuations in the computed
Xø(m) phase angles. This means that the Xø(m) samples are only meaningful when the corresponding
|X(m)| is well above the average FFT output noise level.

4.3 Derivation of the Radix-2 FFT Algorithm
This section and those that follow provide a detailed description of the internal data structures and
operations of the radix-2 FFT for those readers interested in developing software FFT routines or
designing FFT hardware. To see just exactly how the FFT evolved from the DFT, we return to the
equation for an N-point DFT,

(4-11)

A straightforward derivation of the FFT proceeds with the separation of the input data sequence x(n)
into two parts. When x(n) is segmented into its even and odd indexed elements, we can, then, break
Eq. (4-11) into two parts as

(4-12)

Pulling the constant phase angle outside the second summation,
(4-13)

Well, here the equations become so long and drawn out that we’ll use a popular notation to simplify
things. We’ll define

(4-13′)

to represent the complex phase-angle factor that is constant with N. So, Eq. (4-13) becomes



(4-14)

Because , we can substitute WN/2 for  in Eq. (4-14), as
(4-15)

where m is in the range 0 to N/2−1. Index m has that reduced range because each of the two N/2-point
DFTs on the right side of Eq. (4-15) are periodic in m with period N/2.
So we now have two N/2 summations whose results can be combined to give us the first N/2 samples
of an N-point DFT. We’ve reduced some of the necessary number crunching in Eq. (4-15) relative to
Eq. (4-11) because the W terms in the two summations of Eq. (4-15) are identical. There’s a further
benefit in breaking the N-point DFT into two parts because the upper half of the DFT outputs is easy
to calculate. Consider the X(m+N/2) output. If we plug m+N/2 in for m in Eq. (4-15), then

(4-16)

It looks like we’re complicating things, right? Well, just hang in there for a moment. We can now
simplify the phase-angle terms inside the summations because

(4-17)

for any integer n. Looking at the so-called twiddle factor in front of the second summation in Eq. (4-
16), we can simplify it as

(4-18)

OK, using Eqs. (4-17) and (4-18), we represent Eq. (4-16)’s X(m+N/2) as
(4-19)

Now, let’s repeat Eqs. (4-15) and (4-19) to see the similarity:
(4-20)



and
(4-20′)

So here we are. We need not perform any sine or cosine multiplications to get X(m+N/2). We just
change the sign of the twiddle factor  and use the results of the two summations from X(m) to get
X(m+N/2). Of course, m goes from 0 to (N/2)−1 in Eq. (4-20), which means to compute an N-point
DFT, we actually perform two N/2-point DFTs—one N/2-point DFT on the even-indexed x(n)
samples and one N/2-point DFT on the odd-indexed x(n) samples. For N = 8, Eqs. (4-20) and (4-20′)
are implemented as shown in Figure 4-2.

Figure 4-2 FFT implementation of an 8-point DFT using two 4-point DFTs.

Because −e−j2πm/N = e−j2π(m+N/2)/N, the negative W twiddle factors before the second summation in Eq.
(4-20′) are implemented with positive W twiddle factors that follow the lower DFT in Figure 4-2.
If we simplify Eqs. (4-20) and (4-20′) to the form

(4-21)



and
(4-21′)

we can go further and think about breaking the two 4-point DFTs into four 2-point DFTs. Let’s see
how we can subdivide the upper 4-point DFT in Figure 4-2 whose four outputs are A(m) in Eqs. (4-
21) and (4-21′). We segment the inputs to the upper 4-point DFT into their odd and even components:

(4-22)

Because , we can express A(m) in the form of two N/4-point DFTs, as
(4-23)

Notice the similarity between Eqs. (4-23) and (4-20). This capability to subdivide an N/2-point DFT
into two N/4-point DFTs gives the FFT its capacity to greatly reduce the number of necessary
multiplications to implement DFTs. (We’re going to demonstrate this shortly.) Following the same
steps we used to obtained A(m), we can show that Eq.(4-21)’s B(m) is

(4-24)

For our N = 8 example, Eqs. (4-23) and (4-24) are implemented as shown in Figure 4-3. The FFT’s
well-known butterfly pattern of signal flows is certainly evident, and we see the further shuffling of
the input data in Figure 4-3. The twiddle factor  in Eqs. (4-23) and (4-24), for our N = 8
example, ranges from  to  because the m index, for A(m) and B(m), goes from 0 to 3. For any N-
point DFT, we can break each of the N/2-point DFTs into two N/4-point DFTs to further reduce the
number of sine and cosine multiplications. Eventually, we would arrive at an array of 2-point DFTs
where no further computational savings could be realized. This is why the number of points in our
FFTs is constrained to be some power of two and why this FFT algorithm is referred to as the radix-2
FFT.

Figure 4-3 FFT implementation of an 8-point DFT as two 4-point DFTs and four 2-point DFTs.



Moving right along, let’s go one step further, and then we’ll be finished with our N = 8-point FFT
derivation. The 2-point DFT functions in Figure 4-3 cannot be partitioned into smaller parts—we’ve
reached the end of our DFT reduction process, arriving at the butterfly of a single 2-point DFT as
shown in Figure 4-4. From the definition of WN,  and . So
the 2-point DFT blocks in Figure 4-3 can be replaced by the butterfly in Figure 4-4 to give us a full 8-
point FFT implementation of the DFT as shown in Figure 4-5.

Figure 4-4 Single 2-point DFT butterfly.

Figure 4-5 Full decimation-in-time FFT implementation of an 8-point DFT.



OK, we’ve gone through a fair amount of algebraic foot shuffling here. To verify that the derivation of
the FFT is valid, we can apply the 8-point data sequence of Chapter 3’s DFT Example 1 to the 8-
point FFT represented by Figure 4-5. The data sequence representing x(n) = sin(2π1000nts) +
0.5sin(2π2000nts+3π/4) is

(4-25)

We begin grinding through this example by applying the input values from Eq. (4-25) to Figure 4-5,
giving the data values shown on left side of Figure 4-6. The outputs of the second stage of the FFT are

Figure 4-6 Eight-point FFT of Example 1 from Section 3.1.



Calculating the outputs of the third stage of the FFT to arrive at our final answer:



So, happily, the FFT gives us the correct results, and again we remind the reader that the FFT is not
an approximation to a DFT; it is the DFT with a reduced number of necessary arithmetic operations.
You’ve seen from the above example that the 8-point FFT example required less effort than the 8-
point DFT Example 1 in Section 3.1. Some authors like to explain this arithmetic reduction by the
redundancies inherent in the twiddle factors . They illustrate this with the starburst pattern in
Figure 4-7 showing the equivalencies of some of the twiddle factors in an 8-point DFT.

Figure 4-7 Cyclic redundancies in the twiddle factors of an 8-point FFT.

4.4 FFT Input/Output Data Index Bit Reversal
OK, let’s look into some of the special properties of the FFT that are important to FFT software
developers and FFT hardware designers. Notice that Figure 4-5 was titled “Full decimation-in-time
FFT implementation of an 8-point DFT.” The decimation-in-time phrase refers to how we broke the
DFT input samples into odd and even parts in the derivation of Eqs. (4-20), (4-23), and (4-24). This
time decimation leads to the scrambled order of the input data’s index n in Figure 4-5. The pattern of
this shuffled order can be understood with the help of Table 4-1. The shuffling of the input data is
known as bit reversal because the scrambled order of the input data index can be obtained by



reversing the bits of the binary representation of the normal input data index order. Sounds confusing,
but it’s really not—Table 4-1 illustrates the input index bit reversal for our 8-point FFT example.
Notice the normal index order in the left column of Table 4-1 and the scrambled order in the right
column that corresponds to the final decimated input index order in Figure 4-5. We’ve transposed the
original binary bits representing the normal index order by reversing their positions. The most
significant bit becomes the least significant bit and the least significant bit becomes the most
significant bit, the next to the most significant bit becomes the next to the least significant bit, and the
next to the least significant bit becomes the next to the most significant bit, and so on.†
† Many that are first shall be last; and the last first. [Mark 10:31]

Table 4-1 Input Index Bit Reversal for an 8-Point FFT

4.5 Radix-2 FFT Butterfly Structures
Let’s explore the butterfly signal flows of the decimation-in-time FFT a bit further. To simplify the
signal flows, let’s replace the twiddle factors in Figure 4-5 with their equivalent values referenced to

, where N = 8. We can show just the exponents m of , to get the FFT structure shown in Figure
4-8. That is,  from Figure 4-5 is equal to  and is shown as a 2 in Figure 4-8,  from Figure 4-5
is equal to  and is shown as a 4 in Figure 4-8, etc. The 1s and −1s in the first stage of Figure 4-5
are replaced in Figure 4-8 by 0s and 4s, respectively. Other than the twiddle factor notation, Figure 4-
8 is identical to Figure 4-5. We can shift around the signal nodes in Figure 4-5 and arrive at an 8-
point decimation-in-time FFT as shown in Figure 4-9. Notice that the input data in Figure 4-9 is in its
normal order and the output data indices are bit-reversed. In this case, a bit-reversal operation needs
to be performed at the output of the FFT to unscramble the frequency-domain results.

Figure 4-8 Eight-point decimation-in-time FFT with bit-reversed inputs.



Figure 4-9 Eight-point decimation-in-time FFT with bit-reversed outputs.

Figure 4-10 shows an FFT signal-flow structure that avoids the bit-reversal problem altogether, and
the graceful weave of the traditional FFT butterflies is replaced with a tangled, but effective,
configuration.

Figure 4-10 Eight-point decimation-in-time FFT with inputs and outputs in normal order.

Not too long ago, hardware implementations of the FFT spent most of their time (clock cycles)



performing multiplications, and the bit-reversal process necessary to access data in memory wasn’t a
significant portion of the overall FFT computational problem. Now that high-speed
multiplier/accumulator integrated circuits can multiply two numbers in a single clock cycle, FFT data
multiplexing and memory addressing have become much more important. This has led to the
development of efficient algorithms to perform bit reversal[7–10].
There’s another derivation for the FFT that leads to butterfly structures looking like those we’ve
already covered, but the twiddle factors in the butterflies are different. This alternate FFT technique
is known as the decimation-in-frequency algorithm. Where the decimation-in-time FFT algorithm is
based on subdividing the input data into its odd and even components, the decimation-in-frequency
FFT algorithm is founded upon calculating the odd and even output frequency samples separately. The
derivation of the decimation-in-frequency algorithm is straightforward and included in many tutorial
papers and textbooks, so we won’t go through the derivation here[4,5,15,16]. We will, however,
illustrate decimation-in-frequency butterfly structures (analogous to the structures in Figures 4-8
through 4-10) in Figures 4-11 though 4-13.

Figure 4-11 Eight-point decimation-in-frequency FFT with bit-reversed inputs.

Figure 4-12 Eight-point decimation-in-frequency FFT with bit-reversed outputs.

Figure 4-13 Eight-point decimation-in-frequency FFT with inputs and outputs in normal order.



So an equivalent decimation-in-frequency FFT structure exists for each decimation-in-time FFT
structure. It’s important to note that the number of necessary multiplications to implement the
decimation-in-frequency FFT algorithms is the same as the number necessary for the decimation-in-
time FFT algorithms. There are so many different FFT butterfly structures described in the literature
that it’s easy to become confused about which structures are decimation-in-time and which are
decimation-in-frequency. Depending on how the material is presented, it’s easy for a beginner to fall
into the trap of believing that decimation-in-time FFTs always have their inputs bit-reversed and
decimation-in-frequency FFTs always have their outputs bit-reversed. This is not true, as the above
figures show. Decimation-in-time or -frequency is determined by whether the DFT inputs or outputs
are partitioned when deriving a particular FFT butterfly structure from the DFT equations.

4.6 Alternate Single-Butterfly Structures
Let’s take one more look at a single butterfly. The FFT butterfly structures in Figures 4-8, 4-9, 4-11,
and 4-12 are the direct result of the derivations of the decimation-in-time and decimation-in-
frequency algorithms. Although it’s not very obvious at first, the twiddle factor exponents shown in
these structures do have a consistent pattern. Notice how they always take the general forms shown in
Figure 4-14(a).† To implement the decimation-in-time butterfly of Figure 4-14(a), we’d have to
perform two complex multiplications and two complex additions. Well, there’s a better way.
Consider the decimation-in-time butterfly in Figure 4-14(a). If the top input is x and the bottom input
is y, the top butterfly output would be
† Remember, for simplicity the butterfly structures in Figures 4-8 through 4-13 show only the twiddle factor exponents, k  and k+N/2, and
not the entire complex twiddle factors.

Figure 4-14 Decimation-in-time and decimation-in-frequency butterfly structures: (a) original form;
(b) simplified form; (c) optimized form.



(4-26)

and the bottom butterfly output would be
(4-27)

Fortunately, the operations in Eqs. (4-26) and (4-27) can be simplified because the two twiddle
factors are related by

(4-28)

So we can replace the  twiddle factors in Figure 4-14(a) with  to give us the simplified
butterflies shown in Figure 4-14(b). Because the twiddle factors in Figure 4-14(b) differ only by their
signs, the optimized butterflies in Figure 4-14(c) can be used. Notice that these optimized butterflies
require two complex additions but only one complex multiplication, thus reducing our computational
workload.†
† It’s because there are (N/2)log2N butterflies in an N-point FFT that we said the number of complex multiplications performed by an
FFT is (N/2)log2N in Eq. (4-2).

We’ll often see the optimized butterfly structures of Figure 4-14(c) in the literature instead of those in
Figure 4-14(a). These optimized butterflies give us an easy way to recognize decimation-in-time and
decimation-in-frequency algorithms. When we do come across the optimized butterflies from Figure



4-14(c), we’ll know that the algorithm is decimation-in-time if the twiddle factor precedes the −1, or
else the algorithm is decimation-in-frequency if the twiddle factor follows the −1.
Sometimes we’ll encounter FFT structures in the literature that use the notation shown in Figure 4-
15[5, 12]. These wingless butterflies are equivalent to those shown in Figure 4-14(c). The signal-
flow convention in Figure 4-15 is such that the plus output of a circle is the sum of the two samples
that enter the circle from the left, and the minus output of a circle is the difference of the samples that
enter the circle. So the outputs of the decimation-in-time butterflies in Figures 4-14(c) and 4-15(a)
are given by

(4-29)

Figure 4-15 Alternate FFT butterfly notation: (a) decimation in time; (b) decimation in frequency.

The outputs of the decimation-in-frequency butterflies in Figures 4-14(c) and 4-15(b) are
(4-30)

So which FFT structure is the best one to use? It depends on the application, the hardware
implementation, and convenience. If we’re using a software routine to perform FFTs on a general-
purpose computer, we usually don’t have a lot of choices. Most folks just use whatever existing FFT
routines happen to be included in their commercial software package. Their code may be optimized
for speed, but you never know. Examination of the software code may be necessary to see just how
the FFT is implemented. If we feel the need for speed, we should check to see if the software
calculates the sines and cosines each time it needs a twiddle factor. Trigonometric calculations
normally take many machine cycles. It may be possible to speed up the algorithm by calculating the
twiddle factors ahead of time and storing them in a table. That way, they can be looked up, instead of
being calculated each time they’re needed in a butterfly. If we’re writing our own software routine,
checking for butterfly output data overflow and careful magnitude scaling may allow our FFT to be
performed using integer arithmetic that can be faster on some machines.† Care must be taken,
however, when using integer arithmetic; some Reduced Instruction Set Computer (RISC) processors
actually take longer to perform integer calculations because they’re specifically designed to operate
on floating-point numbers.
† Overflow is what happens when the result of an arithmetic operation has too many bits, or digits, to be represented in the hardware
registers designed to contain that result. FFT data overflow is described in Section 12.3.

If we’re using commercial array processor hardware for our calculations, the code in these
processors is always optimized because their purpose in life is high speed. Array processor
manufacturers typically publicize their products by specifying the speed at which their machines
perform a 1024-point FFT. Let’s look at some of our options in selecting a particular FFT structure in



case we’re designing special-purpose hardware to implement an FFT.
The FFT butterfly structures previously discussed typically fall into one of two categories: in-place
FFT algorithms and double-memory FFT algorithms. An in-place algorithm is depicted in Figure 4-5.
The output of a butterfly operation can be stored in the same hardware memory locations that
previously held the butterfly’s input data. No intermediate storage is necessary. This way, for an N-
point FFT, only 2N memory locations are needed. (The 2 comes from the fact that each butterfly node
represents a data value that has both a real and an imaginary part.) The rub with the in-place
algorithms is that data routing and memory addressing are rather complicated. A double-memory FFT
structure is that depicted in Figure 4-10. With this structure, intermediate storage is necessary because
we no longer have the standard butterflies, and 4N memory locations are needed. However, data
routing and memory address control are much simpler in double-memory FFT structures than the in-
place technique. The use of high-speed, floating-point integrated circuits to implement pipelined FFT
architectures takes better advantage of their pipelined structure when the double-memory algorithm is
used[13].
There’s another class of FFT structures, known as constant-geometry algorithms, that make the
addressing of memory both simple and constant for each stage of the FFT. These structures are of
interest to those folks who build special-purpose FFT hardware devices[4,14]. From the standpoint
of general hardware the decimation-in-time algorithms are optimum for real input data sequences, and
decimation-in-frequency is appropriate when the input is complex[6]. When the FFT input data is
symmetrical in time, special FFT structures exist to eliminate unnecessary calculations. These special
butterfly structures based on input data symmetry are described in the literature[15].
For two-dimensional FFT applications, such as processing photographic images, the decimation-in-
frequency algorithms appear to be the optimum choice[16]. Your application may be such that FFT
input and output bit reversal is not an important factor. Some FFT applications allow manipulating a
bit-reversed FFT output sequence in the frequency domain without having to unscramble the FFT’s
output data. Then an inverse transform that’s expecting bit-reversed inputs will give a time-domain
output whose data sequence is correct. This situation avoids the need to perform any bit reversals at
all. Multiplying two FFT outputs to implement convolution or correlation are examples of this
possibility.† As we can see, finding the optimum FFT algorithm and hardware architecture for an FFT
is a fairly complex problem to solve, but the literature provides guidance[4,17,18].
† See Section 13.10 for an example of using the FFT to perform convolution.
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Chapter 4 Problems
4.1 Thinking about the FFT:

(a) How do the results differ between performing an N-point FFT and performing an N-point
discrete Fourier transform (DFT) on the same set of time samples?

(b) What is the restriction on the number of time samples, N, in performing an N-point radix-2
FFT?

4.2 Assume we want to compute an N-point FFT of an x(n) audio signal from a compact disc (CD),
with the FFT’s output frequency-domain sample spacing no greater than 1 Hz. If x(n)’s sample rate
is fs = 44.1 kHz, what is the number of necessary time samples, N, applied to the FFT?

4.3 Assume we have an x(n) time-domain sequence, whose length is 3800 samples, on which we



want to perform an FFT. The 3800 time samples represent a total signal collection-interval
duration of 2 seconds.
(a) How many zero-valued samples must be appended (zero padding) to x(n) in order to

implement an FFT?
(b) After the FFT is performed, what is the spacing, measured in Hz, between the frequency-

domain FFT samples?
(c) In the case of lowpass sampling, what is the highest-frequency spectral component permitted in

the original analog x(t) signal such that no aliasing errors occur in x(n)?
4.4 This problem illustrates the computational savings afforded by the FFT over that of the discrete

Fourier transform (DFT). Suppose we wanted to perform a spectrum analysis on a time-domain
sequence whose length is 32768 (215) samples. Estimate the ratio of the number of complex
multiplications needed by a 32768-point DFT over the number of complex multiplies needed by a
32768-point FFT. (Assume that one of the text’s optimized Figure 4-14(c) butterflies, requiring one
complex multiply per butterfly operation, is used to implement the FFT.)

4.5 Think about the system in Figure P4-5 using an FFT to measure the amplitude of the p(t) signal.
The output of the mixer, the product p(t)q(t), contains the sum of two sinusoids whose amplitudes
are proportional to the peak value of p(t). The frequencies of those sinusoids are 50 Hz and 2050
Hz. The lowpass filter rejects the 2050 Hz signal. Due to imperfections in the mixer, signal p(t)q(t)
is riding on a constant DC (zero Hz) bias represented as value D. This scenario results in an x(n)
time sequence whose average value is 17.
(a) What is the minimum value for the analog-to-digital converter’s fs sample rate to satisfy the

Nyquist criterion?
(b) If we collect 2048 filter output samples and perform a 2048-point FFT, what will be the

magnitude of the FFT’s X(0) sample?
Figure P4-5

4.6 Assume you’ve purchased a high-performance commercial real-time spectrum analyzer that
contains an analog-to-digital converter so that the analyzer can accept analog (continuous) x(t)
input signals. The analyzer can perform a 1024-point FFT in 50 microseconds and has two banks
of memory in which the analog-to-digital converter samples are stored as shown in Figure P4-6(a).
An FFT is performed on 1024 x(n) signal samples stored in Memory Bank 1 while 1024 new x(n)
time samples are being loaded into Memory Bank 2.

Figure P4-6



At the completion of the first FFT, the analyzer waits until Memory Bank 2 is filled with 1024
samples and then begins performing an FFT on the data in that second memory. During the second
FFT computation still newer x(n) time samples are loaded into Memory Bank 1. Thus the analyzer
can compute 1024 FFT results as often as once every 50 microseconds, and that is the meaning of
the phrase “real-time spectrum analyzer.” Here’s your problem: In a lowpass sampling scenario
what is the maximum one-sided bandwidth Bmax of the analog x(t) input signal for which the
analyzer can perform real-time FFTs without discarding (ignoring) any discrete x(n) samples? (The
definition of bandwidth Bmax is shown in Figure P4-6(b).)

4.7 Here’s an interesting problem. Assume we performed lowpass sampling of an analog x(t) signal,
at a sample rate of fs = 20 kHz, obtaining a discrete sequence x1(n). Next we perform an FFT on
x1(n) to obtain the |X1(m)| FFT magnitude results presented in Figure P4-7(a). There we see our
signal of interest in the range of 0 to 4 kHz, but we detect a high-magnitude narrowband spectral
noise signal centered at 5 kHz.

Figure P4-7

Experimenting, as every good engineer should, we change the sampling rate to f′s = 19 kHz,
obtaining a new discrete sequence x2(n). Performing an FFT on x2(n), we obtain the |X2(m)| FFT



magnitude results presented in Figure P4-7(b). In our new spectral results we see our signal of
interest remains in the frequency range of 0 to 4 kHz, but the narrowband spectral noise signal is
now centered near 4 kHz! (If this ever happens to you in practice, to quote Veronica in the 1986
movie The Fly, “Be afraid. Be very afraid.”) Describe the characteristic of the analog x(t) that
would account for the unexpected shift in center frequency of the narrowband noise in the |X2(m)|
FFT results.

4.8 In the text’s derivation of the radix-2 FFT, to simplify the algebraic notation we represented unity-
magnitude complex numbers (what we called “twiddle factors”) in the following form:

If k = 3 and N = 16:
(a) Express α as a complex number in polar (complex exponential) form.
(b) Express α as a complex number in rectangular form.

4.9 Reviewing the 8-point FFT signal-flow diagram in the text’s Figure 4-5:
(a) Which x(n) input samples affect the value of the FFT’s X(2) output sample?
(b) Which x(n) input samples affect the value of the FFT’s X(5) output sample?

4.10 Figure P4-10 shows a 4-point FFT using standard decimation-in-time butterflies. Redraw that
FFT using optimized decimation-in-time butterflies as shown in the text’s Figure 4-14(c). In your
drawing provide the correct indices for the X(m) output samples.

Figure P4-10

4.11 Being able to compute individual twiddle factors within an FFT can be important when
implementing specialized FFTs, such as pruned FFTs. (Pruned FFTs are FFTs where we need not
compute all N FFT output samples[Pruned FFT–1-Pruned FFT 4]). Figure P4-11 shows the signal-
flow diagram of a standard 8-point decimation-in-time (DIT) FFT with bit-reversed inputs. As in
the text’s Figure 4-8, the number on an arrow is the integer k of a butterfly’s

Figure P4-11



twiddle factor. Notice that the number of unique twiddle factors is different in each of the three
stages. The values of the R unique twiddle factors in the qth stage of a general N-point DIT FFT are
given by

kth twiddle factor of qth stage = , for k = 0,1,2,..., R − 1.
What are the expressions for the above R and P factors in terms of the FFT’s q stage number?
Hint: Use the 8-point FFT in Figure P4-11 as a guide to find R and P.

4.12 Let’s become more familiar with the interesting internal computations of a radix-2 FFT. Figure
P4-12 shows the signal-flow diagram of a standard 8-point decimation-in-time FFT with bit-
reversed outputs. In that figure, as in the text’s Figure 4-9, the number on an arrow is the integer k
of a butterfly’s e−j2πk /8 twiddle factor.

Figure P4-12

(a) Redraw Figure P4-12, replacing the k factors with the butterflies’ full complex twiddle factors
in rectangular notation.

(b) Regarding your solution to the above Part (a), comment on any interesting properties of the
twiddle factors in the FFT’s first and second stages.

4.13 To reiterate the meaning and correctness of the FFT butterfly structures in the text, we examine



the 8-point decimation-in-time FFT with bit-reversed inputs. That FFT, the text’s Figure 4-8
repeated here as Figure P4-13, uses our notation where a number on an arrow is the integer k of a
butterfly’s e−j2πk /8 twiddle factor. Compute the values at sample nodes A through F, in terms of the
x(n) input samples, and show that the FFT’s X(2) output is equal to a DFT’s output for m = 2 in

Figure P4-13

Hint: To keep the notation simple, use the term Wq to represent e−j2πq/8.
4.14 Consider the 16-point decimation-in-time FFT in Figure P4-14 that is implemented in a similar

manner to that shown in the text’s Figure 4-9. This FFT has in-order input data indexing. That is,
the x(n) input indexing is in normal numerical order from x(0) to x(15). What will be the order of
the frequency-domain indexing of the X(m) output samples for this 16-point radix-2 FFT?

Figure P4-14

4.15 Is it possible to examine the signal-flow diagram of a single standard butterfly, such as that in
Figure P4-15, and determine if it is a decimation-in-time (DIT) butterfly or a decimation-in-
frequency (DIF) butterfly? Justify your answer.

Figure P4-15



4.16 Let’s explore the internal structure of a single radix-2 FFT butterfly. Figure P4-16(a) shows our
standard notation for a decimation-in-time butterfly where the input and output samples (A, B, C,
and D) are complex-valued. Figure P4-16(b) shows the same decimation-in-time butterfly where
the input and output values are represented by real-valued samples. We use the notation that

A = AR + jAI

Figure P4-16

where AR and AI are real-valued. Draw the real-valued block diagram of what arithmetic is
performed inside the rectangle in Figure P4-16(b). Be sure to include in your diagram the
expressions (the equations) for the real-valued CR, CI, DR, and DI output samples in terms of the
real-valued AR, AI, BR, and BI input samples and the twiddle factor angle θ. The solution to this
problem illustrates the computational complexity of performing a single FFT butterfly.

4.17 Here’s a problem that has much practical importance. It concerns the data word growth that can
occur inside an FFT.
For this problem, our assumptions are:
• We are implementing an FFT using the optimized decimation-in-time FFT butterfly structure,
shown in Figure P4-17, to compute intermediate results.

Figure P4-17

• The complex data samples A and B are contained in 8-bit storage locations using the sign-
magnitude number format system. (In that number format the most positive and most negative
decimal numbers we can store, as binary words in an 8-bit-wide memory location, are +127 and



−127 respectively.)
It’s difficult at first to imagine that multiplying complex samples A and B by sines and cosines (the
real and imaginary parts of e−j2πk /N) can lead to excessive data word growth—particularly because
sines and cosines are never greater than unity. However, significant data word growth can happen
within an FFT butterfly.
(a) In our 8-bit number format scenario, what is the maximum possible decimal value of the real

part of the complex output sample C?
(b) How many binary bits are needed for a storage register (memory location) to hold that

maximum real part of the complex output sample C?
4.18 In 2006 the scientists at the Max Planck Institute for Radio Astronomy, in Bonn, Germany, built a

hardware spectrum analyzer that performs 16384-point FFTs. This massively parallel analyzer
performs 1.744 × 105 such FFTs per second. Assuming that the FFTs use the optimized decimation-
in-frequency FFT butterfly structure, shown in Figure P4-18, and that the A and B samples are
complex-valued, how many real-valued multiplies per second are being performed by the spectrum
analyzer? Show your work.

Figure P4-18
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Chapter Five. Finite Impulse Response Filters

The filtering of digitized data, if not the most fundamental, is certainly the oldest discipline in the
field of digital signal processing. Digital filtering’s origins go back 50 years. The growing
availability of digital computers in the early 1950s led to efforts in the smoothing of discrete sampled
data and the analysis of discrete data control systems. However, it wasn’t until the early to mid-
1960s, around the time the Beatles came to America, that the analysis and development of digital
equivalents of analog filters began in earnest. That’s when digital signal processing experts realized
that computers could go beyond the mere analysis of digitized signals into the domain of actually
changing signal characteristics through filtering. Today, digital filtering is so widespread that the
quantity of literature pertaining to it exceeds that of any other topic in digital signal processing. In this
chapter, we introduce the fundamental attributes of digital filters, learn how to quantify their
performance, and review the principles associated with the design of finite impulse response digital
filters.
So let’s get started by illustrating the concept of filtering a time-domain signal as shown in Figure 5-
1.
Figure 5-1 Filters: (a) an analog filter with a noisy tone input and a reduced-noise tone output; (b) the

digital equivalent of the analog filter.

In general, filtering is the processing of a time-domain signal resulting in some change in that signal’s
original spectral content. The change is usually the reduction, or filtering out, of some unwanted input
spectral components; that is, filters allow certain frequencies to pass while attenuating other
frequencies. Figure 5-1 shows both analog and digital versions of a filtering process. Where an
analog filter operates on a continuous signal, a digital filter processes a sequence of discrete sample
values. The digital filter in Figure 5-1(b), of course, can be a software program in a computer, a



programmable hardware processor, or a dedicated integrated circuit. Traditional linear digital filters
typically come in two flavors: finite impulse response (FIR) filters and infinite impulse response
(IIR) filters. Because FIR filters are the simplest type of digital filter to analyze, we’ll examine them
in this chapter and cover IIR filters in Chapter 6.

5.1 An Introduction to Finite Impulse Response (FIR) Filters
Given a finite duration of nonzero input values, an FIR filter will always have a finite duration of
nonzero output values, and that’s how FIR filters got their name. So, if the FIR filter’s input suddenly
becomes a sequence of all zeros, the filter’s output will eventually be all zeros. While not sounding
all that unusual, this characteristic is, however, very important, and we’ll soon find out why, as we
learn more about digital filters.
FIR filters use addition to calculate their outputs in a manner much the same as the process of
averaging uses addition. In fact, averaging is a kind of FIR filter that we can illustrate with an
example. Let’s say we’re counting the number of cars that pass over a bridge every minute, and we
need to know the average number of cars per minute over five-minute intervals; that is, every minute
we’ll calculate the average number of cars/minute over the last five minutes. If the results of our car
counting for the first ten minutes are those values shown in the center column of Table 5-1, then the
average number of cars/minute over the previous five one-minute intervals is listed in the right
column of the table. We’ve added the number of cars for the first five one-minute intervals and
divided by 5 to get our first five-minute average output value, (10+22+24+42+37)/5 = 27. Next
we’ve averaged the number of cars/minute for the second to the sixth one-minute intervals to get our
second five-minute average output of 40.4. Continuing, we average the number of cars/minute for the
third to the seventh one-minute intervals to get our third average output of 53.8, and so on. With the
number of cars/minute for the one-minute intervals represented by the dashed line in Figure 5-2, we
show our five-minute average output as the solid line. (Figure 5-2 shows cars/minute input values
beyond the first ten minutes listed in Table 5-1 to illustrate a couple of important ideas to be
discussed shortly.)

Table 5-1 Values for the Averaging Example

Figure 5-2 Averaging the number of cars/minute. The dashed line shows the individual cars/minute,
and the solid line is the number of cars/minute averaged over the last five minutes.



There’s much to learn from this simple averaging example. In Figure 5-2, notice that the sudden
changes in our input sequence of cars/minute are flattened out by our averager. The averager output
sequence is considerably smoother than the input sequence. Knowing that sudden transitions in a time
sequence represent high-frequency components, we can say that our averager is behaving like a
lowpass filter and smoothing sudden changes in the input. Is our averager an FIR filter? It sure is—no
previous averager output value is used to determine a current output value; only input values are used
to calculate output values. In addition, we see that, if the bridge were suddenly closed at the end of
the 19th minute, the dashed line immediately goes to zero cars/minute at the end of the 20th minute,
and the averager’s output in Figure 5-2 approaches and settles to a value of zero by the end of the
24th minute.
Figure 5-2 shows the first averager output sample occurring at the end of the 5th minute because that’s
when we first have five input samples to calculate a valid average. The 5th output of our averager can
be denoted as yave(5) where

(5-1)

In the general case, if the kth input sample is x(k), then the nth output is
(5-2)

Look at Eq. (5-2) carefully now. It states that the nth output is the average of the nth input sample and
the four previous input samples.
We can formalize the digital filter nature of our averager by creating the block diagram in Figure 5-3
showing how the averager calculates its output samples.

Figure 5-3 Averaging filter block diagram when the fifth input sample value, 37, is applied.



This block diagram, referred to as the filter structure, is a physical depiction of how we might
calculate our averaging filter outputs with the input sequence of values shifted, in order, from left to
right along the top of the filter as new output calculations are performed. This structure, implementing
Eqs. (5-1) and (5-2), shows those values used when the first five input sample values are available.
The delay elements in Figure 5-3, called unit delays, merely indicate a shift register arrangement
where input sample values are temporarily stored during an output calculation.
In averaging, we add five numbers and divide the sum by 5 to get our answer. In a conventional FIR
filter implementation, we can just as well multiply each of the five input samples by the coefficient
1/5 and then perform the summation as shown in Figure 5-4(a). Of course, the two methods in Figures
5-3 and 5-4(a) are equivalent because Eq. (5-2) describing the structure shown in Figure 5-3 is
equivalent to

(5-3)

Figure 5-4 Alternate averaging filter structure: (a) input values used for the fifth output value; (b)
input values used for the sixth output value; (c) input values used for the seventh output value.

which describes the structure in Figure 5-4(a).†
† We’ve used the venerable distributive law for multiplication and addition of scalars, a(b+c+d) = ab+ac+ad, in moving Eq. (5-2)’s factor
of 1/5 inside the summation in Eq. (5-3).



Let’s make sure we understand what’s happening in Figure 5-4(a). Each of the first five input values
is multiplied by 1/5, and the five products are summed to give the fifth filter output value. The left-to-
right sample shifting is illustrated in Figures 5-4(b) and 5-4(c). To calculate the filter’s sixth output
value, the input sequence is right-shifted, discarding the first input value of 10, and the sixth input
value, 77, is accepted on the left. Likewise, to calculate the filter’s seventh output value, the input
sequence is right-shifted, discarding the second value of 22, and the seventh input value, 89, arrives
on the left. So, when a new input sample value is applied, the filter discards the oldest sample value,
multiplies the samples by the coefficients of 1/5, and sums the products to get a single new output
value. The filter’s structure using this bucket brigade shifting process is often called a transversal
filter due to the cross-directional flow of the input samples. Because we tap off five separate input
sample values to calculate an output value, the structure in Figure 5-4 is called a 5-tap tapped-delay
line FIR filter, in digital filter vernacular.
One important and, perhaps, most interesting aspect of understanding FIR filters is learning how to
predict their behavior when sinusoidal samples of various frequencies are applied to the input, i.e.,
how to estimate their frequency-domain response. Two factors affect an FIR filter’s frequency
response: the number of taps and the specific values used for the multiplication coefficients. We’ll
explore these two factors using our averaging example and, then, see how we can use them to design
FIR filters. This brings us to the point where we have to introduce the C word: convolution.
(Actually, we already slipped a convolution equation in on the reader without saying so. It was Eq.
(5-3), and we’ll examine it in more detail later.)

5.2 Convolution in FIR Filters
OK, here’s where we get serious about understanding the mathematics behind FIR filters. We can
graphically depict Eq. (5-3)’s and Figure 5-4’s calculations as shown in Figure 5-5. Also, let’s be
formal and use the standard notation of digital filters for indexing the input samples and the filter
coefficients by starting with an initial index value of zero; that is, we’ll call the initial input value the
0th sample x(0). The next input sample is represented by the term x(1), the following input sample is
called x(2), and so on. Likewise, our five coefficient values will be indexed from zero to four, h(0)
through h(4). (This indexing scheme makes the equations describing our example consistent with
conventional filter notation found in the literature.)
Figure 5-5 Averaging filter convolution: (a) first five input samples aligned with the stationary filter

coefficients, index n = 4; (b) input samples shift to the right and index n = 5; (c) index n = 6; (d) index
n = 7; (e) index n = 8.



In Eq. (5-3) we used the factor of 1/5 as the filter coefficients multiplied by our averaging filter’s
input samples. The left side of Figure 5-5 shows the alignment of those coefficients, black squares,
with the filter input sample values represented by the white squares. Notice in Figures 5-5(a) through
5-5(e) that we’re marching the input samples to the right, and, at each step, we calculate the filter
output sample value using Eq. (5-3). The output samples on the right side of Figure 5-5 match the first
five values represented by the black squares in Figure 5-2. The input samples in Figure 5-5 are those
values represented by the white squares in Figure 5-2. Notice that the time order of the inputs in
Figure 5-5 has been reversed from the input sequence order in Figure 5-2! That is, the input sequence
has been flipped in the time domain in Figure 5-5. This time order reversal is what happens to the
input data using the filter structure in Figure 5-4.
Repeating the first part of Eq. (5-3) and omitting the subscript on the output term, our original FIR
filter’s y(n)th output is given by

(5-4)

Because we’ll explore filters whose coefficients are not all the same value, we need to represent the
individual filter coefficients by a variable, such as the term h(k), for example. Thus we can rewrite



the averaging filter’s output from Eq. (5-4) in a more general way as
(5-5)

where h(0) through h(4) all equal 1/5. Equation (5-5) is a concise way of describing the filter
structure in Figure 5-4 and the process illustrated in Figure 5-5.
Let’s take Eq. (5-5) one step further and say, for a general M-tap FIR filter, the nth output is

(5-6)

Well, there it is. Eq. (5-6) is the infamous convolution equation as it applies to digital FIR filters.
Beginners in the field of digital signal processing often have trouble understanding the concept of
convolution. It need not be that way. Eq. (5-6) is merely a series of multiplications followed by the
addition of the products. The process is actually rather simple. We just flip the time order of an input
sample sequence and start stepping the flipped sequence across the filter’s coefficients as shown in
Figure 5-5. For each new filter input sample, we sum a series of products to compute a single filter
output value.
Let’s pause for a moment and introduce a new term that’s important to keep in mind, the impulse
response. The impulse response of a filter is exactly what its name implies—it’s the filter’s output
time-domain sequence when the input is a single unity-valued sample (impulse) preceded and
followed by zero-valued samples. Figure 5-6 illustrates this idea in the same way we determined the
filter’s output sequence in Figure 5-5. The left side of Figure 5-6 shows the alignment of the filter
coefficients, black squares, with the filter input impulse sample values represented by the white
squares. Again, in Figures 5-6(a) through 5-6(e) we’re shifting the input samples to the right, and, at
each step, we calculate the filter output sample value using Eq. (5-4). The output samples on the right
side of Figure 5-6 are the filter’s impulse response. Notice the key point here: the FIR filter’s impulse
response is identical to the five filter coefficient values. For this reason, the terms FIR filter
coefficients and impulse response are synonymous. Thus, when someone refers to the impulse
response of an FIR filter, they’re also talking about the coefficients. Because there are a finite number
of coefficients, the impulse response will be finite in time duration (finite impulse response, FIR).
Figure 5-6 Convolution of filter coefficients and an input impulse to obtain the filter’s output impulse
response: (a) impulse sample aligned with the first filter coefficient, index n = 4; (b) impulse sample

shifts to the right and index n = 5; (c) index n = 6; (d) index n = 7; (e) index n = 8.



Returning to our averaging filter, recall that coefficients (or impulse response) h(0) through h(4) were
all equal to 1/5. As it turns out, our filter’s performance can be improved by using coefficients whose
values are not all the same. By “performance” we mean how well the filter passes desired signals
and attenuates unwanted signals. We judge that performance by determining the shape of the filter’s
frequency-domain response that we obtain by the convolution property of linear systems. To describe
this concept, let’s repeat Eq. (5-6) using the abbreviated notation of

(5-7)

where the * symbol means convolution. (Equation 5-7 is read as “y of n equals the convolution of h of
k and x of n.”) The process of convolution, as it applies to FIR filters, is as follows: the discrete
Fourier transform (DFT) of the convolution of a filter’s impulse response (coefficients) and an input
sequence is equal to the product of the spectrum of the input sequence and the DFT of the impulse
response. The idea we’re trying to convey here is that if two time-domain sequences h(k) and x(n)
have DFTs of H(m) and X(m), respectively, then the DFT of y(n) = h(k) * x(n) is H(m) · X(m).
Making this point in a more compact way, we state this relationship with the expression

(5-8)

With IDFT indicating the inverse DFT, Eq. (5-8) indicates that two sequences resulting from
h(k)*x(n) and H(m)·X(m) are Fourier transform pairs. So taking the DFT of h(k)*x(n) gives us the
product H(m)·X(m) that is the spectrum of our filter output Y(m). Likewise, we can determine
h(k)*x(n) by taking the inverse DFT of H(m)·X(m). The very important conclusion to learn from Eq.



(5-8) is that convolution in the time domain is equivalent to multiplication in the frequency domain.
To help us appreciate this principle, Figure 5-7 sketches the relationship between convolution in the
time domain and multiplication in the frequency domain. The process of convolution with regard to
linear systems is discussed in more detail in Section 5.9. The beginner is encouraged to review that
material to get a general idea of why and when the convolution process can be used to analyze digital
filters.

Figure 5-7 Relationships of convolution as applied to FIR digital filters.

Equation (5-8) and the relationships in Figure 5-7 tell us what we need to do to determine the
frequency response of an FIR filter. The product X(m)·H(m) is the DFT of the filter output. Because
X(m) is the DFT of the filter’s input sequence, the frequency response of the filter is then defined as
H(m), the DFT of the filter’s impulse response h(k).† Getting back to our original problem, we can
determine our averaging filter’s frequency-domain response by taking the DFT of the individual filter
coefficients (impulse response) in Eq. (5-4). If we take the five h(k) coefficient values of 1/5 and
append 59 zeros, we have the sequence depicted in Figure 5-8(a). Performing a 64-point DFT on that
sequence, and normalizing the DFT magnitudes, gives us the filter’s frequency magnitude response
|H(m)| in Figure 5-8(b) and phase response shown in Figure 5-8(c).†† H(m) is our old friend, the
sin(x)/x function from Section 3.13.
† We use the term impulse response here, instead of coefficients, because this concept also applies to IIR filters. IIR filter frequency
responses are also equal to the DFT of their impulse responses.
†† There’s nothing sacred about using a 64-point DFT here. We could just as well have appended only enough zeros to take a 16- or 32-
point FFT. We chose 64 points to get a frequency resolution that would make the shape of the response in Figure 5-8(b) reasonably
smooth. Remember, the more points in the FFT, the finer the frequency granularity—right?

Figure 5-8 Averaging FIR filter: (a) filter coefficient sequence h(k) with appended zeros; (b)
normalized discrete frequency magnitude response |H(m)| of the h(k) filter coefficients; (c) phase-

angle response of H(m) in degrees.



Let’s relate the discrete frequency response samples in Figures 5-8(b) and 5-8(c) to the physical
dimension of the sample frequency fs. We know, from Section 3.5 and our experience with the DFT,
that the m = N/2 discrete frequency sample, m = 32 in this case, is equal to the folding frequency, or
half the sample rate, fs/2. Keeping this in mind, we can convert the discrete frequency axis in Figure
5-8 to that shown in Figure 5-9. In Figure 5-9(a), notice that the filter’s magnitude response is, of
course, periodic in the frequency domain with a period of the equivalent sample rate fs. Because
we’re primarily interested in the filter’s response between 0 and half the sample rate, Figure 5-9(c)
shows that frequency band in greater detail, affirming the notion that averaging behaves like a
lowpass filter. It’s a relatively poor lowpass filter compared to an arbitrary, ideal lowpass filter
indicated by the dashed lines in Figure 5-9(c), but our averaging filter will attenuate higher-frequency
inputs relative to its response to low-frequency input signals.

Figure 5-9 Averaging FIR filter frequency response shown as continuous curves: (a) normalized
frequency magnitude response, |H(m)|; (b) phase-angle response of H(m) in degrees; (c) the filter’s

magnitude response between zero Hz and half the sample rate, fs/2 Hz.



We can demonstrate this by way of example. Suppose we applied a low-frequency sinewave to a 5-
point averaging FIR filter as shown by the white squares in Figure 5-10(a). The input sinewave’s
frequency is fs/32 Hz and its peak amplitude is unity. The filter’s output sequence is shown by the
black squares.
Figure 5-10 Averaging FIR filter input and output responses: (a) with an input sinewave of frequency

fs/32; (b) with an input sinewave of frequency 3fs/32.



Figure 5-10(a) is rich in information! First, the filter’s output is a sinewave of the same frequency as
the input. This is a characteristic of a linear system. We apply a single sinewave input, and the output
will be a single sinewave (shifted in phase and perhaps reduced in amplitude) of the same frequency
as the input. Second, notice that the initial four output samples are not exactly sinusoidal. Those
output samples are the transient response of the filter. With tapped-delay line FIR filters, the sample
length of that transient response is equal to the number of filter unit-delay elements D, after which the
filter’s output begins its steady-state time response.
The above transient response property is important. It means that tapped-delay line FIR filter outputs
are not valid until D+1 input samples have been applied to the filter. That is, the output samples are
not valid until the filter’s delay line is filled with input data. So, for an FIR filter having D = 70 unit-
delay elements the first 70 output samples are not valid and would be ignored in practice.
WARNING: There are tapped-delay line FIR filters, used in practice, that have more unit-delay
elements than nonzero-valued tap coefficients. The transient response length for those filters,
measured in samples, is equal to the number of unit-delay elements, D (and is unrelated to the number
of nonzero-valued tap coefficients).
The filter’s output sinewave peak amplitude is reduced to a value of 0.96 and the output sinewave is
delayed from the input by a phase angle of 22.5 degrees. Notice that the time delay between the input
and output sinewaves, in Figure 5-10(a), is two samples in duration. (Although we discuss this time
delay topic in more detail later, for now we’ll just say that, because the filter’s coefficients are
symmetrical, the input/output delay measured in samples is equal to half the number of unit-delay
elements in the filter’s tapped-delay line.)
Next, if we applied a higher-frequency sinewave of 3fs/32 Hz to our 5-tap FIR filter as shown in
Figure 5-10(b), the filter output is a sinewave of frequency 3fs/32 Hz and its peak amplitude is even
further reduced to a value of 0.69. That’s the nature of lowpass filters—they attenuate higher-
frequency inputs more than they attenuate low-frequency inputs. As in Figure 5-10(a), the time delay



between the input and output sinewaves, in Figure 5-10(b), is two samples in duration (corresponding
to a phase-angle delay of 67.5 degrees). That property, where the input/output delay does not depend
on frequency, is a very beneficial property of FIR filters having symmetrical coefficients. We’ll
discuss this important issue again later in this chapter. In Figure 5-10(b) we see that the nonsinusoidal
filter output transient response is even more obvious than it was in Figure 5-10(a).
Although the output amplitudes and phase delays in Figure 5-10 were measured values from actually
performing a 5-tap FIR filter process on the input sinewaves’ samples, we could have obtained those
amplitude and phase delay values directly from Figures 5-8(b) and 5-8(c). The point is, we don’t
have to implement an FIR filter and apply various sinewave inputs to discover what its frequency
response will be. We need merely take the DFT of the FIR filter’s coefficients (impulse response) to
determine the filter’s frequency response as we did for Figure 5-8.
Figure 5-11 is another depiction of how well our 5-tap averaging FIR filter performs, where the
dashed line is the filter’s magnitude response |H(m)|, and the shaded line is the |X(m)| magnitude
spectrum of the filter’s input values (the white squares in Figure 5-2). The solid line is the magnitude
spectrum of the filter’s output sequence, which is shown by the black squares in Figure 5-2. So in
Figure 5-11, the solid output spectrum is the product of the dashed filter response curve and the
shaded input spectrum, or |X(m)·H(m)|. Again, we see that our averager does indeed attenuate the
higher-frequency portion of the input spectrum.
Figure 5-11 Averaging FIR filter input magnitude spectrum, frequency magnitude response, and output

magnitude spectrum.

Let’s pause for a moment to let all of this soak in a little. So far we’ve gone through the averaging
filter example to establish that

• FIR filters perform time-domain convolution by summing the products of the shifted input samples
and a sequence of filter coefficients,

• an FIR filter’s output sequence is equal to the convolution of the input sequence and a filter’s
impulse response (coefficients),

• an FIR filter’s frequency response is the DFT of the filter’s impulse response,
• an FIR filter’s output spectrum is the product of the input spectrum and the filter’s frequency
response, and



• convolution in the time domain and multiplication in the frequency domain are Fourier transform
pairs.

OK, here’s where FIR filters start to get really interesting. Let’s change the values of the five filter
coefficients to modify the frequency response of our 5-tap lowpass filter. In fact, Figure 5-12(a)
shows our original five filter coefficients and two other arbitrary sets of 5-tap coefficients. Figure 5-
12(b) compares the frequency magnitude responses of those three sets of coefficients. Again, the
frequency responses are obtained by taking the DFT of the three individual sets of coefficients and
plotting the magnitude of the transforms, as we did for Figure 5-9(c). So we see three important
characteristics in Figure 5-12. First, as we expected, different sets of coefficients give us different
frequency magnitude responses. Second, a sudden change in the values of the coefficient sequence,
such as the 0.2 to 0 transition in the first coefficient set, causes ripples, or sidelobes, in the frequency
response. Third, if we minimize the suddenness of the changes in the coefficient values, such as the
third set of coefficients in Figure 5-12(a), we reduce the sidelobe ripples in the frequency response.
However, reducing the sidelobes results in increasing the main lobe width of our lowpass filter. (As
we’ll see, this is exactly the same effect encountered in the discussion of window functions used with
the DFT in Section 3.9.)
Figure 5-12 Three sets of 5-tap lowpass filter coefficients: (a) sets of coefficients: 0.2, 0.2, 0.2, 0.2,
0.2; 0.1, 0.2, 0.2, 0.2, 0.1; and 0.04, 0.12, 0.2, 0.12, 0.04; (b) frequency magnitude response of three

lowpass FIR filters using those sets of coefficients.

To reiterate the function of the filter coefficients, Figure 5-13 shows the 5-tap FIR filter structure
using the third set of coefficients from Figure 5-12. The implementation of constant-coefficient
transversal FIR filters does not get any more complicated than that shown in Figure 5-13. It’s that
simple. We can have a filter with more than 5 taps, but the input signal sample shifting, the
multiplications by the constant coefficients, and the summation are all there is to it. (By constant
coefficients, we don’t mean coefficients whose values are all the same; we mean coefficients whose
values remain unchanged, or time invariant. There is a class of digital filters, called adaptive filters,
whose coefficient values are periodically changed to adapt to changing input signal parameters.
While we won’t discuss these adaptive filters in this introductory text, their descriptions are



available in the literature[1–5].)
Figure 5-13 Five-tap lowpass FIR filter implementation using the coefficients 0.04, 0.12, 0.2, 0.12,

and 0.04.

So far, our description of an FIR filter implementation has been presented from a hardware
perspective. In Figure 5-13, to calculate a single filter output sample, five multiplications and five
additions must take place before the arrival of the next input sample value. In a software
implementation of a 5-tap FIR filter, however, all of the input data samples would be previously
stored in memory. The software filter routine’s job, then, is to access different five-sample segments
of the x(n) input data space, perform the calculations shown in Figure 5-13, and store the resulting
filter y(n) output sequence in an array of memory locations.†
† In reviewing the literature of FIR filters, the reader will often find the term z−1 replacing the delay function in Figure 5-13. This
equivalence is explained in the next chapter when we study IIR filters.

Now that we have a basic understanding of what a digital FIR filter is, let’s see what effect is had by
using more than 5 filter taps by learning to design FIR filters.

5.3 Lowpass FIR Filter Design
OK, instead of just accepting a given set of FIR filter coefficients and analyzing their frequency
response, let’s reverse the process and design our own lowpass FIR filter. The design procedure
starts with the determination of a desired frequency response followed by calculating the filter
coefficients that will give us that response. There are two predominant techniques used to design FIR
filters: the window method and the so-called optimum method. Let’s discuss them in that order.

5.3.1 Window Design Method
The window method of FIR filter design (also called the Fourier series method) begins with our
deciding what frequency response we want for our lowpass filter. We can start by considering a
continuous lowpass filter, and simulating that filter with a digital filter. We’ll define the continuous
frequency response H(f) to be ideal, i.e., a lowpass filter with unity gain at low frequencies and zero
gain (infinite attenuation) beyond some cutoff frequency, as shown in Figure 5-14(a). Representing
this H(f) response by a discrete frequency response is straightforward enough because the idea of a
discrete frequency response is essentially the same as a continuous frequency response—with one
important difference. As described in Sections 2.2 and 3.13, discrete frequency-domain
representations are always periodic with the period being the sample rate fs. The discrete
representation of our ideal, continuous lowpass filter H(f) is the periodic response H(m) depicted by
the frequency-domain samples in Figure 5-14(b).

Figure 5-14 Lowpass filter frequency responses: (a) continuous frequency response H(f); (b)
periodic, discrete frequency response H(m).



We have two ways to determine our lowpass filter’s time-domain coefficients. The first way is
algebraic:

1. Develop an expression for the discrete frequency response H(m).
2. Apply that expression to the inverse DFT equation to get the time domain h(k).
3. Evaluate that h(k) expression as a function of time index k.

The second method is to define the individual frequency-domain samples representing H(m) and then
have a software routine perform the inverse DFT of those samples, giving us the FIR filter
coefficients. In either method, we need only define the periodic H(m) over a single period of fs Hz.
As it turns out, defining H(m) in Figure 5-14(b) over the frequency span −fs/2 to fs/2 is the easiest
form to analyze algebraically, and defining H(m) over the frequency span 0 to fs is the best
representation if we use the inverse DFT to obtain our filter’s coefficients. Let’s try both methods to
determine the filter’s time-domain coefficients.
In the algebraic method, we can define an arbitrary discrete frequency response H(m) using N
samples to cover the −fs/2 to fs/2 frequency range and establish K unity-valued samples for the
passband of our lowpass filter as shown in Figure 5-15. To determine h(k) algebraically we need to
take the inverse DFT of H(m) in the form of

(5-9)

Figure 5-15 Arbitrary, discrete lowpass FIR filter frequency response defined over N frequency-
domain samples covering the frequency range of fs Hz.

where our time-domain index is k. The solution to Eq. (5-9), derived in Section 3.13 as Eq. (3-59), is
repeated here as

(5-10)



If we evaluate Eq. (5-10) as a function of k, we get the sequence shown in Figure 5-16, taking the
form of the classic sin(x)/x function. By reviewing the material in Section 3.13, it’s easy to see the
great deal of algebraic manipulation required to arrive at Eq. (5-10) from Eq. (5-9). So much algebra,
in fact, with its many opportunities for making errors, that digital filter designers like to avoid
evaluating Eq. (5-9) algebraically. They prefer to use software routines to perform inverse DFTs (in
the form of an inverse FFT) to determine h(k), and so will we.

Figure 5-16 Time-domain h(k) coefficients obtained by evaluating Eq. (5-10).

We can demonstrate the software inverse DFT method of FIR filter design with an example. Let’s say
we need to design a lowpass FIR filter simulating the continuous frequency response shown in Figure
5-17(a). The discrete representation of the filter’s frequency response H(m) is shown in Figure 5-
17(b), where we’ve used N = 32 points to represent the frequency-domain variable H(f). Because it’s
equivalent to Figure 5-17(b) but avoids the negative values of the frequency index m, we represent
the discrete frequency samples over the range 0 to fs in Figure 5-17(c), as opposed to the −fs/2 to
+fs/2 range in Figure 5-17(b). OK, we’re almost there. Using a 32-point inverse FFT to implement a
32-point inverse DFT of the H(m) sequence in Figure 5-17(c), we get the 32 h(k) values depicted by
the dots from k = −15 to k = 16 in Figure 5-18(a).† We have one more step to perform. Because we
want our final 31-tap h(k) filter coefficients to be symmetrical with their peak value in the center of
the coefficient sample set, we drop the k = 16 sample and shift the k index to the left from Figure 5-
18(a), giving us the desired sin(x)/x form of h(k) as shown in Figure 5-18(b). This shift of the index k
will not change the frequency magnitude response of our FIR filter. (Remember from our discussion
of the DFT shifting theorem in Section 3.6 that a shift in the time domain manifests itself only as a
linear phase shift in the frequency domain with no change in the frequency-domain magnitude.) The
sequence in Figure 5-18(b), then, is now the coefficients we use in the convolution process of Figure
5-5 to implement a lowpass FIR filter.
† If you want to use this FIR design method but only have a forward FFT software routine available, Section 13.6 shows a slick way to
perform an inverse FFT with the forward FFT algorithm.

Figure 5-17 An ideal lowpass filter: (a) continuous frequency response H(f); (b) discrete response
H(m) over the range −fs/2 to fs/2 Hz; (c) discrete response H(m) over the range 0 to fs Hz.



Figure 5-18 Inverse DFT of the discrete response in Figure 5-17(c): (a) normal inverse DFT
indexing for k; (b) symmetrical coefficients used for a 31-tap lowpass FIR filter.

It’s important to demonstrate that the more h(k) terms we use as filter coefficients, the closer we’ll
approximate our ideal lowpass filter response. Let’s be conservative, just use the center nine h(k)
coefficients, and see what our filter response looks like. Again, our filter’s magnitude response in this
case will be the DFT of those nine coefficients as shown on the right side of Figure 5-19(a). The
ideal filter’s frequency response is also shown for reference as the dashed curve. (To show the
details of its shape, we’ve used a continuous curve for |H(m)| in Figure 5-19(a), but we have to
remember that |H(m)| is really a sequence of discrete values.) Notice that using nine coefficients gives
us a lowpass filter, but it’s certainly far from ideal. Using more coefficients to improve our situation,
Figure 5-19(b) shows 19 coefficients and their corresponding frequency magnitude response that is
beginning to look more like our desired rectangular response. Notice that magnitude fluctuations, or
ripples, are evident in the passband of our H(m) filter response. Continuing, using all 31 of the h(k)
values for our filter coefficients results in the frequency response in Figure 5-19(c). Our filter’s
response is getting better (approaching the ideal), but those conspicuous passband magnitude ripples
are still present.

Figure 5-19 Coefficients and frequency responses of three lowpass filters: (a) 9-tap FIR filter; (b)
19-tap FIR filter; (c) frequency response of the full 31-tap FIR filter.



It’s important that we understand why those passband ripples are in the lowpass FIR filter response in
Figure 5-19. Recall the above discussion of convolving the 5-tap averaging filter coefficients, or
impulse response, with an input data sequence to obtain the averager’s output. We established that
convolution in the time domain is equivalent to multiplication in the frequency domain, which we
symbolized with Eq. (5-8) and repeat here as

(5-11)

This association between convolution in the time domain and multiplication in the frequency domain,
sketched in Figure 5-7, indicates that if two time-domain sequences h(k) and x(n) have DFTs of H(m)
and X(m), respectively, then the DFT of h(k) * x(n) is H(m) · X(m). No restrictions whatsoever need
be placed on what the time-domain sequences h(k) and x(n) in Eq. (5-11) actually represent. As
detailed later in Section 5.9, convolution in one domain is equivalent to multiplication in the other
domain, allowing us to state that multiplication in the time domain is equivalent to convolution in the
frequency domain, or

(5-12)

Now we’re ready to understand why the magnitude ripples are present in Figure 5-19.
Rewriting Eq. (5-12) and replacing the h(k) and x(n) expressions with h∞(k) and w(k), respectively,

(5-13)

Let’s say that h∞(k) represents an infinitely long sin(x)/x sequence of ideal lowpass FIR filter
coefficients and that w(k) represents a window sequence that we use to truncate the sin(x)/x terms as



shown in Figure 5-20. Thus, the w(k) sequence is a finite-length set of unity values and its DFT is
W(m). The length of w(k) is merely the number of coefficients, or taps, we intend to use to implement
our lowpass FIR filter. With h∞(k) defined as such, the product h∞(k) · w(k) represents the truncated
set of filter coefficients h(k) in Figures 5-19(a) and 5-19(b). So, from Eq. (5-13), the FIR filter’s true
frequency response H(m) is the convolution

(5-14)

Figure 5-20 Infinite h∞(k) sequence windowed by w(k) to define the final filter coefficients h(k).

We depict this convolution in Figure 5-21 where, to keep the figure from being so busy, we show
H∞(m) (the DFT of the h∞(k) coefficients) as the gray rectangle. Keep in mind that it’s really a
sequence of constant-amplitude sample values.

Figure 5-21 Convolution W(m)*H∞(m): (a) unshifted W(m) and H∞(m); (b) shift of W(m) leading to
ripples within H(m)’s positive-frequency passband; (c) shift of W(m) causing response roll-off near
H(m)’s positive cutoff frequency; (d) shift of W(m) causing ripples beyond H(m)’s positive cutoff

frequency.



Let’s look at Figure 5-21(a) very carefully to see why all three |H(m)|s exhibit passband ripple in
Figure 5-19. We can view a particular sample value of the H(m) = H∞(m) * W(m) convolution as
being the sum of the products of H∞(m) and W(m) for a particular frequency shift of W(m). H∞(m) and
the unshifted W(m) are shown in Figure 5-21(a.) With an assumed value of unity for all of H∞(m), a
particular H(m) value is now merely the sum of the W(m) samples that overlap the H∞(m) rectangle.
So, with a W(m) frequency shift of 0 Hz, the sum of the W(m) samples that overlap the H∞(m)
rectangle in Figure 5-21(a) is the value of H(m) at 0 Hz. As W(m) is shifted to the right to give us
additional positive-frequency H(m) values, we can see that the sum of the positive and negative
values of W(m) under the rectangle oscillates during the shifting of W(m). As the convolution shift
proceeds, Figure 5-21(b) shows why there are ripples in the passband of H(m)—again, the sum of the
positive and negative W(m) samples under the H∞(m) rectangle continues to vary as the W(m)
function is shifted. The W(m) frequency shift, indicated in Figure 5-21(c), where the peak of W(m)’s
main lobe is now outside the H∞(m) rectangle, corresponds to the frequency where H(m)’s passband
begins to roll off. Figure 5-21(d) shows that, as the W(m) shift continues, there will be ripples in
H(m) beyond the positive cutoff frequency.† The point of all of this is that the ripples in H(m) are
caused by the sidelobes of W(m).
† In Figure 5-21(b), had we started to shift W(m) to the left in order to determine the negative-frequency portion of H(m), we would have
obtained the mirror image of the positive-frequency portion of H(m).

Figure 5-22 helps us answer the question “How many sin(x)/x coefficients do we have to use (or how
wide must w(k) be) to get nice sharp falling edges and no ripples in our H(m) passband?” The answer
is that we can’t get there from here. It doesn’t matter how many sin(x)/x coefficients (filter taps) we



use; there will always be filter passband ripple. As long as w(k) is a finite number of unity values
(i.e., a rectangular window of finite width), there will be sidelobe ripples in W(m), and this will
induce passband ripples in the final H(m) frequency response. To illustrate that increasing the number
of sin(x)/x coefficients doesn’t reduce passband ripple, we repeat the 31-tap lowpass filter response
in Figure 5-22(a). The frequency response, using 63 coefficients, is shown in Figure 5-22(b), and the
passband ripple remains. We can make the filter’s transition region narrower using additional h(k)
filter coefficients, but we cannot eliminate the passband ripple. That ripple, known as Gibbs’s
phenomenon, manifests itself anytime a function (w(k) in this case) with an instantaneous discontinuity
is represented by a Fourier series[6–8]. No finite set of sinusoids will be able to change fast enough
to be exactly equal to an instantaneous discontinuity. Another way to state this Gibbs’s dilemma is
that, no matter how wide our w(k) window is, W(m) will always have sidelobe ripples. As shown in
Figure 5-22(b), we can use more coefficients by extending the width of the rectangular w(k) to narrow
the filter transition region, but a wider w(k) does not eliminate the filter passband ripple, nor does it
even reduce their peak-to-peak ripple magnitudes, as long as w(k) has sudden discontinuities.

Figure 5-22 Passband ripple and transition regions: (a) for a 31-tap lowpass filter; (b) for a 63-tap
lowpass filter.

5.3.2 Windows Used in FIR Filter Design
OK. The good news is that we can minimize FIR passband ripple with window functions the same
way we minimized DFT leakage in Section 3.9. Here’s how. Looking back at Figure 5-20, by
truncating the infinitely long h∞(k) sequence through multiplication by the rectangular w(k), our final
h(k) exhibited ripples in the frequency-domain passband. Figure 5-21 shows us that the passband
ripples were caused by W(m)’s sidelobes that, in turn, were caused by the sudden discontinuities
from zero to one and one to zero in w(k). If we think of w(k) in Figure 5-20 as a rectangular window,



then it is w(k)’s abrupt amplitude changes that are the source of our filter passband ripple. The
window FIR design method is the technique of reducing w(k)’s discontinuities by using window
functions other than the rectangular window.
Consider Figure 5-23 to see how a nonrectangular window function can be used to design low-ripple
FIR digital filters. Imagine if we replaced Figure 5-20’s rectangular w(k) with the Blackman window
function whose discrete values are defined as

(5-15)

Figure 5-23 Coefficients and frequency response of a 31-tap Blackman-windowed FIR filter: (a)
defining the windowed filter coefficients h(k); (b) low-ripple 31-tap frequency response; (c) low-

ripple 63-tap frequency response.

This situation is depicted for N = 31 in Figure 5-23(a), where Eq. (5-15)’s w(k) looks very much like
the Hanning window function in Figure 3-17(a). This Blackman window function results in the 31
smoothly tapered h(k) coefficients at the bottom of Figure 5-23(a). Notice two things about the



resulting H(m) in Figure 5-23(b). First, the good news. The passband ripples are greatly reduced
from those evident in Figure 5-22(a)—so our Blackman window function did its job. Second, the
price we paid for reduced passband ripple is a wider H(m) transition region. We can get a steeper
filter response roll-off by increasing the number of taps in our FIR filter. Figure 5-23(c) shows the
improved frequency response had we used a 63-coefficient Blackman window function for a 63-tap
FIR filter. So using a nonrectangular window function reduces passband ripple at the expense of
slower passband to stopband roll-off.
A graphical comparison of the frequency responses for the rectangular and Blackman windows is
provided in Figure 5-24. (The curves in Figure 5-24 were obtained for the window functions defined
by 16 discrete samples, to which 496 zeros were appended, applied to a 512-point DFT.) The
sidelobe magnitudes of the Blackman window’s |W(m)| are too small to see on a linear scale. We can
see those sidelobe details by plotting the two windows’ frequency responses on a logarithmic scale
and normalizing each plot so that their main lobe peak values are both zero dB. For a given window
function, we can get the log magnitude response of WdB(m) by using the expression

(5-16)

Figure 5-24 Rectangular versus Blackman window frequency magnitude responses: (a) |W(m)| on a
linear scale; (b) normalized logarithmic scale of WdB(m).

(The |W(0)| term in Eq. (5-16) is the magnitude of W(m) at the peak of the main lobe when m = 0.)
Figure 5-24(b) shows us the greatly reduced sidelobe levels of the Blackman window and how that



window’s main lobe is almost three times as wide as the rectangular window’s main lobe.
Of course, we could have used any of the other window functions, discussed in Section 3.9, for our
lowpass FIR filter. That’s why this FIR filter design technique is called the window design method.
We pick a window function and multiply it by the sin(x)/x values from H∞(m) in Figure 5-23(a) to get
our final h(k) filter coefficients. It’s that simple. Before we leave the window method of FIR filter
design, let’s introduce two other interesting window functions.
Although the Blackman window and those windows discussed in Section 3.9 are useful in FIR filter
design, we have little control over their frequency responses; that is, our only option is to select some
window function and accept its corresponding frequency response. Wouldn’t it be nice to have more
flexibility in trading off, or striking a compromise between, a window’s main lobe width and
sidelobe levels? Fortunately, there are two popular window functions that give us this opportunity.
Called the Chebyshev (or Dolph-Chebyshev) and the Kaiser window functions, they’re defined by the
following formidable expressions:

(5-17)

(5-18)

Two typical Chebyshev and Kaiser window functions and their frequency magnitude responses are
shown in Figure 5-25. For comparison, the rectangular and Blackman window functions are also
shown in that figure. (Again, the curves in Figure 5-25(b) were obtained for window functions
defined by 32 discrete time samples, with 480 zeros appended, applied to a 512-point DFT.)

Figure 5-25 Typical window functions used with digital filters: (a) window coefficients in the time
domain; (b) frequency-domain magnitude responses in dB.



Equation (5-17) was originally based on the analysis of antenna arrays using the mathematics of
Chebyshev polynomials[9–11]. Equation (5-18) evolved from Kaiser’s approximation of prolate
spheroid functions using zeroth-order Bessel functions[12–13]. For each sample of the N-length
sequence inside the brackets of the numerator of Eq. (5-18), as well as for the β term in the
denominator, the Io(x) zeroth-order Bessel function values can be approximated using

(5-18′)

In theory the upper limit of the summation in Eq. (5-18′) should be infinity but, fortunately, 25
summations give us sufficient accuracy when evaluating Io(x).

Don’t be intimidated by the complexity of Eqs. (5-17) and (5-18)—at this point, we need not be
concerned with the mathematical details of their development. We just need to realize that the γ and β
control parameters give us control over the Chebyshev and Kaiser windows’ main lobe widths and
the sidelobe levels.
Let’s see how this works for Chebyshev window functions, having four separate values of γ, and their
frequency responses shown in Figure 5-26. FIR filter designers applying the window method



typically use predefined software routines to obtain their Chebyshev window coefficients.
Commercial digital signal processing software packages allow the user to specify three things: the
window function (Chebyshev in this case), the desired number of coefficients (the number of taps in
the FIR filter), and the value of γ. Selecting different values for γ enables us to adjust the sidelobe
levels and see what effect those values have on main lobe width, a capability that we didn’t have
with the Blackman window or the window functions discussed in Section 3.9. The Chebyshev
window function’s stopband attenuation, in dB, is equal to

(5-19)

Figure 5-26 Chebyshev window functions for various γ values: (a) window coefficients in the time
domain; (b) frequency-domain magnitude responses in dB.

So, for example, if we needed our sidelobe levels to be no greater than −60 dB below the main lobe,
we use Eq. (5-19) to establish a γ value of 3.0 and let the software generate the Chebyshev window
coefficients.†
† By the way, some digital signal processing software packages require that we specify AttenCheb in decibels instead of γ. That way, we
don’t have to bother using Eq. (5-19) at all.



The same process applies to the Kaiser window, as shown in Figure 5-27. Commercial software
packages allow us to specify β in Eq. (5-18) and provide us with the associated window coefficients.
The curves in Figure 5-27(b), obtained for Kaiser window functions defined by 32 discrete samples,
show that we can select the desired sidelobe levels and see what effect this has on the main lobe
width.

Figure 5-27 Kaiser window functions for various β values: (a) window coefficients in the time
domain; (b) frequency-domain magnitude responses in dB.

Chebyshev or Kaiser, which is the best window to use? It depends on the application. Returning to
Figure 5-25(b), notice that, unlike the constant sidelobe peak levels of the Chebyshev window, the
Kaiser window’s sidelobes decrease with increased frequency. However, the Kaiser sidelobes are
higher than the Chebyshev window’s sidelobes near the main lobe. Our primary trade-off here is
trying to reduce the sidelobe levels without broadening the main lobe too much. Digital filter
designers typically experiment with various values of γ and β for the Chebyshev and Kaiser windows
to get the optimum WdB(m) for a particular application. (For that matter, the Blackman window’s very
low sidelobe levels outweigh its wide main lobe in many applications.) For some reason, algorithms
for computing Chebyshev window functions are not readily available in the literature of DSP. To
remedy that situation, Appendix I presents a straightforward procedure for computing N-sample



Chebyshev window sequences.
To conclude this section, remember that different window functions have their own individual
advantages and disadvantages for FIR filter design. Regardless of the non-rectangular window
function used, they always decrease an FIR filter’s passband ripple over that of the rectangular
window. For the enthusiastic reader, a thorough discussion of many window functions can be found in
reference [14].

5.4 Bandpass FIR Filter Design
The window method of lowpass FIR filter design can be used as the first step in designing a bandpass
FIR filter. Let’s say we want a 31-tap FIR filter with the frequency response shown in Figure 5-22(a),
but instead of being centered about zero Hz, we want the filter’s passband to be centered about fs/4
Hz. If we define a lowpass FIR filter’s coefficients as hlp(k), our problem is to find the hbp(k)
coefficients of a bandpass FIR filter. As shown in Figure 5-28, we can shift Hlp(m)’s frequency
response by multiplying the filter’s hlp(k) lowpass coefficients by a sinusoid of fs/4 Hz. That sinusoid
is represented by the sshift(k) sequence in Figure 5-28(a), whose values are a sinewave sampled at a
rate of four samples per cycle. Our final 31-tap hbp(k) FIR bandpass filter coefficients are

(5-20)

Figure 5-28 Bandpass filter with frequency response centered at fs/4: (a) generating 31-tap filter
coefficients hbp(k); (b) frequency magnitude response |Hbp(m)|.



whose frequency magnitude response |Hbp(m)| is shown as the solid curves in Figure 5-28(b). The
actual magnitude of |Hbp(m)| is half that of the original |Hlp(m)| because half the values in hbp(k) are
zero when sshift(k) corresponds exactly to fs/4. This effect has an important practical implication. It
means that, when we design an N-tap bandpass FIR filter centered at a frequency of fs/4 Hz, we only
need to perform approximately N/2 multiplications for each filter output sample. (There’s no reason
to multiply an input sample value, x(n−k), by zero before we sum all the products from Eq. (5-6) and
Figure 5-13, right? We just don’t bother to perform the unnecessary multiplications at all.) Of course,
when the bandpass FIR filter’s center frequency is other than fs/4, we’re forced to perform the full
number of N multiplications for each FIR filter output sample.
Notice, here, that the hlp(k) lowpass coefficients in Figure 5-28(a) have not been multiplied by any
window function. In practice, we’d use an hlp(k) that has been windowed prior to implementing Eq.
(5-20) to reduce the passband ripple. If we wanted to center the bandpass filter’s response at some
frequency other than fs/4, we merely need to modify sshift(k) to represent sampled values of a sinusoid
whose frequency is equal to the desired bandpass center frequency. That new sshift(k) sequence would
then be used in Eq. (5-20) to get the new hbp(k).

5.5 Highpass FIR Filter Design
Going one step further, we can use the bandpass FIR filter design technique to design a highpass FIR
filter. To obtain the coefficients for a highpass filter, we need only modify the shifting sequence
sshift(k) to make it represent a sampled sinusoid whose frequency is fs/2. This process is shown in



Figure 5-29. Our final 31-tap highpass FIR filter’s hhp(k) coefficients are
(5-21)

Figure 5-29 Highpass filter with frequency response centered at fs/2: (a) generating 31-tap filter
coefficients hhp(k); (b) frequency magnitude response |Hhp(m)|.

whose |Hhp(m)| frequency response is the solid curve in Figure 5-29(b). Because sshift(k) in Figure 5-
29(a) has alternating plus and minus ones, we can see that hhp(k) is merely hlp(k) with the sign
changed for every other coefficient. Unlike |Hbp(m)| in Figure 5-28(b), the |Hhp(m)| response in Figure
5-29(b) has the same amplitude as the original |Hlp(m)|.

Again, notice that the hlp(k) lowpass coefficients in Figure 5-29(a) have not been modified by any
window function. In practice, we’d use a windowed hlp(k) to reduce the passband ripple before
implementing Eq. (5-21).

5.6 Parks-McClellan Exchange FIR Filter Design Method
Let’s introduce one last FIR filter design technique that has found wide acceptance in practice. The



Parks-McClellan FIR filter design method (also called the Remez Exchange, or Optimal method†) is a
popular technique used to design high-performance FIR filters. To use this design method, we have to
visualize a desired frequency response Hd(m) like that shown in Figure 5-30.
† Remez is pronounced re-’m .

Figure 5-30 Desired frequency response definition of a lowpass FIR filter using the Parks-McClellan
Exchange design method.

We have to establish a desired passband cutoff frequency fpass and the frequency where the attenuated
stopband begins, fstop. In addition, we must establish the variables δp and δs that define our desired
passband and stopband ripple. Passband and stopband ripples, in decibels, are related to δp and δs
by[15]

(5-22)

and
(5-22′)

(Some of the early journal papers describing the Parks-McClellan design method used the equally
valid expression −20 · log10(δp) to define the passband ripple in dB. However, Eq. (5-22) is the most
common form used today.) Next, we apply these parameters to a computer software routine that
generates the filter’s N time-domain h(k) coefficients where N is the minimum number of filter taps to
achieve the desired filter response.
On the other hand, some software Parks-McClellan routines assume that we want δp and δs to be as
small as possible and require us only to define the desired values of the Hd(m) response as shown by
the solid black dots in Figure 5-31. The software then adjusts the values of the undefined (shaded
dots) values of Hd(m) to minimize the error between our desired and actual frequency response while
minimizing δp and δs. The filter designer has the option to define some of the Hd(m) values in the
transition band, and the software calculates the remaining undefined Hd(m) transition band values.
With this version of the Parks-McClellan algorithm, the issue of most importance becomes how we
define the transition region. We want to minimize its width while, at the same time, minimizing



passband and stopband ripple. So exactly how we design an FIR filter using the Parks-McClellan
Exchange technique is specific to the available filter design software. Although the mathematics
involved in the development of the Parks-McClellan Exchange method is rather complicated, we
don’t have to worry about that here[16–20]. Just remember that the Parks-McClellan Exchange design
method gives us a Chebyshev-type filter whose actual frequency response is as close as possible to
the desired Hd(m) response for a given number of filter taps.

Figure 5-31 Alternate method for defining the desired frequency response of a lowpass FIR filter
using the Parks-McClellan Exchange technique.

To illustrate the advantage of the Parks-McClellan method, the solid curve in Figure 5-32 shows the
frequency response of a 31-tap FIR designed using this technique. For comparison, Figure 5-32 also
shows the frequency responses of two 31-tap FIR filters for the same passband width using the
Chebyshev and Kaiser windowing techniques. Notice how the three filters have roughly the same
stopband sidelobe levels, near the main lobe, but that the Parks-McClellan filter has the more
desirable (steeper) transition band roll-off.

Figure 5-32 Frequency response comparison of three 31-tap FIR filters: Parks-McClellan,
Chebyshev windowed, and Kaiser windowed.

The Parks-McClellan Exchange filter design method revolutionized the art of, and has become the
predominant technique for, designing linear-phase FIR filters. As a historical note, when Profs. Parks



and McClellan (James McClellan was a graduate student at the time) developed their triumphant filter
design method in 1971, they submitted a paper to Electronics Letters to publicize their achievement.
Surprisingly, the editors of Electronics Letters rejected the paper because the reviewers didn’t
believe that such a flexible, and optimized, FIR design procedure was possible. A description of
Parks and McClellan’s revolutionary design method was eventually published in reference[17]. That
story is reminiscent of when Decca Records auditioned a group of four young musicians in 1961.
Decca executives decided not to sign the group to a contract. You may have heard of that musical
group—they were called the Beatles.

5.7 Half-band FIR Filters
There’s a specialized FIR filter that’s proved very useful in signal decimation and interpolation
applications[21–25]. Called a half-band FIR filter, its frequency magnitude response is symmetrical
about the fs/4 point as shown in Figure 5-33(a). As such, the sum of fpass and fstop is fs/2. When the
filter has an odd number of taps, this symmetry has the beautiful property that the filter’s time-domain
impulse response has every other filter coefficient being zero, except the center coefficient. This
enables us to avoid approximately half the number of multiplications when implementing this kind of
filter. By way of example, Figure 5-33(b) shows the coefficients for a 31-tap half-band filter where
Δf was defined to be approximately fs/32 using the Parks-McClellan FIR filter design method.

Figure 5-33 Half-band FIR filter: (a) frequency magnitude response [transition region centered at
fs/4]; (b) 31-tap filter coefficients; (c) 7-tap half-band filter structure.

Notice how the alternating h(k) coefficients are zero, so we perform 17 multiplications per output
sample instead of the expected 31 multiplications. Stated in different words, we achieve the
performance of a 31-tap filter at the computational expense of only 17 multiplies per output sample.



In the general case, for an N-tap half-band FIR filter, we’ll only need to perform (N + 1)/2 + 1
multiplications per output sample. (Section 13.7 shows a technique to further reduce the number of
necessary multiplies for linear-phase tapped-delay line FIR filters, including half-band filters.) The
structure of a simple seven-coefficient half-band filter is shown in Figure 5-33(c), with the h(1) and
h(5) multipliers absent.
Be aware, there’s a restriction on the number of half-band filter coefficients. To build linear-phase N-
tap half-band FIR filters, having alternating zero-valued coefficients, N + 1 must be an integer
multiple of four. If this restriction is not met, for example when N = 9, the first and last coefficients of
the filter will both be equal to zero and can be discarded, yielding a 7-tap half-band filter.
On a practical note, there are two issues to keep in mind when we use an FIR filter design software
package to design a half-band filter. First, assuming that the modeled filter has a passband gain of
unity, ensure that your filter has a gain of 0.5 (−6 dB) at a frequency of fs/4. Second, unavoidable
numerical computation errors will yield alternate filter coefficients that are indeed very small but not
exactly zero-valued as we desire. So in our filter modeling efforts, we must force those very small
coefficient values to zero before we proceed to analyze half-band filter frequency responses.
You might sit back and think, “OK, these half-band filters are mildly interesting, but they’re certainly
not worth writing home about.” As it turns out, half-band filters are very important because they’re
widely used in applications with which you’re familiar—like pagers, cell phones, digital
receivers/televisions, CD/DVD players, etc. We’ll learn more about half-band filter applications in
Chapter 10.

5.8 Phase Response of FIR Filters
Although we illustrated a couple of output phase shift examples for our original averaging FIR filter
in Figure 5-10, the subject of FIR phase response deserves additional attention. One of the dominant
features of FIR filters is their linear phase response which we can demonstrate by way of example.
Given the 25 h(k) FIR filter coefficients in Figure 5-34(a), we can perform a DFT to determine the
filter’s H(m) frequency response. The normalized real part, imaginary part, and magnitude of H(m)
are shown in Figures 5-34(b) and 5-34(c), respectively.† Being complex values, each H(m) sample
value can be described by its real and imaginary parts, or equivalently, by its magnitude |H(m)| and its
phase Hø(m) shown in Figure 5-35(a).
† Any DFT size greater than the h(k) width of 25 is sufficient to obtain H(m). The h(k) sequence was padded with 103 zeros to take a
128-point DFT, resulting in the H(m) sample values in Figure 5-34.

Figure 5-34 FIR filter frequency response H(m): (a) h(k) filter coefficients; (b) real and imaginary
parts of H(m); (c) magnitude of H(m).



Figure 5-35 FIR filter phase response Hø(m) in degrees: (a) calculated Hø(m); (b) polar plot of
Hø(m)’s first ten phase angles in degrees; (c) actual Hø(m).



The phase of a complex quantity is, of course, the arctangent of the imaginary part divided by the real
part, or ø = tan −1(imag/real). Thus the phase of Hø(m) is determined from the samples in Figure 5-
34(b).
The phase response in Figure 5-35(a) certainly looks linear over selected frequency ranges, but what
do we make of those sudden jumps, or discontinuities, in this phase response? If we were to plot the
angles of Hø(m) starting with the m = 0 sample on a polar graph, using the nonzero real part of H(0),
and the zero-valued imaginary part of H(0), we’d get the zero-angled Hø(0) phasor shown on the right
side of Figure 5-35(b). Continuing to use the real and imaginary parts of H(m) to plot additional
phase angles results in the phasors going clockwise around the circle in increments of −33.75°. It’s at
the Hø(6) that we discover the cause of the first discontinuity in Figure 5-35(a). Taking the real and
imaginary parts of H(6), we’d plot our phasor oriented at an angle of −202.5°. But Figure 5-35(a)
shows that Hø(6) is equal to 157.5°. The problem lies in the software routine used to generate the
arctangent values plotted in Figure 5-35(a). The software adds 360° to any negative angles in the
range of −180° > ø ≥ −360°, i.e., angles in the upper half of the circle. This makes ø a positive angle
in the range of 0° < ø ≤ 180° and that’s what gets plotted. (This apparent discontinuity between Hø(5)
and Hø(6) is called phase wrapping.) So the true Hø(6) of −202.5° is converted to a +157.5° as
shown in parentheses in Figure 5-35(b). If we continue our polar plot for additional Hø(m) values,



we’ll see that their phase angles continue to decrease with an angle increment of −33.75°. If we
compensate for the software’s behavior and plot phase angles more negative than −180°, by
unwrapping the phase, we get the true Hø(m) shown in Figure 5-35(c).

Notice that Hø(m) is, indeed, linear over the passband of H(m). It’s at Hø(17) that our particular H(m)
experiences a polarity change of its real part while its imaginary part remains negative—this induces
a true phase-angle discontinuity that really is a constituent of H(m) at m = 17. (Additional phase
discontinuities occur each time the real part of H(m) reverses polarity, as shown in Figure 5-35(c).)
The reader may wonder why we care about the linear phase response of H(m). The answer, an
important one, requires us to introduce the notion of group delay.
Group delay is defined as the negative of the derivative of the phase with respect to frequency, or G =
−dø/df. For FIR filters, then, group delay is the slope of the Hø(m) response curve. When the group
delay is constant, as it is over the passband of all FIR filters having symmetrical coefficients, all
frequency components of the filter input signal are delayed by an equal amount of time G before they
reach the filter’s output. This means that no phase distortion is induced in the filter’s desired output
signal, and this is crucial in communications signals. For amplitude modulation (AM) signals,
constant group delay preserves the time waveform shape of the signal’s modulation envelope. That’s
important because the modulation portion of an AM signal contains the signal’s information.
Conversely, a nonlinear phase will distort the audio of AM broadcast signals, blur the edges of
television video images, blunt the sharp edges of received radar pulses, and increase data errors in
digital communications signals. (Group delay is sometimes called envelope delay because group
delay was originally the subject of analysis due to its effect on the envelope, or modulation signal, of
amplitude modulation AM systems.) Of course we’re not really concerned with the group delay
outside the passband because signal energy outside the passband is what we’re trying to eliminate
through filtering.
Over the passband frequency range for a linear-phase, S-tap FIR filter, group delay has been shown to
be given by

(5-23)

where D = S−1 is the number of unit-delay elements in the filter’s delay line, and ts is the sample
period (1/fs).† This group delay is measured in seconds. Eliminating the ts factor in Eq. (5-23) would
change its dimensions to samples. The value G, measured in samples, is always an integer for odd-tap
FIR filters and a noninteger for even-tap filters.
† As derived in Section 3.4 of reference [16], and page 597 of reference [19].

Although we used a 128-point DFT to obtain the frequency responses in Figures 5-34 and 5-35, we
could just as well have used N = 32-point or N = 64-point DFTs. These smaller DFTs give us the
phase response curves shown in Figures 5-36(a) and 5-36(b). Notice how different the phase
response curves are when N = 32 in Figure 5-36(a) compared to when N = 128 in Figure 5-36(c).
The phase-angle resolution is much finer in Figure 5-36(c). The passband phase-angle resolution, or
increment Δø, is given by

(5-24)



Figure 5-36 FIR filter phase response Hø(m) in degrees: (a) calculated using a 32-point DFT; (b)
using a 64-point DFT; (c) using a 128-point DFT.

where N is the number of points in the DFT. So, for our S = 25-tap filter in Figure 5-34(a), G = 12,
and Δø is equal to −12 · 360°/32 = −135° in Figure 5-36(a), and Δø is −33.75° in Figure 5-36(c). If
we look carefully at the sample values in Figure 5-36(a), we’ll see that they’re all included within the
samples in Figures 5-36(b) and 5-36(c).
Let’s conclude this FIR phase discussion by reiterating the meaning of phase response. The phase, or
phase delay, at the output of an FIR filter is the phase of the first output sample relative to the phase of
the filter’s first input sample. Over the passband, that phase shift, of course, is a linear function of
frequency. This will be true only as long as the filter has symmetrical coefficients. Figure 5-10 is a
good illustration of an FIR filter’s output phase delay.
For FIR filters, the output phase shift measured in degrees, for the passband frequency f = mfs/N, is
expressed as

(5-25)



We can illustrate Eq. (5-25) and show the relationship between the phase responses in Figure 5-36 by
considering the phase delay associated with the frequency of fs/32 in Table 5-2. The subject of group
delay is described further in Appendix F, where an example of envelope delay distortion, due to a
filter’s nonlinear phase, is illustrated.

Table 5-2 Values Used in Eq. (5-25) for the Frequency fs/32

5.9 A Generic Description of Discrete Convolution
Although convolution was originally an analysis tool used to prove continuous signal processing
theorems, we now know that convolution affects every aspect of digital signal processing.
Convolution influences our results whenever we analyze or filter any finite set of data samples from a
linear time-invariant system. Convolution not only constrains DFTs to be just approximations of the
continuous Fourier transform; it is the reason that discrete spectra are periodic in the frequency
domain. It’s interesting to note that, although we use the process of convolution to implement FIR
digital filters, convolution effects induce frequency response ripple, preventing us from ever building
a perfect digital filter. Its influence is so pervasive that to repeal the law of convolution, quoting a
phrase from Dr. Who, would “unravel the entire causal nexus” of digital signal processing.
Convolution has always been a somewhat difficult concept for the beginner to grasp. That’s not too
surprising for several reasons. Convolution’s effect on discrete signal processing is not intuitively
obvious for those without experience working with discrete signals, and the mathematics of
convolution does seem a little puzzling at first. Moreover, in their sometimes justified haste, many
authors present the convolution equation and abruptly start using it as an analysis tool without
explaining its origin and meaning. For example, this author once encountered what was called a
tutorial article on the FFT in a professional journal that proceeded to define convolution merely by
presenting something like that shown in Figure 5-37 with no further explanation!

Figure 5-37 One very efficient, but perplexing, way of defining convolution.



Unfortunately, few beginners can gain an understanding of the convolution process from Figure 5-37
alone. Here, we avoid this dilemma by defining the process of convolution and gently proceed
through a couple of simple convolution examples. We conclude this chapter with a discussion of the
powerful convolution theorem and show why it’s so useful as a qualitative tool in discrete system
analysis.

5.9.1 Discrete Convolution in the Time Domain
Discrete convolution is a process whose input is two sequences and that provides a single output
sequence. Convolution inputs can be two time-domain sequences giving a time-domain output, or two
frequency-domain input sequences providing a frequency-domain result. (Although the two input
sequences must both be in the same domain for the process of convolution to have any practical
meaning, their sequence lengths need not be the same.) Let’s say we have two input sequences h(k) of
length P and x(k) of length Q in the time domain. The output sequence y(n) of the convolution of the
two inputs is defined mathematically as

(5-26)

Let’s examine Eq. (5-26) by way of example, using the h(k) and x(k) sequences shown in Figure 5-38.
In this example, we can write the terms for each y(n) in Eq. (5-26) as
Figure 5-38 Convolution example input sequences: (a) first sequence h(k) of length P = 4; (b) second

sequence x(k) of length Q = 3.



(5-27)

With P = 4 and Q = 3, we need evaluate only 4 + 3 − 1 = 6 individual y(n) terms. Because h(4) and
h(5) are zero, we can eliminate some of the terms in Eq. (5-27) and evaluate the remaining x(n−k)
indices, giving the following expressions for y(n) as

(5-28)

Looking at the indices of the h(k) and x(k) terms in Eq. (5-28), we see two very important things
occurring. First, convolution is merely the summation of a series of products—so the process itself is
not very complicated. Second, notice that, for a given y(n), h(k)’s index is increasing as x(k)’s index
is decreasing. This fact has led many authors to introduce a new sequence x(−k) and use that new
sequence to graphically illustrate the convolution process. The x(−k) sequence is simply our original
x(k) reflected about the 0 index of the k axis as shown in Figure 5-39. Defining x(−k) as such enables
us to depict the products and summations of Eq. (5-28)’s convolution as in Figure 5-40; that is, we
can now align the x(−k) samples with the samples of h(k) for a given n index to calculate y(n). As
shown in Figure 5-40(a), the alignment of h(k) and x(n−k), for n = 0, yields y(0) = 1. This is the result
of the first line in Eq. (5-28) repeated on the right side of Figure 5-40(a). The calculation of y(1), for
n = 1, is depicted in Figure 5-40(b), where x(n−k) is shifted one element to the right, resulting in y(1)
= 3. We continue this x(n−k) shifting and incrementing n until we arrive at the last nonzero
convolution result of y(5) shown in Figure 5-40(f). So, performing the convolution of h(k) and x(k)
comprises

1. plotting both the h(k) and x(k) sequences,
2. flipping the x(k) sequence around the k = 0 sample to obtain x(−k),
3. summing the products of h(k) and x(0−k) for all k to yield y(0),
4. shifting the x(−k) sequence one sample to the right,
5. summing the products of h(k) and x(1−k) for all k to obtain y(1), and
6. continuing to shift x(−k) and sum products until there’s no overlap of h(k) and the shifted x(n−k),

in which case all further y(n) output samples are zero and we’re done.
Figure 5-39 Convolution example input sequence: (a) second sequence x(k) of length 3; (b) reflection

of the second sequence about the k = 0 index.



The full convolution of our h(k) and x(k) is the y(n) sequence on the right side of Figure 5-40(f).
We’ve scanned the x(−k) sequence across the h(k) sequence and summed the products where the
sequences overlap. By the way, notice that the y(n) sequence in Figure 5-40(f) has six elements where
h(k) had a length of four and x(k) was of length three. In the general case, if h(k) is of length P and
x(k) is of length Q, the length of y(n) will have a sequence length of L, where

(5-29)

Figure 5-40 Graphical depiction of the convolution of h(k) and x(k) in Figure 5-38.



At this point, it’s fair for the beginner to ask, “OK, so what? What does this strange convolution
process have to do with digital signal processing?” The answer to that question lies in understanding
the effects of the convolution theorem.

5.9.2 The Convolution Theorem
The convolution theorem is a fundamental constituent of digital signal processing. It impacts our
results anytime we filter or Fourier transform discrete data. To see why this is true, let’s simplify the
notation of Eq. (5-26) and use the abbreviated form

(5-30)

where, again, the “*” symbol means convolution. The convolution theorem may be stated as follows:
If two time-domain sequences h(k) and x(k) have DFTs of H(m) and X(m), respectively, then the DFT
of h(k) * x(k) is the product H(m) · X(m). Likewise, the inverse DFT of H(m) · X(m) is h(k) * x(k).



We can represent this relationship with the expression
(5-31)

Equation (5-31) tells us that two sequences resulting from h(k) * x(k) and H(m) · X(m) are Fourier
transform pairs. So, taking the DFT of h(k) * x(k) always gives us H(m) · X(m). Likewise, we can
determine h(k) * x(k) by taking the inverse DFT of H(m) · X(m). The important point to learn from Eq.
(5-31) is that convolution in the time domain is equivalent to multiplication in the frequency domain.
(We won’t derive the convolution theorem here because its derivation is readily available to the
interested reader[26–29].) To help us appreciate this principle, Figure 5-41 sketches the relationship
between convolution in the time domain and multiplication in the frequency domain.

Figure 5-41 Relationships of the convolution theorem.

We can easily illustrate the convolution theorem by taking 8-point DFTs of h(k) and x(k) to get H(m)
and X(m), respectively, and listing these values as in Table 5-3. (Of course, we have to pad h(k) and
x(k) with zeros, so they both have lengths of 8 to take 8-point DFTs.) Tabulating the inverse DFT of
the product H(m) · X(m) allows us to verify Eq. (5-31), as listed in the last two columns of Table 5-3,
where the acronym IDFT again means inverse DFT. The values from Table 5-3 are shown in Figure
5-42. (For simplicity, only the magnitudes of H(m), X(m), and H(m) · X(m) are shown in the figure.)
We need to become comfortable with convolution in the time domain because, as we’ve learned, it’s
the process used in FIR filters. As detailed in Section 5.2, we perform discrete time-domain FIR
filtering by convolving an input sequence, x(n) say, with the impulse response h(k) of a filter, and for
FIR filters that impulse response happens to also be the filter’s coefficients.† The result of that
convolution is a filtered time-domain sequence whose spectrum is modified (multiplied) by the
filter’s frequency response X(m). Section 13.10 describes a clever scheme to perform FIR filtering
efficiently using the FFT algorithm to implement convolution.
† As we’ll see in Chapter 6, the coefficients used for an infinite impulse response (IIR) filter are not equal to that filter’s impulse
response.



Table 5-3 Convolution Values of h(k) and x(k) from Figure 5-38

Figure 5-42 Convolution relationships of h(k), x(k), H(m), and X(m) from Figure 5-38.

Because of the duality of the convolution theorem, we could have swapped the time and frequency
domains in our discussion of convolution and multiplication being a Fourier transform pair. This
means that, similar to Eq. (5-31), we can also write

(5-32)



So the convolution theorem can be stated more generally as Convolution in one domain is equivalent
to multiplication in the other domain. Figure 5-43 shows the relationship between multiplication in
the time domain and convolution in the frequency domain. Equation (5-32) is the fundamental
relationship used in the process of windowing time-domain data to reduce DFT leakage, as discussed
in Section 3.9.

Figure 5-43 Relationships of the convolution theorem related to multiplication in the time domain.

5.9.3 Applying the Convolution Theorem
The convolution theorem is useful as a qualitative tool in predicting the effects of different operations
in discrete linear time-invariant systems. For example, many authors use the convolution theorem to
show why periodic sampling of continuous signals results in discrete samples whose spectra are
periodic in the frequency domain. Consider the real continuous time-domain waveform in Figure 5-
44(a), with the one-sided spectrum of bandwidth B. Being a real signal, of course, its spectrum is
symmetrical about 0 Hz. (In Figure 5-44, the large right-pointing arrows represent Fourier transform
operations.) Sampling this waveform is equivalent to multiplying it by a sequence of periodically
spaced impulses, Figure 5-44(b), whose values are unity. If we say that the sampling rate is fs
samples/second, then the sample period ts = 1/fs seconds. The result of this multiplication is the
sequence of discrete time-domain impulses shown in Figure 5-44(c). We can use the convolution
theorem to help us predict what the frequency-domain effect is of this multiplication in the time
domain. From our theorem, we now realize that the spectrum of the time-domain product must be the
convolution of the original spectra. Well, we know what the spectrum of the original continuous
waveform is. What about the spectrum of the time-domain impulses? It has been shown that the
spectrum of periodic impulses, whose period is ts seconds, is also periodic impulses in the frequency
domain with a spacing of fs Hz as shown in Figure 5-44(b)[30].

Figure 5-44 Using convolution to predict the spectral replication effects of periodic sampling.



Now, all we have to do is convolve the two spectra. In this case, convolution is straightforward
because both of the frequency-domain functions are symmetrical about the zero-Hz point, and flipping
one of them about zero Hz is superfluous. So we merely slide one of the functions across the other and
plot the product of the two. The convolution of the original waveform spectrum and the spectral
impulses results in replications of the waveform spectrum every fs Hz, as shown in Figure 5-44(c).
This discussion reiterates the fact that the DFT is always periodic with a period of fs Hz.
Here’s another example of how the convolution theorem can come in handy when we try to understand
digital signal processing operations. This author once used the theorem to resolve the puzzling result,
at the time, of a triangular window function having its first frequency response null at twice the
frequency of the first null of a rectangular window function. The question was “If a rectangular time-
domain function of width T has its first spectral null at 1/T Hz, why does a triangular time-domain
function of width T have its first spectral null at 2/T Hz?” We can answer this question by considering
convolution in the time domain.
Look at the two rectangular time-domain functions shown in Figures 5-45(a) and 5-45(b). If their
widths are each T seconds, their spectra are shown to have nulls at 1/T Hz as depicted in the
frequency-domain functions in Figures 5-45(a) and 5-45(b). We know that the frequency magnitude
responses will be the absolute value of the classic sin(x)/x function.† If we convolve those two
rectangular time-domain functions of width T, we’ll get the triangular function shown in Figure 5-
45(c). Again, in this case, flipping one rectangular function about the zero time axis is unnecessary. To
convolve them, we need only scan one function across the other and determine the area of their
overlap. The time shift where they overlap the most happens to be a zero time shift. Thus, our
resultant convolution has a peak at a time shift of zero seconds because there’s 100 percent overlap. If
we slide one of the rectangular functions in either direction, the convolution decreases linearly
toward zero. When the time shift is T/2 seconds, the rectangular functions have a 50 percent overlap.
The convolution is zero when the time shift is T seconds—that’s when the two rectangular functions
cease to overlap.



† The sin(x)/x function was introduced in our discussion of window functions in Section 3.9 and is covered in greater detail in Section
3.13.

Figure 5-45 Using convolution to show that the Fourier transform of a triangular function has its first
null at twice the frequency of the Fourier transform of a rectangular function.

Notice that the triangular convolution result has a width of 2T, and that’s really the key to answering
our question. Because convolution in the time domain is equivalent to multiplication in the frequency
domain, the Fourier transform magnitude of our 2T-width triangular function is the |sin(x)/x| in Figure
5-45(a) times the |sin(x)/x| in Figure 5-45(b), or the (sin(x)/x)2 function in Figure 5-45(c). If a
triangular function of width 2T has its first frequency-domain null at 1/T Hz, then the same function of
width T must have its first frequency null at 2/T Hz as shown in Figure 5-45(d), and that’s what we
set out to show. Comparison of Figures 5-45(c) and 5-45(d) illustrates a fundamental Fourier
transform property that compressing a function in the time domain results in an expansion of its
corresponding frequency-domain representation.
We cannot overemphasize the importance of the convolution theorem as an analysis tool. As an aside,
for years I thought convolution was a process developed in the second half of the twentieth century to
help us analyze discrete-time signal processing systems. Later I learned that statisticians had been
using convolution since the late 1800s. In statistics the probability density function (PDF) of the sum



of two random variables is the convolution of their individual PDFs.

5.10 Analyzing FIR Filters
There are two popular ways to analyze tapped-delay line, nonrecursive FIR filters. The first way uses
continuous-time Fourier algebra, and the second way uses the discrete Fourier transform. (By
“analyze an FIR filter” we mean determining the FIR filter’s frequency response based on known
filter coefficients.) Let’s quickly review the two FIR filter analysis methods.

5.10.1 Algebraic Analysis of FIR Filters
The algebraic method used to analyze nonrecursive FIR filters uses the discrete-time Fourier
transform (DTFT) equation. Linear system theory tells us that the frequency response of a linear
system (our filter) is the Fourier transform of that system’s impulse response. Because a tapped-delay
line FIR filter’s impulse response is equal to its coefficient values, we proceed by expressing the
Fourier transform of the filter’s coefficients. In Section 3.14 we learned that we can describe the
continuous Fourier transform of a discrete sequence using the DTFT expressed as

(5-33)

Modifying Eq. (5-33)’s notation to correspond to the DTFT of an FIR filter having N coefficients
(impulse response) represented by h(k), where index k = 0, 1, 2, ..., N−1, we can express the filter’s
complex frequency response as

(5-34)

H(ω) is an (N−1)th-order polynomial, and this is why, for example, a 6-tap FIR filter is often called a
5th-order FIR filter. In Eq. (5-34) the digital frequency variable ω is continuous and ranges from 0 to
2π radians/sample, corresponding to a continuous-time frequency range of 0 to fs Hz.

Let’s see how Eq. (5-34) is used to determine the frequency response of an FIR filter. Assume we
have a 4-tap FIR filter whose coefficients are h(k) = [0.2, 0.4, 0.4, 0.2]. In this case our continuous
H(ω) equation becomes

(5-35)

We can, if we wish, write the complex 3rd-order Eq. (5-35) in rectangular form as
(5-36)



Evaluating Eq. (5-35), or Eq. (5-36), and plotting the magnitude of the continuous complex H(ω)
function results in the curve in Figure 5-46(a). To compute the continuous Hø(ω) phase function, we
merely take the arctangent of the ratio of the imaginary part over the real part of H(ω), yielding the
Hø(ω) phase response in Figure 5-46(b).

Figure 5-46 FIR filter frequency response: (a) magnitude; (b) phase.

In practice, evaluating Eq. (5-34) would be performed using some sort of commercial math software,
where code must be written to compute a sampled version of the continuous H(ω). Rather than writing
the code to implement Eq. (5-34), fortunately we can conveniently compute an FIR filter’s H(ω)
frequency response using software that performs the discrete Fourier transform. That’s the subject we
discuss next.

5.10.2 DFT Analysis of FIR Filters
The most convenient way to determine an FIR filter’s frequency response is to perform the discrete
Fourier transform (DFT) of the filter’s coefficients. This analysis method is popular because the DFT
is built into most commercial signal processing software packages such as MathCAD, LabView,
MATLAB, etc. (In fact, in a pinch, we can even compute DFTs with Microsoft Excel.) The DFT of an
FIR filter’s coefficients is computed using

(5-37)

which we normally implement with the high-speed fast Fourier transform (FFT) algorithm. Variables
m and n both range from 0 to N-1.
Ah, but there’s trouble in paradise because Eq. (5-37) poses a problem. If we perform a 4-point DFT
of the above 4-tap FIR filter coefficients, h(k) = [0.2, 0.4, 0.4, 0.2] as shown in Figure 5-47(a), we
obtain the |H(m)| samples in Figure 5-47(b). That |H(m)| sequence reveals very little about the
frequency response of the 4-tap FIR filter. We need more |H(m)| frequency-domain information. That
is, we need improved frequency resolution.

Figure 5-47 Four-tap FIR filter: (a) impulse response; (b) 4-point DFT frequency magnitude
response.



Fortunately we can obtain a finer-granularity version of H(m) by zero padding the h(k) coefficients
with zero-valued samples and performing a larger-sized DFT. Figure 5-48(a) shows the 4-tap FIR
filter’s coefficients padded with 60 zero-valued samples. Performing a 64-point DFT on that padded
h(k) sequence yields the higher-resolution discrete |H(m)| magnitude response sequence shown in
Figure 5-48(b). Sequence |H(m)| is, of course, computed using

(5-38)

Figure 5-48 High-resolution FIR filter frequency response: (a) zero-padded h(k); (b) discrete
magnitude response; (c) phase response.

where Hreal(m) and Himag(m) are the real and imaginary parts computed using Eq. (5-37). The circular
white dots in Figure 5-48(b) correspond to the square dots in Figure 5-47(b).



Remember, now, a filter’s complex H(m) frequency response sequence is
(5-38′)

comprising a real-valued |H(m)| magnitude response times a complex ejHø(m) phase response. The
real-valued phase-angle samples, shown in Figure 5-48(c), are computed using

(5-39)

So, our FIR filter analysis rule of thumb is to append a sequence of zero-valued samples (whose
length is, say, 10N) to an N-tap filter’s h(k) impulse response. Appending those zero-valued samples
is called zero padding the h(k) sequence. Next we compute the DFT of that padded sequence. Of
course the final zero-padded sequence should have a length that is an integer power of two so that we
can use the FFT to compute the high-resolution H(m).
By the way, it doesn’t matter if the zero-valued samples are placed before or after the original h(k)
coefficients prior to performing the DFT. The computed high-resolution |H(m)| magnitude sequence
will be the same in either case, and the resulting Hø(m) phase samples in the two cases will differ
only by a constant phase angle. (The DFT shifting theorem discussed in Section 3.6 explains why this
is true.)

5.10.3 FIR Filter Group Delay Revisited
We mentioned in Section 5.8 how a constant time delay, what we formally refer to as group delay,
through a filter was crucial in many applications. A constant group delay means a filter has a linear
phase response over its passband and will induce no phase distortion in its output signals. Here we
explore the concept of group delay a bit further.
The group delay, as a function of frequency, of a filter having a frequency response of H(ω) =
|H(ω)|ejHø(ω) is the negative of the derivative of the filter’s Hø(ω) phase response with respect to
frequency ω and is expressed as

(5-40)

where digital frequency ω is continuous and ranges from −π to π radians/sample, corresponding to a
continuous-time frequency range of −fs/2 to fs/2 Hz. Because the dimensions of Hø(ω) are radians,
and the dimensions of ω are radians/sample, the dimensions of group delay G(ω) are time measured
in samples. We graphically depict the notion of the group delay, for a lowpass filter, in Figure 5-49.

Figure 5-49 FIR filter group delay derived from a filter’s phase response.



For example, the complex-valued frequency response of a K-tap moving average filter is
(5-41)

where the subscript “ma” means moving average. As such, from Eq. (5-41) the phase response of a K
= 5-tap moving average filter is

(5-42)

Using Eq. (5-40), the group delay of a K = 5-tap moving average filter is
(5-43)

Luckily for us, Eq. (5-40) becomes very simple to evaluate if an N-tap FIR filter’s h(k) coefficients
(impulse response samples) are symmetrical. By “symmetrical” we mean h(k) coefficients that abide
by

(5-44)

where 0≤k≤(N−1)/2 when N is odd, and 0≤k≤(N/2)−1 when N is even. Equation (5-44) merely means
that the first coefficient equals the last coefficient, the second coefficient equals the next to the last
coefficient, and so on. All of the FIR filters we’ve discussed, so far, fall into this category.
OK, here’s the point we’re making. For symmetrical-coefficient FIR filters that comply with Eq. (5-
44), their group delay is simple to compute. The group delay of such filters, measured in samples, is a
constant equal to half the number of delay elements in the filter’s tapped-delay line structure. That is,

(5-45)

where D is the number of unit-delay elements in the filter’s delay line. Measured in seconds, a
symmetrical FIR filter’s group delay is

(5-46)



where ts is the reciprocal of the filter’s fs input signal sample rate.

We can now make the following all-encompassing statement: The group delay of a tapped-delay line
FIR digital filter, whose impulse response is symmetric, is equal to

(5-47)

For our purposes, we view a linear-phase FIR filter’s group delay as simply the time delay through
the filter. That is, if the group delay of a filter is G samples, then the filter’s output sequence is
delayed by G samples relative the filter’s input sequence.
It’s worth mentioning at this point that although we have not yet discussed such filter networks, if a
tapped-delay line (FIR) network has an antisymmetrical impulse response defined by

(5-48)

where 0≤k≤(N−1)/2 when N is odd and 0≤k≤(N/2)−1 when N is even, such a network also has a
linear phase response and its group delay is also described by Eq. (5-47). Digital differentiators and
Hilbert transformers, discussed in later chapters, fall into this category.
At this point, looking at Eq. (5-45), the DSP novice may wonder, “If D is an odd number, how is it
possible to have a discrete signal sequence delayed by a noninteger number of samples?” The answer
to this sensible question is illustrated in Figure 5-50, where x(n) is a sinusoidal sequence applied to a
symmetrical FIR filter having 6 taps (D = 5 delay elements in the tapped-delay line). There we see
that the sinusoidal sequence is preserved at the filter’s y(n) output and delayed relative to input x(n)
by a group delay value of exactly 5/2 samples. In the lingo of digital filters, the behavior in Figure 5-
50 is called fractional delay.

Figure 5-50 Group delay of a 6-tap (5 delay elements) FIR filter.

Again, constant group delay—linear phase—is a desirable filter property because the spectral
components in the filter’s output signal will suffer no phase distortion. Stated in different words: all



spectral components within a linear-phase filter’s passband will be delayed by the same amount of
time as they pass through the filter. If a linear-phase filter’s input is a complicated digital
communications signal, rich in spectral-phase complexity representing digital data, the spectral-phase
relationships and the digital data are preserved undistorted at the filter’s output. Their linear-phase
property is the reason we use FIR filters!

5.10.4 FIR Filter Passband Gain
One FIR filter property that is of interest is the filter’s passband gain. The standard definition of
passband gain is that it is the filter’s passband magnitude response level around which the passband
ripple fluctuates, as shown by the lowpass filter in Figure 5-51 where the passband gain equals unity.
In practice we design filters to have very small passband ripple, so a lowpass filter’s passband gain
is roughly equal to its DC gain (gain at zero Hz), which is the sum of the filter’s impulse response
sequence, i.e., the sum of the FIR filter’s coefficients. (We leave the proof of this as a homework
problem.) Most commercial FIR filter design software packages compute filter coefficients such that
their passband gain is unity.

Figure 5-51 FIR filter passband gain definition.

5.10.5 Estimating the Number of FIR Filter Taps
Our final topic regarding the analysis of FIR filters is: How do we estimate the number of filter taps
(coefficients), N, that can satisfy a given frequency magnitude response of an FIR filter? Several
authors have proposed empirical relationships for estimating N for traditional tapped-delay line
lowpass FIR filters based on the desired passband ripple, stopband attenuation, and transition region
width[24,31–33]. A particularly simple expression proposed by Prof. Fred Harris for N, giving
results consistent with other estimates for passband ripple values near 0.1 dB, is

(5-49)

where Atten is the filter’s desired stopband attenuation measured in dB, and fpass and fstop are
frequencies normalized to the fs sample rate in Hz as illustrated in Figure 5-52. For example, fpass =
0.2 means that the continuous-time frequency of fpass is 0.2fs Hz.

Figure 5-52 Example FIR filter frequency definitions.



As an example, let’s obtain a rough estimate of the number of lowpass FIR filter taps (coefficients)
needed to achieve the magnitude response shown in Figure 5-52. Assuming fs = 1000 Hz, we want the
end of a lowpass filter’s passband to be at 250 Hz, the beginning of the stopband is 350 Hz, and we
need a stopband attenuation of 48 dB. Applying those values to Eq. (5-49), we have

(5-50)

Taking the integer closest to 21.8, i.e., 22, we then state that the lowpass filter in Figure 5-52 can be
built using a 22-tap FIR filter. We’ll use Eq. (5-49) many times in later chapters of this book.
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Chapter 5 Problems
5.1 We first introduced the notion of impulse response in Chapter 1, and here in Chapter 5 we

discussed the importance of knowing the impulse response of FIR filter networks. With that said, if
the y(n) output of a discrete system is equal to the system’s x(n) input sequence:
(a) Draw the unit impulse response of such a system.
(b) Draw the block diagram (structure) of that system.
(c) What is the frequency magnitude response of such a system? Prove your answer.

5.2 Consider a simple analog signal defined by x(t) = cos(2π800t) shown in Figure P5-2. The FIR
lowpass filter has a passband extending from −400 Hz to +400 Hz, a passband gain of unity, a
transition region width of 20 Hz, and a stopband attenuation of 60 dB.
(a) Draw the spectral magnitude of x(n) showing all spectral components in the range of −2fs to

+2fs.

(b) Draw the spectral magnitude of y(n) showing all spectral components in the range of −2fs to
+2fs.

(c) What is the time-domain peak amplitude of the sinusoidal y(n) output?
Figure P5-2

5.3 Assume we want to filter the audio signal from a digital video disc (DVD) player as shown in
Figure P5-3. The filtered audio signal drives, by way of a digital-to-analog (D/A) converter, a
speaker. For the audio signal to have acceptable time synchronization with the video signal, video
engineers have determined that the time delay of the filter must be no greater than 6×10−3 seconds.
If the fs sample rate of the audio is 48 kHz, what is the maximum number of taps in the FIR filter
that will satisfy the time delay restriction? (Assume a linear-phase FIR filter, and zero time delay
through the D/A converter.)

Figure P5-3



5.4 There are times when we want to build a lowpass filter and a highpass filter that are
complementary. By “complementary” we mean that a highpass filter’s passband covers the
frequency range defined by a lowpass filter’s stopband range. This idea is illustrated in Figure P5-
4(a). An example of such filters is an audio system, shown in Figure P5-4(b), where the low-
frequency spectral components of an x(n) audio signal drive, by way of a digital-to-analog (D/A)
converter, a low-frequency speaker (woofer). Likewise, the high-frequency spectral components of
x(n) drive a high-frequency speaker (tweeter). Audio enthusiasts call Figure P5-4(b) a “crossover”
network. Assuming that the lowpass filter is implemented with a 15-tap FIR filter whose hLow(k)
coefficients are those in Figure P5-4(c), the complementary highpass filter will have the
coefficients shown in Figure P5-4(d). Highpass coefficients hHigh(k) are defined by

Figure P5-4

Here is the problem: Draw a block diagram of a system that performs the process in P5-4(b) where
only the hLow(k) lowpass FIR filter need be implemented.

5.5 Think about a discrete System A, shown in Figure P5-5, that has an undesirable amplitude (gain)



loss by a factor 0.5 (−6 dB), whose output requires lowpass linear-phase filtering. What can we do
in the design of the lowpass FIR filter so the filter has an amplitude gain of 2 to compensate for
System A’s amplitude loss?

Figure P5-5

5.6 Let’s assume we have an x(n) time sequence, whose fs sample rate is 20 kHz, and its |X(f)|
spectral magnitude is that shown in Figure P5-6(a). We are required to design a linear-phase
lowpass FIR filter that will attenuate the undesired high-frequency noise indicated in Figure P5-
6(a). So we design a lowpass FIR filter whose frequency magnitude response is the |H(f)| shown in
Figure P5-6(b) and assume our filter design exercise is complete. Sometime later, unfortunately,
we learn that the original x(n) sequence’s sample rate was not 20 kHz, but is in fact 40 kHz.

Figure P5-6

Here is the problem: What must we do to our lowpass filter’s h(k) coefficients, originally designed
based on a 20 kHz sample rate, so that they will still attenuate x(n)’s undesired high-frequency
noise when the fs sample rate is actually 40 kHz?

5.7 Here is an interesting little problem. Think about applying the sinusoidal input sequence shown in
Figure P5-7(a) to an 8-point moving average FIR filter. The filter’s output sequence is that
depicted in Figure P5-7(b).

Figure P5-7



(a) What characteristic of the filter’s frequency response causes the filter’s output sequence to go
to all zeros as shown in Figure P5-7(b)?

(b) In Figure P5-7(b), what do we call those initial nonzero-valued filter output samples?
5.8 Are abrupt (sudden) changes in the amplitude of a continuous, or discrete, signal associated with

low or high frequencies?
5.9 Consider an FIR filter whose impulse response is shown in Figure P5-9(a). Given the x(n) filter

input sequence shown in Figure P5-9(b):
(a) What is the length, measured in samples, of the nonzero-valued samples of the filter’s output

sequence?
(b) What is the maximum sample value of the filter’s output sequence?

Figure P5-9

5.10 Consider an FIR filter whose impulse response is that shown in Figure P5-10(a). Given the x(n)
filter input sequence shown in Figure P5-10(b), draw the filter’s output sequence.

Figure P5-10



5.11 Regarding the material in this chapter, it’s educational to revisit the idea of periodic sampling
that was presented in Chapter 2. Think about a continuous x(t) signal in Figure P5-11(a) whose
spectrum is depicted in Figure P5-11(b). Also, consider the continuous periodic infinitely narrow
impulses, s(t), shown in Figure P5-11(c). Reference [28] provides the algebraic acrobatics to
show that the spectrum of s(t) is the continuous infinitely narrow impulses, S(f), shown in Figure
P5-11(d). If we multiply the x(t) signal by the s(t) impulses, we obtain the continuous y(t) = s(t)x(t)
impulse signal shown by the arrows in Figure P5-11(e).

Figure P5-11

Now, if we use an analog-to-digital converter to represent those y(t) impulse values as a sequence
of discrete samples, we obtain the y(n) sequence shown in Figure P5-11(f). Here is the problem:
Briefly discuss what we learned in this Chapter 5 that tells us the spectrum of the y(n) samples
comprises periodic replications of the X(f) in Figure P5-11(b). Your brief discussion should
confirm the material in Chapter 2 which stated that discrete-time sequences have periodic
(replicated) spectra.

5.12 Now that we’re familiar with the powerful convolution theorem, think about the discrete system
shown in Figure P5-12(a).

Figure P5-12

Given that x(n)’s spectrum is the X(m) shown in Figure P5-12(b):
(a) Draw the Y(m) spectrum of sequence y(n). (We’re not worried about the vertical axis scale

here, merely the frequency axis and spectral shape of Y(m).)

(b) Will aliasing errors occur in the y(n) = x(n)2 output? (That is, will spectral replications in Y(m)



overlap each other?)
(c) What is x(n)’s maximum one-sided bandwidth that will avoid aliasing errors in y(n)? (Stated in

different words, what is the maximum one-sided bandwidth of x(n) that will avoid overlapped
spectral replications in Y(m)?)

5.13 It’s likely that you have heard of the process called linear interpolation. It’s a computationally
simple (but not terribly accurate) scheme for estimating sample values of a continuous function in
between some given x(n) sample values of that function. For the x(n) time samples in Figure P5-
13(a), linear interpolation is the process of computing the intermediate y(n) samples shown as the
black squares in Figure P5-13(b). That is, the interpolated sample y(1) is the value lying on the
center of the straight line connecting x(0) and x(1), the interpolated sample y(2) is the value lying
on the center of the straight line connecting x(1) and x(2), and so on. Given this process of linear
interpolation:
(a) What is the equation defining y(n) in terms of the x(n) samples?
(b) The implementation of linear interpolation is often called a filter because we build

interpolators using tapped-delay line structures, just like standard FIR filter structures. Draw the
block diagram of a linear interpolation filter that computes y(n) from the input x(n) sequence.

Figure P5-13

5.14 Consider a linear-phase lowpass FIR filter whose coefficients are
h1(k) = [−0.8, 1.6, 25.5, 47, 25.5, 1.6, −0.8],

and whose DC gain, H1(0), is equal to 99.6. If we change those coefficients to

h2(k) = [−0.8, 1.6, Q, 47, Q, 1.6, −0.8],

we obtain a new DC gain equal to 103.6. What is the value of Q?
5.15 Figure P5-15 shows a linear-phase 5-tap FIR filter.

Figure P5-15



DSP engineers always seek to reduce the number of multipliers in their systems. Redesign the filter
in Figure P5-15 to a form that reduces the number of necessary multiplications per output sample.
Draw the block diagram of your new design.
Hint: Write the difference equation for the y(n) output sequence, and recall the relationships
between the filter’s coefficients.

5.16 The two linear-phase lowpass filters in Figure P5-16 have very similar frequency responses, but
those responses are not identical except at a single frequency. If we replaced Filter h1 with Filter
h2 to reduce our filtering computational workload, determine the frequency, ωo, where the two
H1(ω) and H2(ω) frequency responses are equal.

Hint: Begin by creating closed-form equations for H1(ω) and H2(ω) using the discrete-time Fourier
transform (DTFT).

Figure P5-16

5.17 The following is a useful problem regarding the 3-tap nonrecursive FIR filter shown in Figure
P5-17(a). The problem’s solution shows us how to design computationally efficient narrowband-
noise reduction filters. If |h1| ≤ 2, the filter will have an |H(ω)| frequency magnitude response
having two nulls at ±ωn as shown in Figure P5-17(b). (Here, the frequency axis value of π
radians/sample corresponds to a cyclic frequency of half the sample rate, fs/2.)

(a) Assume we have a low-frequency signal of interest that’s contaminated with high-level
narrowband noise located at ±3.35 MHz when the sample rate is fs = 8.25 MHz as shown in
Figure P5-17(c). To attenuate that noise, for what value of h1 will the 3-tap FIR filter’s nulls be
located at the noise center frequency of ±3.35 MHz? Show your work.
Hint: Use the discrete-time Fourier transform (DTFT) of the filter’s impulse response to create a
closed-form equation for the filter’s H(ω) frequency response in terms of the coefficient h1 and
frequency ω. Next, obtain the expression for h1 in terms of the filter’s null frequency ωn.

(b) What is the DC gain (gain at zero Hz) of our 3-tap FIR filter?
(c) Explain why the filter has a linear, or nonlinear, phase response.



Figure P5-17

5.18 What characteristic must the coefficients of an FIR filter have to ensure that its frequency-
domain phase response is a linear function of frequency (i.e., linear phase)?

5.19 Quickfilter Technologies Inc. produces a tapped-delay line FIR filter chip (Part #QF1D512) that
has an astounding N = 512 taps. When a new filter input sample is applied to the chip, how many
addition operations must this chip perform to compute a single filter output sample?

5.20 Intersil Corp. produces an HSP5021 down-converter integrated circuit containing a
symmetrical-coefficient FIR filter having 255 taps. If the down-converter chip’s input signal
sample rate is fs = 8 MHz, what is the group delay (delay through the filter) of their 255-tap FIR
filter measured in samples?

5.21 Assume we have digitized an analog signal at an fs sample rate of 2×106 samples/second. Next
we pass the samples through a 70-tap linear-phase lowpass FIR filter whose cutoff frequency (end
of the passband) is 600 kHz. What would be the time delay, measured in seconds, between the
lowpass filter’s input and output for a sinusoidal tone whose frequency is 200 kHz?

5.22 Think about two linear-phase FIR filters whose frequency magnitude responses are shown in
Figure P5-22.

Figure P5-22

(a) Let’s assume that filter H1(f) is a 17-tap FIR filter. What is the group delay of this linear-phase
filter measured in samples?

(b) Next, let’s assume that filter H2(f) is a 17-tap half-band FIR filter. H2(f), like all half-band FIR



filters, has a gain of 0.5 at the frequency f = fs/4. What is the group delay of this linear-phase
H2(f) filter, measured in samples?

5.23 Reverberation, a kind of echo, is a popular audio effect applied to guitar music. (Most
commercial electric guitar amplifiers have a reverberation capability.) In the world of continuous
signals reverberation is implemented with an analog delay line as shown in Figure P5-23(a). That
analog delay line is typically a kind of speaker at one end of a coiled metal spring, and a kind of
microphone at the other end of the spring. However, analog reverberation units have no convenient
way to control the amount of time delay, and unfortunately their hardware is physically large.

Figure P5-23

Making use of digital signal processing on the other hand, the process of reverberation seems easy
to implement using a delay line network like that shown in Figure P5-23(b). For the digital
reverberation process to be usable, however, it must have a constant gain, where

over the full operating frequency range of the system. That is, we want our reverberator to have a
flat frequency magnitude response. (By “Gain” we mean the steady-state gain after the delay line is
filled with input samples.)
(a) Assume we have the Figure P5-23(b) delay line with N = 8 delay elements. What is the N = 8

digital reverberator’s h(n) time-domain impulse response?
(b) What is the equation for the digital reverberator’s |H(ω)| frequency magnitude response?

Hint: Use what you learned in Section 3.14, and don’t forget your trigonometric identities.
(c) Draw a rough sketch of the |H(ω)| frequency magnitude response from Part (b). (This curve

shows us how well simple digital delay-line reverberators work.)
5.24 There are digital filtering schemes that use the process conceptually shown in Figure P5-24(a).

In that parallel-path filter the x(n) input is filtered to generate sequence w(n). The network’s y(n)
output is the x(n) input sequence minus the w(n) sequence. The w(n) sequence is defined by

w(n) = x(n) + 2x(n−2) + x(n−4).
Figure P5-24



The actual implementation of such a parallel-path filter is shown in Figure P5-24(b) where the
multi-element delay line in the upper path of Figure P5-24(b) is needed for time alignment to
compensate for the time delay of the bottom-path FIR filter. How many unit-delay elements must be
used in the upper path in Figure P5-24(b)?

5.25 As we stated in Section 5.10, a lowpass FIR filter’s frequency magnitude response at zero Hz
(DC) is equal to the sum of the filter’s impulse response samples (sum of the filter’s coefficients).
Prove this important lowpass FIR filter property.

5.26 Although we didn’t state it explicitly in the text, the continuous frequency magnitude response of
a symmetrical 7-tap FIR filter (for example, an FIR filter whose h(k) coefficients are indexed as
shown in Figure P5-26) can be computed using

Figure P5-26

(The normalized frequency range is −π ≤ ω ≤ π where ω is a continuous normalized angle with ω =
π corresponding to a cyclic frequency of fs/2 Hz.) There are two reasons we introduce the above
|H(ω)| expression:
• Such |H(ω)| equations can be used to compute the magnitude responses of linear-phase FIR
filters, having an odd number of taps, when no FFT software routine is available.

• You won’t be surprised when you see, in the literature of DSP, FIR filter frequency magnitude
response equations such as the above summation of cosine functions.

Derive the general equation for the |H(ω)| for an N-tap symmetrical FIR filter’s magnitude
response, when N is odd. Show your work.
Hint: Use what you learned in Section 3.14, and pay careful attention to the range of the k index in
Figure P5-26. Notice how h(0) is the center coefficient! Also, don’t forget our friend Leonhard
Euler.



5.27 Assume a commercial data acquisition device has the ability to implement a 191-tap digital FIR
filter. What is the narrowest transition region width (fstop − fpass), stated in terms of fs, we can
expect to achieve for a lowpass FIR filter using this device if we desire at least 55 dB of stopband
attenuation?

5.28 Texas Instruments Inc. produces a video processing chip (Part #TMS320DM646x) containing the
FIR filter shown in Figure P5-28. Coefficient b, defined by the user, controls the frequency
magnitude response of the filter.
(a) What is the time-domain difference equation for the filter?
(b) Does the filter have a linear-phase frequency response? Justify your answer.
(c) What is the group delay of the filter measured in samples?

Figure P5-28

5.29 Here is a fun problem proving that you have actually been performing convolutions since you
were a child. Show how the multiplication (computing the product) of the two numbers 24 and 13
can be performed by convolving their digits.





Chapter Six. Infinite Impulse Response Filters

Infinite impulse response (IIR) digital filters are fundamentally different from FIR filters because
practical IIR filters always require feedback. Where FIR filter output samples depend only on past
input samples, each IIR filter output sample depends on previous input samples and previous filter
output samples. IIR filters’ memory of past outputs is both a blessing and a curse. As in all feedback
systems, perturbations at the IIR filter input could, depending on the design, cause the filter output to
become unstable and oscillate indefinitely. This characteristic of possibly having an infinite duration
of nonzero output samples, even if the input becomes all zeros, is the origin of the phrase infinite
impulse response. It’s interesting at this point to know that, relative to FIR filters, IIR filters have
more complicated structures (block diagrams), are harder to design and analyze, and do not have
linear phase responses. Why in the world, then, would anyone use an IIR filter? Because they are very
efficient. IIR filters require far fewer multiplications per filter output sample to achieve a given
frequency magnitude response. From a hardware standpoint, this means that IIR filters can be very
fast, allowing us to build real-time IIR filters that operate over much higher sample rates than FIR
filters.†
† At the end of this chapter, we briefly compare the advantages and disadvantages of IIR filters relative to FIR filters.

To illustrate the utility of IIR filters, Figure 6-1 contrasts the frequency magnitude responses of what’s
called a 4th-order lowpass IIR filter and the 19-tap FIR filter of Figure 5-19(b) from Chapter 5.
Where the 19-tap FIR filter in Figure 6-1 requires 19 multiplications per filter output sample, the 4th-
order IIR filter requires only 9 multiplications for each filter output sample. Not only does the IIR
filter give us reduced passband ripple and a sharper filter roll-off, it does so with less than half the
multiplication workload of the FIR filter.

Figure 6-1 Comparison of the frequency magnitude responses of a 19-tap lowpass FIR filter and a
4th-order lowpass IIR filter.

Recall from Section 5.3 that to force an FIR filter’s frequency response to have very steep transition
regions, we had to design an FIR filter with a very long impulse response. The longer the impulse
response, the more ideal our filter frequency response will become. From a hardware standpoint, the



maximum number of FIR filter taps we can have (the length of the impulse response) depends on how
fast our hardware can perform the required number of multiplications and additions to get a filter
output value before the next filter input sample arrives. IIR filters, however, can be designed to have
impulse responses that are longer than their number of taps! Thus, IIR filters can give us much better
filtering for a given number of multiplications per output sample than FIR filters. With this in mind,
let’s take a deep breath, flex our mathematical muscles, and learn about IIR filters.

6.1 An Introduction to Infinite Impulse Response Filters
Given a finite duration of nonzero input values, an IIR filter will have an infinite duration of nonzero
output samples. So, if the IIR filter’s input suddenly becomes a sequence of all zeros, the filter’s
output could conceivably remain nonzero forever. This peculiar attribute of IIR filters comes about
because of the way they’re realized, i.e., the feedback structure of their delay units, multipliers, and
adders. Understanding IIR filter structures is straightforward if we start by recalling the building
blocks of an FIR filter. Figure 6-2(a) shows the now familiar structure of a 4-tap FIR digital filter that
implements the time-domain FIR equation

(6-1)

Figure 6-2 FIR digital filter structures: (a) traditional FIR filter structure; (b) rearranged, but
equivalent, FIR filter structure.

Although not specifically called out as such in Chapter 5, Eq. (6-1) is known as a difference
equation. To appreciate how past filter output samples are used in the structure of IIR filters, let’s



begin by reorienting our FIR structure in Figure 6-2(a) to that of Figure 6-2(b). Notice how the
structures in Figure 6-2 are computationally identical, and both are implementations, or realizations,
of Eq. (6-1).
We can now show how past filter output samples are combined with past input samples by using the
IIR filter structure in Figure 6-3. Because IIR filters have two sets of coefficients, we’ll use the
standard notation of the variables b(k) to denote the feedforward coefficients and the variables a(k)
to indicate the feedback coefficients in Figure 6-3. OK, the difference equation describing the IIR
filter in Figure 6-3 is

Figure 6-3 IIR digital filter structure showing feedforward and feedback calculations.

(6-2)

Look at Figure 6-3 and Eq. (6-2) carefully. It’s important to convince ourselves that Figure 6-3 really
is a valid implementation of Eq. (6-2) and that, conversely, difference equation Eq. (6-2) fully
describes the IIR filter structure in Figure 6-3. Keep in mind, now, that the sequence y(n) in Figure 6-
3 is not the same y(n) sequence that’s shown in Figure 6-2. The d(n) sequence in Figure 6-3 is equal
to the y(n) sequence in Figure 6-2.
By now you’re probably wondering, “Just how do we determine those a(k) and b(k) IIR filter
coefficients if we actually want to design an IIR filter?” Well, fasten your seat belt because this is
where we get serious about understanding IIR filters. Recall from the last chapter concerning the
window method of lowpass FIR filter design that we defined the frequency response of our desired
FIR filter, took the inverse Fourier transform of that frequency response, and then shifted that
transform result to get the filter’s time-domain impulse response. Happily, due to the nature of
transversal FIR filters, the desired h(k) filter coefficients turned out to be exactly equal to the impulse
response sequence. Following that same procedure with IIR filters, we could define the desired
frequency response of our IIR filter and then take the inverse Fourier transform of that response to



yield the filter’s time-domain impulse response. The bad news is that there’s no direct method for
computing the IIR filter’s a(k) and b(k) coefficients from the impulse response! Unfortunately, the FIR
filter design techniques that we’ve learned so far simply cannot be used to design IIR filters.
Fortunately for us, this wrinkle can be ironed out by using one of several available methods of
designing IIR filters.
Standard IIR filter design techniques fall into three basic classes: the impulse invariance, bilinear
transform, and optimization methods. These design methods use a discrete sequence, mathematical
transformation process known as the z-transform whose origin is the Laplace transform traditionally
used in the analyzing of continuous systems. With that in mind, let’s start this IIR filter analysis and
design discussion by briefly reacquainting ourselves with the fundamentals of the Laplace transform.

6.2 The Laplace Transform
The Laplace transform is a mathematical method of solving linear differential equations that has
proved very useful in the fields of engineering and physics. This transform technique, as it’s used
today, originated from the work of the brilliant English physicist Oliver Heaviside.† The fundamental
process of using the Laplace transform goes something like the following:
† Heaviside (1850–1925), who was interested in electrical phenomena, developed an efficient algebraic process of solving differential
equations. He initially took a lot of heat from his contemporaries because they thought his work was not sufficiently justified from a
mathematical standpoint. However, the discovered correlation of Heaviside’s methods with the rigorous mathematical treatment of the
French mathematician Marquis Pierre Simon de Laplace’s (1749–1827) operational calculus verified the validity of Heaviside’s
techniques.

Step 1: A time-domain differential equation is written that describes the input/output relationship of a
physical system (and we want to find the output function that satisfies that equation with a given
input).

Step 2: The differential equation is Laplace transformed, converting it to an algebraic equation.
Step 3: Standard algebraic techniques are used to determine the desired output function’s equation in

the Laplace domain.
Step 4: The desired Laplace output equation is, then, inverse Laplace transformed to yield the

desired time-domain output function’s equation.
This procedure, at first, seems cumbersome because it forces us to go the long way around, instead
of just solving a differential equation directly. The justification for using the Laplace transform is that
although solving differential equations by classical methods is a very powerful analysis technique for
all but the most simple systems, it can be tedious and (for some of us) error prone. The reduced
complexity of using algebra outweighs the extra effort needed to perform the required forward and
inverse Laplace transformations. This is especially true now that tables of forward and inverse
Laplace transforms exist for most of the commonly encountered time functions. Well-known
properties of the Laplace transform also allow practitioners to decompose complicated time functions
into combinations of simpler functions and, then, use the tables. (Tables of Laplace transforms allow
us to translate quickly back and forth between a time function and its Laplace transform—analogous
to, say, a German-English dictionary if we were studying the German language.†) Let’s briefly look at
a few of the more important characteristics of the Laplace transform that will prove useful as we
make our way toward the discrete z-transform used to design and analyze IIR digital filters.
† Although tables of commonly encountered Laplace transforms are included in almost every system analysis textbook, very



comprehensive tables are also available[1–3].

The Laplace transform of a continuous time-domain function f(t), where f(t) is defined only for
positive time (t > 0), is expressed mathematically as

(6-3)

F(s) is called “the Laplace transform of f(t),” and the variable s is the complex number
(6-4)

A more general expression for the Laplace transform, called the bilateral or two-sided transform,
uses negative infinity (−∞) as the lower limit of integration. However, for the systems that we’ll be
interested in, where system conditions for negative time (t < 0) are not needed in our analysis, the
one-sided Eq. (6-3) applies. Those systems, often referred to as causal systems, may have initial
conditions at t = 0 that must be taken into account (velocity of a mass, charge on a capacitor,
temperature of a body, etc.), but we don’t need to know what the system was doing prior to t = 0.
In Eq. (6-4), σ is a real number and ω is frequency in radians/second. Because e−st is dimensionless,
the exponent term s must have the dimension of 1/time, or frequency. That’s why the Laplace variable
s is often called a complex frequency.
To put Eq. (6-3) into words, we can say that it requires us to multiply, point for point, the function f(t)
by the complex function e−st for a given value of s. (We’ll soon see that using the function e−st here is
not accidental; e−st is used because it’s the general form for the solution of linear differential
equations.) After the point-for-point multiplications, we find the area under the curve of the function
f(t)e−st by summing all the products. That area, a complex number, represents the value of the Laplace
transform for the particular value of s = σ + jω chosen for the original multiplications. If we were to
go through this process for all values of s, we’d have a full description of F(s) for every value of s.
I like to think of the Laplace transform as a continuous function, where the complex value of that
function for a particular value of s is a correlation of f(t) and a damped complex e−st sinusoid whose
frequency is ω and whose damping factor is σ. What do these complex sinusoids look like? Well, they
are rotating phasors described by

(6-5)

From our knowledge of complex numbers, we know that e−jωt is a unity-magnitude phasor rotating
clockwise around the origin of a complex plane at a frequency of ω radians/second. The denominator
of Eq. (6-5) is a real number whose value is one at time t = 0. As t increases, the denominator eσt gets
larger (when σ is positive), and the complex e−st phasor’s magnitude gets smaller as the phasor
rotates on the complex plane. The tip of that phasor traces out a curve spiraling in toward the origin
of the complex plane. One way to visualize a complex sinusoid is to consider its real and imaginary
parts individually. We do this by expressing the complex e−st sinusoid from Eq. (6-5) in rectangular
form as



(6-5′)

Figure 6-4 shows the real parts (cosine) of several complex sinusoids with different frequencies and
different damping factors. In Figure 6-4(a), the complex sinusoid’s frequency is the arbitrary ω′, and
the damping factor is the arbitrary σ′. So the real part of F(s), at s = σ′ + jω′, is equal to the
correlation of f(t) and the wave in Figure 6-4(a). For different values of s, we’ll correlate f(t) with
different complex sinusoids as shown in Figure 6-4. (As we’ll see, this correlation is very much like
the correlation of f(t) with various sine and cosine waves when we were calculating the discrete
Fourier transform.) Again, the real part of F(s), for a particular value of s, is the correlation of f(t)
with a cosine wave of frequency ω and a damping factor of σ, and the imaginary part of F(s) is the
correlation of f(t) with a sinewave of frequency ω and a damping factor of σ.
Figure 6-4 Real part (cosine) of various e−st functions, where s = σ + jω, to be correlated with f(t).

Now, if we associate each of the different values of the complex s variable with a point on a complex
plane, rightfully called the s-plane, we could plot the real part of the F(s) correlation as a surface
above (or below) that s-plane and generate a second plot of the imaginary part of the F(s) correlation
as a surface above (or below) the s-plane. We can’t plot the full complex F(s) surface on paper
because that would require four dimensions. That’s because s is complex, requiring two dimensions,
and F(s) is itself complex and also requires two dimensions. What we can do, however, is graph the
magnitude |F(s)| as a function of s because this graph requires only three dimensions. Let’s do that as
we demonstrate this notion of an |F(s)| surface by illustrating the Laplace transform in a tangible way.



Say, for example, that we have the linear system shown in Figure 6-5. Also, let’s assume that we can
relate the x(t) input and the y(t) output of the linear time-invariant physical system in Figure 6-5 with
the following messy homogeneous constant-coefficient differential equation:

Figure 6-5 System described by Eq. (6-6). The system’s input and output are the continuous-time
functions x(t) and y(t) respectively.

(6-6)

We’ll use the Laplace transform toward our goal of figuring out how the system will behave when
various types of input functions are applied, i.e., what the y(t) output will be for any given x(t) input.
Let’s slow down here and see exactly what Figure 6-5 and Eq. (6-6) are telling us. First, if the system
is time invariant, then the an and bn coefficients in Eq. (6-6) are constant. They may be positive or
negative, zero, real or complex, but they do not change with time. If the system is electrical, the
coefficients might be related to capacitance, inductance, and resistance. If the system is mechanical
with masses and springs, the coefficients could be related to mass, coefficient of damping, and
coefficient of resilience. Then, again, if the system is thermal with masses and insulators, the
coefficients would be related to thermal capacity and thermal conductance. To keep this discussion
general, though, we don’t really care what the coefficients actually represent.
OK, Eq. (6-6) also indicates that, ignoring the coefficients for the moment, the sum of the y(t) output
plus derivatives of that output is equal to the sum of the x(t) input plus the derivative of that input. Our
problem is to determine exactly what input and output functions satisfy the elaborate relationship in
Eq. (6-6). (For the stout-hearted, classical methods of solving differential equations could be used
here, but the Laplace transform makes the problem much simpler for our purposes.) Thanks to
Laplace, the complex exponential time function of est is the one we’ll use. It has the beautiful property
that it can be differentiated any number of times without destroying its original form. That is,

(6-7)

If we let x(t) and y(t) be functions of est, x(est) and y(est), and use the properties shown in Eq. (6-7),
Eq. (6-6) becomes

(6-8)

Although it’s simpler than Eq. (6-6), we can further simplify the relationship in the last line in Eq. (6-
8) by considering the ratio of y(est) over x(est) as the Laplace transfer function of our system in Figure
6-5. If we call that ratio of polynomials the transfer function H(s),



(6-9)

To indicate that the original x(t) and y(t) have the identical functional form of est, we can follow the
standard Laplace notation of capital letters and show the transfer function as

(6-10)

where the output Y(s) is given by
(6-11)

Equation (6-11) leads us to redraw the original system diagram in a form that highlights the definition
of the transfer function H(s) as shown in Figure 6-6.

Figure 6-6 Linear system described by Eqs. (6-10) and (6-11). The system’s input is the Laplace
function X(s), its output is the Laplace function Y(s), and the system transfer function is H(s).

The cautious reader may be wondering, “Is it really valid to use this Laplace analysis technique when
it’s strictly based on the system’s x(t) input being some function of est, or x(est)?” The answer is that
the Laplace analysis technique, based on the complex exponential x(est), is valid because all practical
x(t) input functions can be represented with complex exponentials, for example,

• a constant, c = ce0t,

• sinusoids, sin(ωt) = (ejωt − e−jωt)/2j or cos(ωt) = (ejωt + e−jωt)/2,

• a monotonic exponential, eat, and

• an exponentially varying sinusoid, e−at cos(ωt).
With that said, if we know a system’s transfer function H(s), we can take the Laplace transform of any
x(t) input to determine X(s), multiply that X(s) by H(s) to get Y(s), and then inverse Laplace transform
Y(s) to yield the time-domain expression for the output y(t). In practical situations, however, we
usually don’t go through all those analytical steps because it’s the system’s transfer function H(s) in
which we’re most interested. Being able to express H(s) mathematically or graph the surface |H(s)| as
a function of s will tell us the two most important properties we need to know about the system under
analysis: is the system stable, and if so, what is its frequency response?
“But wait a minute,” you say. “Equations (6-10) and (6-11) indicate that we have to know the Y(s)
output before we can determine H(s)!” Not really. All we really need to know is the time-domain
differential equation like that in Eq. (6-6). Next we take the Laplace transform of that differential
equation and rearrange the terms to get the H(s) ratio in the form of Eq. (6-10). With practice, systems
designers can look at a diagram (block, circuit, mechanical, whatever) of their system and promptly



write the Laplace expression for H(s). Let’s use the concept of the Laplace transfer function H(s) to
determine the stability and frequency response of simple continuous systems.

6.2.1 Poles and Zeros on the s-Plane and Stability
One of the most important characteristics of any system involves the concept of stability. We can think
of a system as stable if, given any bounded input, the output will always be bounded. This sounds like
an easy condition to achieve because most systems we encounter in our daily lives are indeed stable.
Nevertheless, we have all experienced instability in a system containing feedback. Recall the
annoying howl when a public address system’s microphone is placed too close to the loudspeaker. A
sensational example of an unstable system occurred in western Washington when the first Tacoma
Narrows Bridge began oscillating on the afternoon of November 7, 1940. Those oscillations, caused
by 42 mph winds, grew in amplitude until the bridge destroyed itself. For IIR digital filters with their
built-in feedback, instability would result in a filter output that’s not at all representative of the filter
input; that is, our filter output samples would not be a filtered version of the input; they’d be some
strange oscillating or pseudo-random values—a situation we’d like to avoid if we can, right? Let’s
see how.
We can determine a continuous system’s stability by examining several different examples of H(s)
transfer functions associated with linear time-invariant systems. Assume that we have a system whose
Laplace transfer function is of the form of Eq. (6-10), the coefficients are all real, and the coefficients
b1 and a2 are equal to zero. We’ll call that Laplace transfer function H1(s), where

(6-12)

Notice that if s = −a0/a1, the denominator in Eq. (6-12) equals zero and H1(s) would have an infinite
magnitude. This s = −a0/a1 point on the s-plane is called a pole, and that pole’s location is shown by
the “x” in Figure 6-7(a). Notice that the pole is located exactly on the negative portion of the real σ
axis. If the system described by H1 were at rest and we disturbed it with an impulse like x(t) input at
time t = 0, its continuous time-domain y(t) output would be the damped exponential curve shown in
Figure 6-7(b). We can see that H1(s) is stable because its y(t) output approaches zero as time passes.
By the way, the distance of the pole from the σ = 0 axis, a0/a1 for our H1(s), gives the decay rate of
the y(t) impulse response. To illustrate why the term pole is appropriate, Figure 6-8(b) depicts the
three-dimensional surface of |H1(s)| above the s-plane. Look at Figure 6-8(b) carefully and see how
we’ve reoriented the s-plane axis. This new axis orientation allows us to see how the H1(s) system’s
frequency magnitude response can be determined from its three-dimensional s-plane surface. If we
examine the |H1(s)| surface at σ = 0, we get the bold curve in Figure 6-8(b). That bold curve, the
intersection of the vertical σ = 0 plane (the jω axis plane) and the |H1(s)| surface, gives us the
frequency magnitude response |H1(ω)| of the system—and that’s one of the things we’re after here. The
bold |H1(ω)| curve in Figure 6-8(b) is shown in a more conventional way in Figure 6-8(c). Figures 6-
8(b) and 6-8(c) highlight the very important property that the Laplace transform is a more general
case of the Fourier transform because if σ = 0, then s = jω. In this case, the |H1(s)| curve for σ = 0
above the s-plane becomes the |H1(ω)| curve above the jω axis in Figure 6-8(c).



Figure 6-7 Descriptions of H1(s): (a) pole located at s = σ + jω = −a0/a1 + j0 on the s-plane; (b)
time-domain y(t) impulse response of the system.

Figure 6-8 Further depictions of H1(s): (a) pole located at σ = −a0/a1 on the s-plane; (b) |H1(s)|
surface; (c) curve showing the intersection of the |H1(s)| surface and the vertical σ = 0 plane. This is

the conventional depiction of the |H1(ω)| frequency magnitude response.

Another common system transfer function leads to an impulse response that oscillates. Let’s think
about an alternate system whose Laplace transfer function is of the form of Eq. (6-10), the coefficient
b0 equals zero, and the coefficients lead to complex terms when the denominator polynomial is



factored. We’ll call this particular 2nd-order transfer function H2(s), where
(6-13)

(By the way, when a transfer function has the Laplace variable s in both the numerator and
denominator, the order of the overall function is defined by the largest exponential order of s in either
the numerator or the denominator polynomial. So our H2(s) is a 2nd-order transfer function.) To keep
the following equations from becoming too messy, let’s factor its denominator and rewrite Eq. (6-13)
as

(6-14)

where A = b1/a2, p = preal + jpimag, and p* = preal − jpimag (complex conjugate of p). Notice that if s is
equal to −p or −p*, one of the polynomial roots in the denominator of Eq. (6-14) will equal zero, and
H2(s) will have an infinite magnitude. Those two complex poles, shown in Figure 6-9(a), are located
off the negative portion of the real σ axis. If the H2 system were at rest and we disturbed it with an
impulselike x(t) input at time t = 0, its continuous time-domain y(t) output would be the damped
sinusoidal curve shown in Figure 6-9(b). We see that H2(s) is stable because its oscillating y(t)
output, like a plucked guitar string, approaches zero as time increases. Again, the distance of the
poles from the σ = 0 axis (−preal) gives the decay rate of the sinusoidal y(t) impulse response.
Likewise, the distance of the poles from the jω = 0 axis (±pimag) gives the frequency of the sinusoidal
y(t) impulse response. Notice something new in Figure 6-9(a). When s = 0, the numerator of Eq. (6-
14) is zero, making the transfer function H2(s) equal to zero. Any value of s where H2(s) = 0 is
sometimes of interest and is usually plotted on the s-plane as the little circle, called a zero, shown in
Figure 6-9(a). At this point we’re not very interested in knowing exactly what p and p* are in terms of
the coefficients in the denominator of Eq. (6-13). However, an energetic reader could determine the
values of p and p* in terms of a0, a1, and a2 by using the following well-known quadratic
factorization formula: Given the 2nd-order polynomial f(s) = as2 + bs + c, then f(s) can be factored as

Figure 6-9 Descriptions of H2(s): (a) poles located at s = preal ± jpimag on the s-plane; (b) time-
domain y(t) impulse response of the system.

(6-15)



Figure 6-10(b) illustrates the |H2(s)| surface above the s-plane. Again, the bold |H2(ω)| curve in Figure
6-10(b) is shown in the conventional way in Figure 6-10(c) to indicate the frequency magnitude
response of the system described by Eq. (6-13). Although the three-dimensional surfaces in Figures
6-8(b) and 6-10(b) are informative, they’re also unwieldy and unnecessary. We can determine a
system’s stability merely by looking at the locations of the poles on the two-dimensional s-plane.

Figure 6-10 Further depictions of H2(s): (a) poles and zero locations on the s–plane; (b) |H2(s)|
surface; (c) |H2(ω)| frequency magnitude response curve.

To further illustrate the concept of system stability, Figure 6-11 shows the s-plane pole locations of
several example Laplace transfer functions and their corresponding time-domain impulse responses.
We recognize Figures 6-11(a) and 6-11(b), from our previous discussion, as indicative of stable
systems. When disturbed from their at-rest condition, they respond and, at some later time, return to
that initial condition. The single pole location at s = 0 in Figure 6-11(c) is indicative of the 1/s
transfer function of a single element of a linear system. In an electrical system, this 1/s transfer
function could be a capacitor that was charged with an impulse of current, and there’s no discharge
path in the circuit. For a mechanical system, Figure 6-11(c) would describe a kind of spring that’s
compressed with an impulse of force and, for some reason, remains under compression. Notice, in
Figure 6-11(d), that if an H(s) transfer function has conjugate poles located exactly on the jω axis (σ =
0), the system will go into oscillation when disturbed from its initial condition. This situation, called



conditional stability, happens to describe the intentional transfer function of electronic oscillators.
Instability is indicated in Figures 6-11(e) and 6-11(f). Here, the poles lie to the right of the jω axis.
When disturbed from their initial at-rest condition by an impulse input, their outputs grow without
bound.† See how the value of σ, the real part of s, for the pole locations is the key here? When σ < 0,
the system is well behaved and stable; when σ = 0, the system is conditionally stable; and when σ >
0, the system is unstable. So we can say that when σ is located on the right half of the s-plane, the
system is unstable. We show this characteristic of linear continuous systems in Figure 6-12. Keep in
mind that real-world systems often have more than two poles, and a system is only as stable as its
least stable pole. For a system to be stable, all of its transfer-function poles must lie on the left half of
the s-plane.
† Impulse response testing in a laboratory can be an important part of the system design process. The difficult part is generating a true
impulselike input. If the system is electrical, for example, although somewhat difficult to implement, the input x(t) impulse would be a very
short-duration voltage or current pulse. If, however, the system were mechanical, a whack with a hammer would suffice as an x(t)
impulse input. For digital systems, on the other hand, an impulse input is easy to generate; it’s a single unity-valued sample preceded and
followed by all zero-valued samples.

Figure 6-11 Various H(s) pole locations and their time-domain impulse responses: (a) single pole at
σ < 0; (b) conjugate poles at σ < 0; (c) single pole located at σ = 0; (d) conjugate poles located at σ =

0; (e) single pole at σ > 0; (f) conjugate poles at σ > 0.



Figure 6-12 The Laplace s–plane showing the regions of stability and instability for pole locations
for linear continuous systems.

To consolidate what we’ve learned so far: H(s) is determined by writing a linear system’s time-
domain differential equation and taking the Laplace transform of that equation to obtain a Laplace
expression in terms of X(s), Y(s), s, and the system’s coefficients. Next we rearrange the Laplace



expression terms to get the H(s) ratio in the form of Eq. (6-10). (The really slick part is that we do not
have to know what the time-domain x(t) input is to analyze a linear system!) We can get the
expression for the continuous frequency response of a system just by substituting jω for s in the H(s)
equation. To determine system stability, the denominator polynomial of H(s) is factored to find each
of its roots. Each root is set equal to zero and solved for s to find the location of the system poles on
the s-plane. Any pole located to the right of the jω axis on the s-plane will indicate an unstable
system.
OK, returning to our original goal of understanding the z-transform, the process of analyzing IIR filter
systems requires us to replace the Laplace transform with the z-transform and to replace the s-plane
with a z-plane. Let’s introduce the z-transform, determine what this new z-plane is, discuss the
stability of IIR filters, and design and analyze a few simple IIR filters.

6.3 The z-Transform
The z-transform is the discrete-time cousin of the continuous Laplace transform.† While the Laplace
transform is used to simplify the analysis of continuous differential equations, the z-transform
facilitates the analysis of discrete difference equations. Let’s define the z-transform and explore its
important characteristics to see how it’s used in analyzing IIR digital filters.
† In the early 1960s, James Kaiser, after whom the Kaiser window function is named, consolidated the theory of digital filters using a
mathematical description known as the z-transform[4,5]. Until that time, the use of the z-transform had generally been restricted to the
field of discrete control systems[6–9].

The z-transform of a discrete sequence h(n), expressed as H(z), is defined as
(6-16)

where the variable z is complex. Where Eq. (6-3) allowed us to take the Laplace transform of a
continuous signal, the z-transform is performed on a discrete h(n) sequence, converting that sequence
into a continuous function H(z) of the continuous complex variable z. Similarly, as the function e−st is
the general form for the solution of linear differential equations, z−n is the general form for the
solution of linear difference equations. Moreover, as a Laplace function F(s) is a continuous surface
above the s-plane, the z-transform function H(z) is a continuous surface above a z-plane. To whet your
appetite, we’ll now state that if H(z) represents an IIR filter’s z-domain transfer function, evaluating
the H(z) surface will give us the filter’s frequency magnitude response, and H(z)’s pole and zero
locations will determine the stability of the filter.
We can determine the frequency response of an IIR digital filter by expressing z in polar form as z =
rejω, where r is a magnitude and ω is the angle. In this form, the z-transform equation becomes

(6-16′)

Equation (6-16′) can be interpreted as the Fourier transform of the product of the original sequence
h(n) and the exponential sequence r−n. When r equals one, Eq. (6-16′) simplifies to the Fourier
transform. Thus on the z-plane, the contour of the H(z) surface for those values where |z| = 1 is the



Fourier transform of h(n). If h(n) represents a filter impulse response sequence, evaluating the H(z)
transfer function for |z| = 1 yields the frequency response of the filter. So where on the z-plane is |z| =
1? It’s a circle with a radius of one, centered about the z = 0 point. This circle, so important that it’s
been given the name unit circle, is shown in Figure 6-13. Recall that the jω frequency axis on the
continuous Laplace s-plane was linear and ranged from − ∞ to + ∞ radians/second. The ω frequency
axis on the complex z-plane, however, spans only the range from −π to +π radians. With this
relationship between the jω axis on the Laplace s-plane and the unit circle on the z-plane, we can see
that the z-plane frequency axis is equivalent to coiling the s-plane’s jω axis about the unit circle on the
z-plane as shown in Figure 6-14.

Figure 6-13 Unit circle on the complex z–plane.

Figure 6-14 Mapping of the Laplace s–plane to the z–plane. All frequency values are in
radians/second.

Then, frequency ω on the z-plane is not a distance along a straight line, but rather an angle around a
circle. With ω in Figure 6-13 being a general normalized angle in radians ranging from −π to +π, we
can relate ω to an equivalent fs sampling rate by defining a new frequency variable ωs = 2πfs in
radians/second. The periodicity of discrete frequency representations, with a period of ωs = 2πfs
radians/second or fs Hz, is indicated for the z-plane in Figure 6-14. Where a walk along the jω
frequency axis on the s-plane could take us to infinity in either direction, a trip on the ω frequency
path on the z-plane leads us in circles (on the unit circle). Figure 6-14 shows us that only the −πfs to
+πfs radians/second frequency range for ω can be accounted for on the z-plane, and this is another
example of the universal periodicity of the discrete frequency domain. (Of course, the −πfs to +πfs
radians/second range corresponds to a cyclic frequency range of −fs/2 to +fs/2.) With the perimeter of



the unit circle being z = ejω, later, we’ll show exactly how to substitute ejω for z in a filter’s H(z)
transfer function, giving us the filter’s frequency response.

6.3.1 Poles, Zeros, and Digital Filter Stability
One of the most important characteristics of the z-plane is that the region of filter stability is mapped
to the inside of the unit circle on the z-plane. Given the H(z) transfer function of a digital filter, we
can examine that function’s pole locations to determine filter stability. If all poles are located inside
the unit circle, the filter will be stable. On the other hand, if any pole is located outside the unit circle,
the filter will be unstable.
For example, if a causal filter’s H(z) transfer function has a single pole at location p on the z-plane,
its transfer function can be represented by

(6-17)

and the filter’s time-domain impulse response sequence is
(6-17′)

where u(n) represents a unit step (all ones) sequence beginning at time n = 0. Equation (6-17′) tells us
that as time advances, the impulse response will be p raised to larger and larger powers. When the
pole location p has a magnitude less than one, as shown in Figure 6-15(a), the h(n) impulse response
sequence is unconditionally bounded in amplitude. And a value of |p| < 1 means that the pole must lie
inside the z-plane’s unit circle.
Figure 6-15 Various H(z) pole locations and their discrete time-domain impulse responses: (a) single

pole inside the unit circle; (b) conjugate poles located inside the unit circle; (c) conjugate poles
located on the unit circle; (d) single pole outside the unit circle; (e) conjugate poles located outside

the unit circle.



Figure 6-15 shows the z-plane pole locations of several example z-domain transfer functions and
their corresponding discrete time-domain impulse responses. It’s a good idea for the reader to
compare the z-plane and discrete-time responses of Figure 6-15 with the s-plane and the continuous-
time responses of Figure 6-11. The y(n) outputs in Figures 6-15(d) and 6-15(e) show examples of
how unstable filter outputs increase in amplitude, as time passes, whenever their x(n) inputs are
nonzero. To avoid this situation, any IIR digital filter that we design should have an H(z) transfer
function with all of its individual poles inside the unit circle. Like a chain that’s only as strong as its
weakest link, an IIR filter is only as stable as its least stable pole.
The ωo oscillation frequency of the impulse responses in Figures 6-15(c) and 6-15(e) is, of course,
proportional to the angle of the conjugate pole pairs from the zreal axis, or ωo radians/second
corresponding to fo = ωo/2π Hz. Because the intersection of the −zreal axis and the unit circle, point z =
−1, corresponds to π radians (or πfs radians/second = fs/2 Hz), the ωo angle of π/4 in Figure 6-15
means that fo = fs/8 and our y(n) will have eight samples per cycle of fo.

6.4 Using the z-Transform to Analyze IIR Filters
We have one last concept to consider before we can add the z-transform to our collection of digital
signal processing tools. We need to determine how to represent Figure 6-3’s delay operation as part
of our z-transform filter analysis equations. To do this, assume we have a sequence x(n) whose z-



transform is X(z) and a sequence y(n) = x(n−1) whose z-transform is Y(z) as shown in Figure 6-
16(a). The z-transform of y(n) is, by definition,

(6-18)

Figure 6-16 Time- and z-domain delay element relationships: (a) single delay; (b) multiple delays.

Now if we let k = n−1, then Y(z) becomes
(6-19)

which we can write as
(6-20)

Thus, the effect of a single unit of time delay is to multiply the z-transform of the undelayed sequence
by z−1.

6.4.1 z-Domain IIR Filter Analysis

Interpreting a unit time delay to be equivalent to the z−1 operator leads us to the relationship shown in
Figure 6-16(b), where we can say X(z)z0 = X(z) is the z-transform of x(n), X(z)z−1 is the z-transform
of x(n) delayed by one sample, X(z)z−2 is the z-transform of x(n) delayed by two samples, and X(z)z
−k is the z-transform of x(n) delayed by k samples. So a transfer function of z−k is equivalent to a
delay of kts seconds from the instant when t = 0, where ts is the period between data samples, or one
over the sample rate. Specifically, ts = 1/fs. Because a delay of one sample is equivalent to the factor
z−1, the unit time delay symbol used in Figures 6-2 and 6-3 is usually indicated by the z−1 operator as
in Figure 6-16(b).
Let’s pause for a moment and consider where we stand so far. Our acquaintance with the Laplace
transform with its s-plane, the concept of stability based on H(s) pole locations, the introduction of
the z-transform with its z-plane poles, and the concept of the z−1 operator signifying a single unit of
time delay has led us to our goal: the ability to inspect an IIR filter difference equation or filter
structure (block diagram) and immediately write the filter’s z-domain transfer function H(z).



Accordingly, by evaluating an IIR filter’s H(z) transfer function appropriately, we can determine the
filter’s frequency response and its stability. With those ambitious thoughts in mind, let’s develop the
z-domain equations we need to analyze IIR filters. Using the relationships of Figure 6-16(b), we
redraw Figure 6-3 as a general Mth-order IIR filter using the z−1 operator as shown in Figure 6-17.
(In hardware, those z−1 operations are memory locations holding successive filter input and output
sample values. When implementing an IIR filter in a software routine, the z−1 operation merely
indicates sequential memory locations where input and output sequences are stored.) The IIR filter
structure in Figure 6-17 is called the Direct Form I structure. The time-domain difference equation
describing the general Mth-order IIR filter, having N feedforward stages and M feedback stages, in
Figure 6-17 is

(6-21)

Figure 6-17 General (Direct Form I) structure of an Mth-order IIR filter, having N feedforward stages
and M feedback stages, with the z−1 operator indicating a unit time delay.

In the z-domain, that IIR filter’s output can be expressed by
(6-22)

where Y(z) and X(z) represent the z-transform of y(n) and x(n). Look Eqs. (6-21) and (6-22) over
carefully and see how the unit time delays translate to negative powers of z in the z-domain
expression. A more compact notation for Y(z) is

(6-23)

OK, now we’ve arrived at the point where we can describe the transfer function of a general IIR
filter. Rearranging Eq. (6-23), to collect like terms, we write

(6-24)



Finally, we define the filter’s z-domain transfer function as H(z) = Y(z)/X(z), where H(z) is given by
(6-25)

Just as with Laplace transfer functions, the order of our z-domain transfer function and the order of
our filter are defined by the largest exponential order of z in either the numerator or the denominator
in Eq. (6-25).
There are two things we need to know about an IIR filter: its frequency response and whether or not
the filter is stable. Equation (6-25) is the origin of that information. We can evaluate the denominator
of Eq. (6-25) to determine the positions of the filter’s poles on the z-plane indicating the filter’s
stability. Next, from Eq. (6-25) we develop an expression for the IIR filter’s frequency response.
Remember, now, just as the Laplace transfer function H(s) in Eq. (6-9) was a complex-valued surface
on the s-plane, H(z) is a complex-valued surface above, or below, the z-plane. The intersection of
that H(z) surface and the perimeter of a cylinder representing the z = ejω unit circle is the filter’s
complex frequency response. This means that substituting ejω for z in Eq. (6-25)’s transfer function
gives us the expression for the filter’s H(ω) frequency response as

(6-26)

In rectangular form, using Euler’s identity, e−jω = cos(ω)−jsin(ω), the filter’s H(ω) frequency
response is

(6-27)

Shortly, we’ll use the above expressions to analyze an actual IIR filter.
Pausing a moment to gather our thoughts, we realize that H(ω) is the ratio of complex functions and
we can use Eq. (6-27) to compute the magnitude and phase response of IIR filters as a function of the
frequency ω. And again, just what is ω? It’s the normalized frequency represented by the angle around
the unit circle in Figure 6-13, having a range of −π≤ω≤+ω radians/sample. In terms of our old friend
fs Hz, Eq. (6-27) applies over the equivalent frequency range of −fs/2 to +fs/2 Hz. So, for example, if
digital data is arriving at the filter’s input at a rate of fs =1000 samples/second, we could use Eq. (6-



27) to plot the filter’s frequency magnitude response over the frequency range of −500 Hz to +500 Hz.

6.4.2 IIR Filter Analysis Example
Although Eqs. (6-25) and (6-26) look somewhat complicated at first glance, let’s illustrate their
simplicity and utility by analyzing the simple 2nd-order lowpass IIR filter in Figure 6-18(a) whose
positive cutoff frequency is ω = π/5 (fs/10 Hz).

Figure 6-18 Second-order lowpass IIR filter example.

By inspection, we can write the filter’s time-domain difference equation as
(6-28)

There are two ways to obtain the z-domain expression of our filter. The first way is to look at Eq. (6-
28) and by inspection write

(6-29)

The second way to obtain the desired z-domain expression is to redraw Figure 6-18(a) with the z-
domain notation as in Figure 6-18(b). Then by inspection of Figure 6-18(b) we could have written
Eq. (6-29).
A piece of advice for the reader to remember: although not obvious in this IIR filter analysis example,
it’s often easier to determine a digital network’s transfer function using the z-domain notation of
Figure 6-18(b) rather than using the time-domain notation of Figure 6-18(a). (Writing the z-domain
expression for a network based on the Figure 6-18(b) notation, rather than writing a time-domain
expression based on the Figure 6-18(a) time notation, generally yields fewer unknown variables in
our network analysis equations.) Over the years of analyzing digital networks, I regularly remind



myself, “z-domain produces less pain.” Keep this advice in mind if you attempt to solve the
homework problems at the end of this chapter.
Back to our example: We can obtain the desired H(z) filter transfer function by rearranging Eq. (6-
29), or by using Eq. (6-25). Either method yields

(6-30)

Replacing z with ejω, we see that the frequency response of our example IIR filter is
(6-31)

We’re almost there. Remembering Euler’s equations and that cos(0) = 1 and sin(0) = 0, we can write
the rectangular form of H(ω) as

(6-32)

Equation (6-32) is what we’re after here, and if we compute that messy expression’s magnitude over
the frequency range of −π≤ω≤π, we produce the |H(ω)| shown as the solid curve in Figure 6-19(a).
For comparison purposes we also show a 5-tap lowpass FIR filter magnitude response in Figure 6-
19(a). Although both filters require the same computational workload, five multiplications per filter
output sample, the lowpass IIR filter has the superior frequency magnitude response. Notice the
steeper magnitude response roll-off and lower sidelobes of the IIR filter relative to the FIR filter. (To
make this IIR and FIR filter comparison valid, the coefficients used for both filters were chosen so
that each filter would approximate the ideal lowpass frequency response shown in Figure 5-17(a).)

Figure 6-19 Performances of the example IIR filter (solid curves) in Figure 6-18 and a 5-tap FIR
filter (dashed curves): (a) magnitude responses; (b) phase responses; (c) IIR filter impulse response;

(d) IIR filter poles and zeros.



A word of warning here. It’s easy to inadvertently reverse some of the signs for the terms in the
denominator of Eq. (6-32), so be careful if you attempt these calculations at home. Some authors
avoid this problem by showing the a(k) coefficients in Figure 6-17 as negative values, so that the
summation in the denominator of Eq. (6-25) is always positive. Moreover, some commercial
software IIR design routines provide a(k) coefficients whose signs must be reversed before they can
be applied to the IIR structure in Figure 6-17. (If, while using software routines to design or analyze
IIR filters, your results are very strange or unexpected, the first thing to do is reverse the signs of the
a(k) coefficients and see if that doesn’t solve the problem.)
The solid curve in Figure 6-19(b) is our IIR filter’s ø(ω) phase response. Notice its nonlinearity
relative to the FIR filter’s phase response. (Remember, now, we’re only interested in the filter phase
responses over the lowpass filter’s passband. So those phase discontinuities for the FIR filter are of
no consequence.) Phase nonlinearity is inherent in IIR filters and, based on the ill effects of nonlinear



phase introduced in the group delay discussion of Section 5.8, we must carefully consider its
implications whenever we decide to use an IIR filter instead of an FIR filter in any given application.
The question any filter designer must ask and answer is “How much phase distortion can I tolerate to
realize the benefits of the reduced computational workload and high data rates afforded by IIR
filters?”
Figure 6-19(c) shows our filter’s time-domain h(k) impulse response. Knowing that the filter’s phase
response is nonlinear, we should expect the impulse response to be asymmetrical as it indeed is. That
figure also illustrates why the term infinite impulse response is used to describe IIR filters. If we
used infinite-precision arithmetic in our filter implementation, the h(k) impulse response would be
infinite in duration. In practice, of course, a filter’s output samples are represented by a finite number
of binary bits. This means that a stable IIR filter’s h(k) samples will decrease in amplitude, as time
index k increases, and eventually reach an amplitude level that’s less than the smallest representable
binary value. After that, all future h(k) samples will be zero-valued.
To determine our IIR filter’s stability, we must find the roots of the 2nd-order polynomial of H(z)’s
denominator in Eq. (6-30). Those roots are the z-plane poles of H(z) and if their magnitudes are less
than one, the IIR filter is stable. To determine the two pole locations, p0 and p1, first we multiply H(z)
by z2/z2 to obtain polynomials with positive exponents. After doing so, H(z) becomes

(6-33)

Factoring Eq. (6-33) using the quadratic factorization formula from Eq. (6-15), we obtain the ratio of
factors

(6-34)

So when z = p0 = 0.597 − j0.282, or when z = p1 = 0.597 + j0.282, the filter’s H(z) transfer function’s
denominator is zero and |H(z)| is infinite. We show the p0 and p1 pole locations in Figure 6-19(d).
Because those pole locations are inside the unit circle (their magnitudes are less than one), our
example IIR filter is unconditionally stable. The two factors in the numerator of Eq. (6-34)
correspond to two z-plane zeros at z = z0 = z1 = −1 (at a continuous-time frequency of ±fs/2), shown
in Figure 6-19(d).
To help us understand the relationship between the poles/zeros of H(z) and the magnitude of the H(z)
transfer function, we show a crude depiction of the |H(z)| surface as a function of z in Figure 6-20(a).

Figure 6-20 IIR filter’s |H(z)| surface: (a) pole locations; (b) frequency magnitude response.



Continuing to review the |H(z)| surface, we can show its intersection with the unit circle as the bold
curve in Figure 6-20(b). Because z = rejω, with r restricted to unity, then z = ejω and the bold curve is
|H(z)||z|=1 = |H(ω)|, representing the lowpass filter’s frequency magnitude response on the z-plane. If
we were to unwrap the bold |H(ω)| curve in Figure 6-20(b) and lay it on a flat surface, we would
have the |H(ω)| curve in Figure 6-19(a). Neat, huh?

6.5 Using Poles and Zeros to Analyze IIR Filters
In the last section we discussed methods for finding an IIR filter’s z-domain H(z) transfer function in
order to determine the filter’s frequency response and stability. In this section we show how to use a
digital filter’s pole/zero locations to analyze that filter’s frequency-domain performance. To
understand this process, first we must identify the two most common algebraic forms used to express
a filter’s z-domain transfer function.

6.5.1 IIR Filter Transfer Function Algebra
We have several ways to write the H(z) = Y(z)/X(z) z-domain transfer function of an IIR filter. For
example, similar to Eq. (6-30), we can write H(z) in the form of a ratio of polynomials in negative



powers of z. For a 4th-order IIR filter such an H(z) expression would be
(6-35)

Expressions like Eq. (6-35) are super-useful because we can replace z with ejω to obtain an
expression for the frequency response of the filter. We used that substitution in the last section.
On the other hand, multiplying Eq. (6-35) by z4/z4, we can express H(z) in the polynomial form

(6-36)

Expressions in the form of Eq. (6-36) are necessary so we can factor (find the roots of) the
polynomials to obtain values (locations) of the numerator zeros and denominator poles, such as in the
following factored form:

(6-37)

Such an H(z) transfer function has four zeros (z0, z1, z2, and z3) and four poles (p0, p1, p2, and p3).
We’re compelled to examine a filter’s H(z) transfer function in the factored form of Eq. (6-37)
because the pk pole values tell us whether or not the IIR filter is stable. If the magnitudes of all pk
poles are less than one, the filter is stable. The filter zeros, zk, do not affect filter stability.
As an aside, while we won’t encounter such filters until Chapter 7 and Chapter 10, it is possible to
have a digital filter whose transfer function, in the factored form of Eq. (6-37), has common
(identical) factors in its numerator and denominator. Those common factors produce a zero and a pole
that lie exactly on top of each other. Like matter and anti-matter, such zero-pole combinations
annihilate each other, leaving neither a zero nor a pole at that z-plane location.
Multiplying the factors in Eq. (6-37), a process called “expanding the transfer function” allows us to
go from the factored form of Eq. (6-37) to the polynomial form in Eq. (6-36). As such, in our digital
filter analysis activities we can translate back and forth between the polynomial and factored forms of
H(z).
Next we review the process of analyzing a digital filter given the filter’s poles and zeros.

6.5.2 Using Poles/Zeros to Obtain Transfer Functions
As it turns out, we can analyze an IIR filter’s frequency-domain performance based solely on the
filter’s poles and zeros. Given that we know the values of a filter’s zk zeros and pk poles, we can
write the factored form of the filter’s transfer function as

(6-38)



where G = G1/G2 is an arbitrary gain constant. Thus, knowing a filter’s zk zeros and pk poles, we can
determine the filter’s transfer function to within a constant scale factor G.
Again, filter zeros are associated with decreased frequency magnitude response, and filter poles are
associated with increased frequency magnitude response. For example, if we know that a filter has no
z-plane zeros, and one pole at p0 = 0.8, we can write its transfer function as

(6-39)

The characteristics of such a filter are depicted in Figure 6-21(a). The |H1(ω)| frequency magnitude
response in the figure is normalized so that the peak magnitude is unity. Because the p0 pole is closest
to the ω = 0 radians/sample frequency point (z = 1) on the unit circle, the filter is a lowpass filter.
Additionally, because |p0| is less than one, the filter is unconditionally stable.

Figure 6-21 IIR filter poles/zeros and normalized frequency magnitude responses.



If a filter has a zero at z0 = 1, and a pole at p0 = −0.8, we write its transfer function as
(6-40)

The characteristics of this filter are shown in Figure 6-21(b). Because the pole is closest to the ω = π
radians/sample frequency point (z = −1) on the unit circle, the filter is a highpass filter. Notice that the
zero located at z = 1 causes the filter to have infinite attenuation at ω = 0 radians/sample (zero Hz).
Because this pole/zero filter analysis topic is so important, let us look at several more pole/zero
examples.
Consider a filter having two complex conjugate zeros at −0.707 ± j0.707, as well as two complex
conjugate poles at 0.283 ± j0.283. This filter’s transfer function is

(6-41)

The properties of this H3(z) filter are presented in Figure 6-21(c). The two poles on the right side of



the z-plane make this a lowpass filter having a wider passband than the above H1(z) lowpass filter.
Two zeros are on the unit circle at angles of ω = ±3π/4 radians, causing the filter to have infinite
attenuation at the frequencies ω = ±3π/4 radians/sample (±3fs/8 Hz) as seen in the |H3(ω)| magnitude
response.
If we add a z-plane zero at z = 1 to the above H3(z), we create an H4(z) filter whose transfer function
is

(6-42)

The characteristics of this filter are shown in Figure 6-21(d). The zero at z = 1 yields infinite
attenuation at ω = 0 radians/sample (zero Hz), creating a bandpass filter. Because the p0 and p1 poles
of H4(z) are oriented at angles of θ = ±π/4 radians, the filter’s passbands are centered in the vicinity
of frequencies ω = ±π/4 radians/sample (±fs/8 Hz).

Next, if we increase the magnitude of the H4(z) filter’s poles, making them equal to 0.636 ± j0.636,
we position the conjugate poles much closer to the unit circle as shown by the H5(z) characteristics in
Figure 6-21(e). The H5(z) filter transfer function is

(6-43)

There are two issues to notice in this scenario. First, poles near the unit circle now have a much more
profound effect on the filter’s magnitude response. The poles’ infinite gains cause the H5(z) passbands
to be very narrow (sharp). Second, when a pole is close to the unit circle, the center frequency of its
associated passband can be accurately estimated to be equal to the pole’s angle. That is, Figure 6-
21(e) shows us that with the poles’ angles being θ = ±π/4 radians, the center frequencies of the
narrow passbands are very nearly equal to ω = ±π/4 radians/sample (±fs/8 Hz).
For completeness, one last pole/zero topic deserves mention. Consider a finite impulse response
(FIR) filter—a digital filter whose H(z) transfer function denominator is unity. For an FIR filter to
have linear phase each z-plane zero located at z = z0 = Mejα, where M ≠ 1, must be accompanied by a
zero having an angle of −α and a magnitude of 1/M. (Proof of this restriction is available in reference
[10].) We show this restriction in Figure 6-21(f) where the z0 zero is accompanied by the z3 zero. If
the FIR filter’s transfer function polynomial has real-valued bk coefficients, then a z0 zero not on the
z-plane’s real axis will be accompanied by a complex conjugate zero at z = z2. Likewise, for the FIR
filter to have linear phase the z2 zero must be accompanied by the z1 zero. Of course, the z1 and the z3
zeros are complex conjugates of each other.
To conclude this section, we provide the following brief list of z-plane pole/zero properties that we
should keep in mind as we work with digital filters:

• Filter poles are associated with increased frequency magnitude response (gain).
• Filter zeros are associated with decreased frequency magnitude response (attenuation).



• To be unconditionally stable all filter poles must reside inside the unit circle.
• Filter zeros do not affect filter stability.
• The closer a pole (zero) is to the unit circle, the stronger will be its effect on the filter’s gain
(attenuation) at the frequency associated with the pole’s (zero’s) angle.

• A pole (zero) located on the unit circle produces infinite filter gain (attenuation).
• If a pole is at the same z-plane location as a zero, they cancel each other.
• Poles or zeros located at the origin of the z-plane do not affect the frequency response of the filter.
• Filters whose transfer function denominator (numerator) polynomial has real-valued coefficients
have poles (zeros) located on the real z-plane axis, or pairs of poles (zeros) that are complex
conjugates of each other.

• For an FIR filter (transfer function denominator is unity) to have linear phase, any zero on the z-
plane located at z0 = Mejα, where z0 is not on the unit circle and α is not zero, must be
accompanied by a reciprocal zero whose location is 1/z0 = e−jα/M.

• What the last two bullets mean is that if an FIR filter has real-valued coefficients, is linear phase,
and has a z-plane zero not located on the real z-plane axis or on the unit circle, that z-plane zero is
a member of a “gang of four” zeros. If we know the z-plane location of one of those four zeros,
then we know the location of the other three zeros.

6.6 Alternate IIR Filter Structures
In the literature of DSP, it’s likely that you will encounter IIR filters other than the Direct Form I
structure of the IIR filter in Figure 6-17. This point of our IIR filter studies is a good time to introduce
those alternate IIR filter structures (block diagrams).

6.6.1 Direct Form I, Direct Form II, and Transposed Structures
The Direct Form I structure of the IIR filter in Figure 6-17 can be converted to several alternate
forms. It’s easy to explore this idea by assuming that there are two equal-length delay lines, letting M
= N = 2 as in Figure 6-22(a), and thinking of the feedforward and feedback portions as two separate
filter stages. Because both stages of the filter are linear and time invariant, we can swap them, as
shown in Figure 6-22(b), with no change in the y(n) output.
Figure 6-22 Rearranged 2nd-order IIR filter structures: (a) Direct Form I; (b) modified Direct Form

I; (c) Direct Form II; (d) transposed Direct Form II.



The two identical delay lines in Figure 6-22(b) provide the motivation for this reorientation. Because
the sequence g(n) is being shifted down along both delay lines in Figure 6-22(b), we can eliminate
one of the delay paths and arrive at the simplified Direct Form II filter structure shown in Figure 6-
22(c), where only half the delay storage registers are required compared to the Direct Form I
structure.
Another popular IIR structure is the transposed form of the Direct Form II filter. We obtain a
transposed form by starting with the Direct Form II filter, convert its signal nodes to adders, convert
its adders to signal nodes, reverse the direction of its arrows, and swap x(n) and y(n). (The
transposition steps can also be applied to FIR filters.) Following these steps yields the transposed
Direct Form II structure given in Figure 6-22(d).
All the filters in Figure 6-22 have the same performance just so long as infinite-precision arithmetic
is used. However, using quantized binary arithmetic to represent our filter coefficients, and with
truncation or rounding being used to combat binary overflow errors, the various filters in Figure 6-22
exhibit different quantization noise and stability characteristics. In fact, the transposed Direct Form II
structure was developed because it has improved behavior over the Direct Form II structure when
fixed-point binary arithmetic is used. Common consensus among IIR filter designers is that the Direct
Form I filter has the most resistance to coefficient quantization and stability problems. We’ll revisit
these finite-precision arithmetic issues in Section 6.7.
By the way, because of the feedback nature of IIR filters, they’re often referred to as recursive filters.
Similarly, FIR filters are often called nonrecursive filters. A common misconception is that all
recursive filters are IIR. This not true because FIR filters can be implemented with recursive
structures. (Chapters 7 and 10 discuss filters having feedback but whose impulse responses are finite
in duration.) So, the terminology recursive and nonrecursive should be applied to a filter’s structure,
and the terms IIR and FIR should only be used to describe the time duration of the filter’s impulse
response[11,12].



6.6.2 The Transposition Theorem
There is a process in DSP that allows us to change the structure (the block diagram implementation)
of a linear time-invariant digital network without changing the network’s transfer function (its
frequency response). That network conversion process follows what is called the transposition
theorem. That theorem is important because a transposed version of some digital network might be
easier to implement, or may exhibit more accurate processing, than the original network.
We primarily think of the transposition theorem as it relates to digital filters, so below are the steps to
transpose a digital filter (or any linear time-invariant network for that matter):

1. Reverse the direction of all signal-flow arrows.
2. Convert all adders to signal nodes.
3. Convert all signal nodes to adders.
4. Swap the x(n) input and y(n) output labels.

An example of this transposition process is shown in Figure 6-23. The Direct Form II IIR filter in
Figure 6-23(a) is transposed to the structure shown in Figure 6-23(b). By convention, we flip the
network in Figure 6-23(b) from left to right so that the x(n) input is on the left as shown in Figure 6-
23(c).

Figure 6-23 Converting a Direct Form II filter to its transposed form.

Notice that the transposed filter contains the same number of delay elements, multipliers, and addition
operations as the original filter, and both filters have the same transfer function given by

(6-44)



When implemented using infinite-precision arithmetic, the Direct Form II and the transposed Direct
Form II filters have identical frequency response properties. As mentioned in Section 6.6.1, however,
the transposed Direct Form II structure is less susceptible to the errors that can occur when finite-
precision binary arithmetic, for example, in a 16-bit processor, is used to represent data values and
filter coefficients within a filter implementation. That property is because Direct Form II filters
implement their (possibly high-gain) feedback pole computations before their feedforward zeros
computations, and this can lead to problematic (large) intermediate data values which must be
truncated. The transposed Direct Form II filters, on the other hand, implement their zeros
computations first followed by their pole computations.

6.7 Pitfalls in Building IIR Filters
There’s an old saying in engineering: “It’s one thing to design a system on paper, and another thing to
actually build one and make it work.” (Recall the Tacoma Narrows Bridge episode!) Fabricating a
working system based on theoretical designs can be difficult in practice. Let’s see why this is often
true for IIR digital filters.
Again, the IIR filter structures in Figures 6-18 and 6-22 are called Direct Form implementations of an
IIR filter. That’s because they’re all equivalent to directly implementing the general time-domain
expression for an Mth-order IIR filter given in Eq. (6-21). As it turns out, there can be stability
problems and frequency response distortion errors when Direct Form implementations are used for
high-order filters. Such problems arise because we’re forced to represent the IIR filter coefficients
and results of intermediate filter calculations with binary numbers having a finite number of bits.
There are three major categories of finite-word-length errors that plague IIR filter implementations:
coefficient quantization, overflow errors, and roundoff errors.
Coefficient quantization (limited-precision coefficients) will result in filter pole and zero shifting on
the z-plane, and a frequency magnitude response that may not meet our requirements, and the response
distortion worsens for higher-order IIR filters.
Overflow, the second finite-word-length effect that troubles IIR filters, is what happens when the
result of an arithmetic operation is too large to be represented in the fixed-length hardware registers
assigned to contain that result. Because we perform so many additions when we implement IIR filters,
overflow is always a potential problem. With no precautions being taken to handle overflow, large
nonlinearity errors can result in our filter output samples—often in the form of overflow oscillations.
The most common way of dealing with binary overflow errors is called roundoff, or rounding, where
a data value is represented by, or rounded off to, the b-bit binary number that’s nearest the unrounded
data value. It’s usually valid to treat roundoff errors as a random process, but conditions occur in IIR
filters where rounding can cause the filter output to oscillate forever even when the filter input
sequence is all zeros. This situation, caused by the roundoff noise being highly correlated with the
signal, going by the names limit cycles and deadband effects, has been well analyzed in the
literature[13,14]. We can demonstrate limit cycles by considering the 2nd-order IIR filter in Figure 6-
24(a) whose time-domain expression is

(6-45)



Figure 6-24 Limit cycle oscillations due to rounding: (a) 2nd-order IIR filter; (b) one possible time-
domain response of the IIR filter.

Let’s assume this filter rounds the adder’s output to the nearest integer value. If the situation ever
arises where y(−2) = 0, y(−1) = 8, and x(0) and all successive x(n) inputs are zero, the filter output
goes into endless oscillation as shown in Figure 6-24(b). If this filter were to be used in an audio
application, when the input signal went silent the listener could end up hearing an audio tone instead
of silence. The dashed line in Figure 6-24(b) shows the filter’s stable response to this particular
situation if no rounding is used. With rounding, however, this IIR filter certainly lives up to its name.
(Welcome to the world of binary arithmetic!)
There are several ways to reduce the ill effects of coefficient quantization errors and limit cycles. We
can increase the word widths of the hardware registers that contain the results of intermediate
calculations. Because roundoff limit cycles affect the least significant bits of an arithmetic result,
larger word sizes diminish the impact of limit cycles should they occur. To avoid filter input
sequences of all zeros, some practitioners add a dither sequence to the filter’s input signal sequence.
A dither sequence is a sequence of low-amplitude pseudo-random numbers that interferes with an IIR
filter’s roundoff error generation tendency, allowing the filter output to reach zero should the input
signal remain at zero. Dithering, however, decreases the effective signal-to-noise ratio of the filter
output[12]. Finally, to avoid limit cycle problems, we can just use an FIR filter. Because FIR filters
by definition have finite-length impulse responses, and have no feedback paths, they cannot support
output oscillations of any kind.
As for overflow errors, we can eliminate them if we increase the word width of hardware registers
so overflow never takes place in the IIR filter. Filter input signals can be scaled (reduced in
amplitude by multiplying signals within the filter by a factor less than one) so overflow is avoided.
We discuss such filter scaling in Section 6.9. Overflow oscillations can be avoided by using
saturation arithmetic logic where signal values aren’t permitted to exceed a fixed limit when an
overflow condition is detected[15,16]. It may be useful for the reader to keep in mind that when the
signal data is represented in two’s complement arithmetic, multiple summations resulting in



intermediate overflow errors cause no problems if we can guarantee that the final magnitude of the
sum of the numbers is not too large for the final accumulator register. Of course, standard floating-
point number formats can greatly reduce the errors associated with overflow oscillations and limit
cycles[17]. (We discuss floating-point number formats in Chapter 12.)
These quantized coefficient and overflow errors, caused by finite-width words, have different effects
depending on the IIR filter structure used. Referring to Figure 6-22, practice has shown the Direct
Form II structure to be the most error-prone IIR filter implementation.
The most popular technique for minimizing the errors associated with finite-word-length widths is to
design IIR filters comprising a cascade string, or parallel combination, of low-order filters. The next
section tells us why.

6.8 Improving IIR Filters with Cascaded Structures
Filter designers minimize IIR filter stability and quantization noise problems in high-performance
filters by implementing combinations of cascaded lower-performance filters. Before we consider this
design idea, let’s review several important issues regarding the behavior of combinations of multiple
filters.

6.8.1 Cascade and Parallel Filter Properties
Here we summarize the combined behavior of linear time-invariant filters (be they IIR or FIR)
connected in cascade and in parallel. As indicated in Figure 6-25(a), the resultant transfer function of
two cascaded filter transfer functions is the product of those functions, or
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Figure 6-25 Combinations of two filters: (a) cascaded filters; (b) parallel filters.

with an overall frequency response of
(6-47)

It’s also important to know that the resultant impulse response of cascaded filters is
(6-48)

where “*” means convolution.
As shown in Figure 6-25(b), the combined transfer function of two filters connected in parallel is the



sum of their transfer functions, or
(6-49)

with an overall frequency response of
(6-50)

The resultant impulse response of parallel filters is the sum of their individual impulse responses, or
(6-51)

While we are on the subject of cascaded filters, let’s develop a rule of thumb for estimating the
combined passband ripple of the two cascaded filters in Figure 6-25(a). The cascaded passband
ripple is a function of each individual filter’s passband ripple. If we represent an arbitrary filter’s
peak passband ripple on a linear (not dB) vertical axis as shown in Figure 6-26, we can begin our
cascaded ripple estimation.

Figure 6-26 Definition of filter passband ripple R.

From Eq. (6-47), the upper bound (the peak) of a cascaded filter’s passband response, 1 + Rcas, is the
product of the two H1(ω) and H2(ω) filters’ peak passband responses, or

(6-52)

For small values of R1 and R2, the R1R2 term becomes negligible, and we state our rule of thumb as
(6-53)

Thus, in designs using two cascaded filters it’s prudent to specify their individual passband ripple
values to be roughly half the desired Rcas ripple specification for the final combined filter, or

(6-54)

6.8.2 Cascading IIR Filters
Experienced filter designers routinely partition high-order IIR filters into a string of 2nd-order IIR
filters arranged in cascade because these lower-order filters are easier to design, are less susceptible



to coefficient quantization errors and stability problems, and their implementations allow easier data
word scaling to reduce the potential overflow effects of data word size growth.
Optimizing the partitioning of a high-order filter into multiple 2nd-order filter sections is a
challenging task, however. For example, say we have the 6th-order Direct Form I filter in Figure 6-
27(a) that we want to partition into three 2nd-order sections. In factoring the 6th-order filter’s H(z)
transfer function, we could get up to three separate sets of feedforward coefficients in the factored
H(z) numerator: b′(k), b″(k), and b′′′(k). Likewise, we could have up to three separate sets of
feedback coefficients in the factored denominator: a′(k), a″(k), and a′′′(k). Because there are three
2nd-order sections, there are three factorial, or six, ways of pairing the sets of coefficients. Notice in
Figure 6-27(b) how the first section uses the a′(k) and b′(k) coefficients, and the second section uses
the a″(k) and b″(k) coefficients. We could just as well have interchanged the sets of coefficients so
the first 2nd-order section uses the a′(k) and b″(k) coefficients, and the second section uses the a″(k)
and b′(k) coefficients. So, there are six different mathematically equivalent ways of combining the
sets of coefficients. Add to this the fact that for each different combination of low-order sections there
are three factorial distinct ways those three separate 2nd-order sections can be arranged in cascade.

Figure 6-27 IIR filter partitioning: (a) initial 6th-order IIR filter; (b) three 2nd-order sections.

This means if we want to partition a 2M-order IIR filter into M distinct 2nd-order sections, there are
M factorial squared, (M!)2, ways to do so. As such, there are then (3!)2 = 24 different cascaded filters
we could obtain when going from Figure 6-27(a) to Figure 6-27(b). To further complicate this filter
partitioning problem, the errors due to coefficient quantization will, in general, be different for each
possible filter combination. Although full details of this subject are outside the scope of this
introductory text, ambitious readers can find further material on optimizing cascaded filter sections in
references [14] and [18], and in Part 3 of reference [19].
One simple (although perhaps not optimum) method for arranging cascaded 2nd-order sections has
been proposed[18]. First, factor a high-order IIR filter’s H(z) transfer function into a ratio of the form
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with the zk zeros in the numerator and pk poles in the denominator. (Ideally you have a signal
processing software package to perform the factorization.) Next, the 2nd-order section assignments go
like this:

1. Find the pole, or pole pair, in H(z) closest to the unit circle.
2. Find the zero, or zero pair, closest to the pole, or pole pair, found in Step 1.
3. Combine those poles and zeros into a single 2nd-order filter section. This means your first 2nd-

order section may be something like
(6-56)

4. Repeat Steps 1 to 3 until all poles and zeros have been combined into 2nd-order sections.
5. The final ordering (cascaded sequence) of the sections is based on how far the sections’ poles

are from the unit circle. Order the sections in either increasing or decreasing pole distances from
the unit circle.

6. Implement your filter as cascaded 2nd-order sections in the order from Step 5.
In digital filter vernacular, a 2nd-order IIR filter is called a biquad for two reasons. First, the filter’s
z-domain transfer function includes two quadratic polynomials. Second, the word biquad sounds
cool.
By the way, we started our 2nd-order sectioning discussion with a high-order Direct Form I filter in
Figure 6-27(a). We chose that filter form because it’s the structure most resistant to coefficient
quantization and overflow problems. As seen in Figure 6-27(a), we have redundant delay elements.
These can be combined, as shown in Figure 6-28, to reduce our temporary storage requirements as
we did with the Direct Form II structure in Figure 6-22.

Figure 6-28 Cascaded Direct Form I filters with reduced temporary data storage.

There’s much material in the literature concerning finite word effects as they relate to digital IIR
filters. (References [18], [20], and [21] discuss quantization noise effects in some detail as well as
providing extensive bibliographies on the subject.)



6.9 Scaling the Gain of IIR Filters
In order to impose limits on the magnitudes of data values within an IIR filter, we may wish to change
the passband gain of that filter[22,23].
For example, consider the 1st-order lowpass IIR filter in Figure 6-29(a) that has a DC gain (gain at
zero Hz) of 3.615. (This means that, just as with FIR filters, the sum of the IIR filter’s impulse
response samples is equal to the DC gain of 3.615.)

Figure 6-29 Lowpass IIR filters: (a) DC gain = 3.615; (b) DC gain = 1.

The DC gain of an IIR filter is the sum of the filter’s feedforward coefficients divided by 1 minus the
sum of the filter’s feedback coefficients. (We leave the proof of that statement as a homework
problem.) That is, the DC gain of the Figure 6-29(a) 1st-order filter is

(6-57)

Now let’s say we want, for some reason, the filter’s DC gain to be one (unity gain). This is easy to
accomplish. We merely divide the filter’s feedforward coefficients by the original DC gain as

(6-58)

Doing so gives us a new filter whose feedforward coefficients are those shown in Figure 6-29(b).
That new lowpass filter has a DC gain of one. Changing a filter’s coefficients in this way is called
filter scaling. Happily, this filter scaling does not change the shape of the original filter’s frequency
magnitude or phase response.
Likewise, to force the passband gain of a highpass filter to be unity, we divide the filter’s
feedforward coefficients by the original filter’s frequency magnitude response at fs/2 (half the
sampling rate).
Unlike passive analog (continuous-time) filters that operate by attenuating spectral energy in their
stopbands, digital IIR filters operate by amplifying spectral energy in their passbands. Because of this
positive passband gain behavior, there is another type of IIR filter scaling that’s used in many
situations. It is possible that an IIR filter may have a passband gain so high that the filter generates
internal sample values too large to be accommodated by the hardware, with its internal binary number
format, used to implement the filter. Stated in different words, it’s possible for a filter to generate
internal data values so large that they overflow the registers in which the data is to be stored. This
situation can also occur when multiple 2nd-order IIR filters are cascaded as discussed in Section 6.8.
In such cases, should we wish to reduce the passband gain of an IIR filter without changing the shape



of its frequency magnitude or phase responses, we can do so by implementing one of the filters shown
in Figure 6-30.

Figure 6-30 Scaled IIR filter structures: (a) Direct Form I; (b) Direct Form II.

If an IIR filter has an original passband gain of GIIR, we can change that passband gain by modifying
the original filter’s coefficients using the scalar G1 and G2 gain factors shown in Figure 6-30.
Changing a filter’s coefficients in this way is also called filter scaling. The passband gain of a scaled
filter is

(6-59)

The general philosophy in these matters is to choose factors G1 and G2 so that we preserve the filter’s
output signal quality (called the signal-to-noise ratio, SNR, as discussed in Chapter 12 and
Appendix D) as much as possible. This means keeping all internal sample values as large as can be
accommodated by the filter hardware registers. The problem is, there’s no simple way to determine
the values of G1 and G2. The suggested procedure is to select one of the Figure 6-30 implementations
and apply the expected input signal to the filter. Next we experiment with different values for gain
factors G1 and G2 from Eq. (6-59) until the final filter gain, GIIR-scaled, is an acceptable value.
Following that, we select an alternate Figure 6-30 filter structure and experiment with different
values for gains G1 and G2 to see if we can improve on the previous scaled-filter structure.

For computational efficiency reasons, if we’re able to set G2 to be the reciprocal of an integer power
of two, then we can eliminate one of the multiplies in Figure 6-30. That is, in this scenario the
multiply by G2 operation can then be implemented with binary right shifts. Then again, perhaps



factors G1 and G2 can be chosen so that one of the modified filter coefficients is unity in order to
eliminate a multiply operation.
Now that we have some understanding of the performance and implementation structures of IIR
filters, let’s briefly introduce three filter design techniques. These IIR design methods go by the
impressive names of impulse invariance, bilinear transform, and optimized methods. The first two
methods use analytical, pencil and paper algebra, filter design techniques to approximate continuous
analog filters. (By “analog filters” we mean those hardware filters made up of resistors, capacitors,
and perhaps operational amplifiers.)
Because analog filter design methods are very well understood, designers can take advantage of an
abundant variety of analog filter design techniques to design, say, a digital IIR Butterworth filter with
its very flat passband response, or perhaps go with a Chebyshev filter with its fluctuating passband
response and sharper passband-to-stopband cutoff characteristics. The optimized methods (by far the
most popular way of designing IIR filters) comprise linear algebra algorithms available in
commercial filter design software packages.
The impulse invariance, bilinear transform filter design methods are somewhat involved, so a true
DSP beginner is justified in skipping those subjects upon first reading this book. However, those filter
design topics may well be valuable sometime in your future as your DSP knowledge, experience, and
challenges grow.

6.10 Impulse Invariance IIR Filter Design Method
The impulse invariance method of IIR filter design is based upon the notion that we can design a
discrete filter whose time-domain impulse response is a sampled version of the impulse response of a
continuous analog filter. If that analog filter (often called the prototype filter) has some desired
frequency response, then our IIR filter will yield a discrete approximation of that desired response.
The impulse response equivalence of this design method is depicted in Figure 6-31, where we use the
conventional notation of δ to represent an impulse function and hc(t) is the analog filter’s impulse
response. We use the subscript “c” in Figure 6-31(a) to emphasize the continuous nature of the analog
filter. Figure 6-31(b) illustrates the definition of the discrete filter’s impulse response: the filter’s
time-domain output sequence when the input is a single unity-valued sample (impulse) preceded and
followed by all zero-valued samples. Our goal is to design a digital filter whose impulse response is
a sampled version of the analog filter’s continuous impulse response. Implied in the correspondence
of the continuous and discrete impulse responses is the property that we can map each pole on the s-
plane for the analog filter’s Hc(s) transfer function to a pole on the z-plane for the discrete IIR filter’s
H(z) transfer function. What designers have found is that the impulse invariance method does yield
useful IIR filters, as long as the sampling rate is high relative to the bandwidth of the signal to be
filtered. In other words, IIR filters designed using the impulse invariance method are susceptible to
aliasing problems because practical analog filters cannot be perfectly band-limited. Aliasing will
occur in an IIR filter’s frequency response as shown in Figure 6-32.
Figure 6-31 Impulse invariance design equivalence of (a) analog filter continuous impulse response;

(b) digital filter discrete impulse response.



Figure 6-32 Aliasing in the impulse invariance design method: (a) prototype analog filter magnitude
response; (b) replicated magnitude responses where HIIR(ω) is the discrete Fourier transform of h(n)

= hc(nts); (c) potential resultant IIR filter magnitude response with aliasing effects.

From what we’ve learned in Chapter 2 about the spectral replicating effects of sampling, if Figure 6-
32(a) is the spectrum of the continuous hc(t) impulse response, then the spectrum of the discrete
hc(nts) sample sequence is the replicated spectra in Figure 6-32(b).

In Figure 6-32(c) we show the possible effect of aliasing where the dashed curve is a desired HIIR(ω)
frequency magnitude response. However, the actual frequency magnitude response, indicated by the
solid curve, can occur when we use the impulse invariance design method. For this reason, we prefer
to make the sample frequency fs as large as possible to minimize the overlap between the primary
frequency response curve and its replicated images spaced at multiples of ±fs Hz.
Due to the aliasing behavior of the impulse invariance design method, this filter design process
should never be used to design highpass digital filters. To see how aliasing can affect IIR filters
designed with this method, let’s list the necessary impulse invariance design steps and then go through
a lowpass filter design example.



There are two different methods for designing IIR filters using impulse invariance. The first method,
which we’ll call Method 1, requires that an inverse Laplace transform as well as a z-transform be
performed[24,25]. The second impulse invariance design technique, Method 2, uses a direct
substitution process to avoid the inverse Laplace and z-transformations at the expense of needing
partial fraction expansion algebra necessary to handle polynomials[20,21,26,27]. Both of these
methods seem complicated when described in words, but they’re really not as difficult as they sound.
Let’s compare the two methods by listing the steps required for each of them. The impulse invariance
design Method 1 goes like this:
Method 1, Step 1: Design (or have someone design for you) a prototype analog filter with the

desired frequency response.† The result of this step is a continuous Laplace transfer
function Hc(s) expressed as the ratio of two polynomials, such as

† In a lowpass filter design, for example, the filter type (Chebyshev, Butterworth, elliptic), filter order (number of poles), and the cutoff
frequency are parameters to be defined in this step.

(6-60)

which is the general form of Eq. (6-10) with N < M, and a(k) and b(k) are constants.
Method 1, Step 2: Determine the analog filter’s continuous time-domain impulse response hc(t) from

the Hc(s) Laplace transfer function. I hope this can be done using Laplace tables as
opposed to actually evaluating an inverse Laplace transform equation.

Method 1, Step 3: Determine the digital filter’s sampling frequency fs, and calculate the sample
period as ts = 1/fs. The fs sampling rate is chosen based on the absolute frequency, in Hz,
of the prototype analog filter. Because of the aliasing problems associated with this
impulse invariance design method, later, we’ll see why fs should be made as large as is
practical.

Method 1, Step 4: Find the z-transform of the continuous hc(t) to obtain the IIR filter’s z-domain
transfer function H(z) in the form of a ratio of polynomials in z.

Method 1, Step 5: Substitute the value (not the variable) ts for the continuous variable t in the H(z)
transfer function obtained in Step 4. In performing this step, we are ensuring, as in Figure
6-31, that the IIR filter’s discrete h(n) impulse response is a sampled version of the
continuous filter’s hc(t) impulse response so that h(n) = hc(nts), for 0 ≤ n ≤ ∞.

Method 1, Step 6: Our H(z) from Step 5 will now be of the general form
(6-61)



Because the process of sampling the continuous impulse response results in a digital filter
frequency response that’s scaled by a factor of 1/ts, many filter designers find it
appropriate to include the ts factor in Eq. (6-61). So we can rewrite Eq. (6-61) as

(6-62)

Incorporating the value of ts in Eq. (6-62), then, makes the IIR filter time-response
scaling independent of the sampling rate, and the discrete filter will have the same gain as
the prototype analog filter.†

† Some authors have chosen to include the ts factor in the discrete h(n) impulse response in the above Step 4, that is, make h(n) =
tshc(nts)[20, 28]. The final result of this, of course, is the same as that obtained by including ts as described in Step 6.

Method 1, Step 7: Because Eq. (6-61) is in the form of Eq. (6-25), by inspection, we can express the
filter’s time-domain difference equation in the general form of Eq. (6-21) as

(6-63)

Choosing to incorporate ts, as in Eq. (6-62), to make the digital filter’s gain equal to the
prototype analog filter’s gain by multiplying the b(k) coefficients by the sample period ts
leads to an IIR filter time-domain expression of the form

(6-64)

Notice how the signs changed for the a(k) coefficients from Eqs. (6-61) and (6-62) to
Eqs. (6-63) and (6-64). These sign changes always seem to cause problems for
beginners, so watch out. Also, keep in mind that the time-domain expressions in Eqs. (6-
63) and (6-64) apply only to the filter structure in Figure 6-18. The a(k) and b(k), or ts ·
b(k), coefficients, however, can be applied to the improved IIR structure shown in Figure
6-22 to complete our design.

Before we go through an actual example of this design process, let’s discuss the other impulse
invariance design method.
The impulse invariance Design Method 2, also called the standard z-transform method, takes a
different approach. It mathematically partitions the prototype analog filter into multiple single-pole



continuous filters and then approximates each one of those by a single-pole digital filter. The set of M
single-pole digital filters is then algebraically combined to form an M-pole, Mth-ordered IIR filter.
This process of breaking the analog filter to discrete filter approximation into manageable pieces is
shown in Figure 6-33. The steps necessary to perform an impulse invariance Method 2 design are:

Figure 6-33 Mathematical flow of the impulse invariance design Method 2.

Method 2, Step 1: Obtain the Laplace transfer function Hc(s) for the prototype analog filter in the
form of Eq. (6-60). (Same as Method 1, Step 1.)

Method 2, Step 2: Select an appropriate sampling frequency fs and calculate the sample period as ts
= 1/fs. (Same as Method 1, Step 3.)

Method 2, Step 3: Express the analog filter’s Laplace transfer function Hc(s) as the sum of single-
pole filters. This requires us to use partial fraction expansion methods to express the ratio
of polynomials in Eq. (6-60) in the form of

(6-65)

where M > N, the individual Ak factors are constants, and the kth pole is located at −pk
on the s-plane. We’ll denote the kth single-pole analog filter as Hk(s), or

(6-66)



Method 2, Step 4: Substitute 1 − e−pkts z−1 for s + pk in Eq. (6-65). This mapping of each Hk(s) pole,
located at s = −pk on the s-plane, to the z = e−pkts location on the z-plane is how we
approximate the impulse response of each single-pole analog filter by a single-pole
digital filter. (The reader can find the derivation of this 1 − e−pkts z−1 substitution,
illustrated in our Figure 6-33, in references [20], [21], and [26].) So, the kth analog
single-pole filter Hk(s) is approximated by a single-pole digital filter whose z-domain
transfer function is

(6-67)

The final combined discrete filter transfer function H(z) is the sum of the single-poled
discrete filters, or

(6-68)

Keep in mind that the above H(z) is not a function of time. The ts factor in Eq. (6-68) is a
constant equal to the discrete-time sample period.

Method 2, Step 5: Calculate the z-domain transfer function of the sum of the M single-pole digital
filters in the form of a ratio of two polynomials in z. Because the H(z) in Eq. (6-68) will
be a series of fractions, we’ll have to combine those fractions over a common
denominator to get a single ratio of polynomials in the familiar form of

(6-69)

Method 2, Step 6: Just as in Method 1, Step 6, by inspection, we can express the filter’s time-
domain equation in the general form of

(6-70)

Again, notice the a(k) coefficient sign changes from Eq. (6-69) to Eq. (6-70). As
described in Method 1, Steps 6 and 7, if we choose to make the digital filter’s gain equal
to the prototype analog filter’s gain by multiplying the b(k) coefficients by the sample
period ts, then the IIR filter’s time-domain expression will be in the form

(6-71)



yielding a final H(z) z-domain transfer function of
(6-71′)

Finally, we can implement the improved IIR structure shown in Figure 6-22 using the a(k)
and b(k) coefficients from Eq. (6-70) or the a(k) and ts·b(k) coefficients from Eq. (6-71).

To provide a more meaningful comparison between the two impulse invariance design methods, let’s
dive in and go through an IIR filter design example using both methods.

6.10.1 Impulse Invariance Design Method 1 Example
Assume that we need to design an IIR filter that approximates a 2nd-order Chebyshev prototype
analog lowpass filter whose passband ripple is 1 dB. Our fs sampling rate is 100 Hz (ts = 0.01), and
the filter’s 1 dB cutoff frequency is 20 Hz. Our prototype analog filter will have a frequency
magnitude response like that shown in Figure 6-34.

Figure 6-34 Frequency magnitude response of the example prototype analog filter.

Given the above filter requirements, assume that the analog prototype filter design effort results in the
Hc(s) Laplace transfer function of

(6-72)

It’s the transfer function in Eq. (6-72) that we intend to approximate with our discrete IIR filter. To
find the analog filter’s impulse response, we’d like to get Hc(s) into a form that allows us to use
Laplace transform tables to find hc(t). Searching through systems analysis textbooks, we find the
following Laplace transform pair:

(6-73)

Our intent, then, is to modify Eq. (6-72) to get it into the form on the left side of Eq. (6-73). We do



this by realizing that the Laplace transform expression in Eq. (6-73) can be rewritten as
(6-74)

If we set Eq. (6-72) equal to the right side of Eq. (6-74), we can solve for A, α, and ω. Doing that,
(6-75)

Solving Eq. (6-75) for A, α, and ω, we first find
(6-76)

(6-77)

so
(6-78)

and
(6-79)

OK, we can now express Hc(s) in the desired form of the left side of Eq. (6-74) as
(6-80)

Using the Laplace transform pair in Eq. (6-73), the time-domain impulse response of the prototype
analog filter becomes

(6-81)

OK, we’re ready to perform Method 1, Step 4, to determine the discrete IIR filter’s z-domain transfer
function H(z) by performing the z-transform of hc(t). Again, scanning through digital signal processing
textbooks or a good math reference book, we find the following z-transform pair where the time-
domain expression is in the same form as Eq. (6-81)’s hc(t) impulse response:

(6-82)

Remember, now, the α and ω in Eq. (6-82) are generic and are not related to the α and ω values in



Eqs. (6-76) and (6-78). Substituting the constants from Eq. (6-81) into the right side of Eq. (6-82), we
get the z-transform of the IIR filter as

(6-83)

Performing Method 1, Step 5, we substitute the ts value of 0.01 for the continuous variable t in Eq. (6-
83), yielding the final H(z) transfer function of

(6-84)

OK, hang in there; we’re almost finished. Here are the final steps of Method 1. Because of the
transfer function H(z) = Y(z)/X(z), we can cross-multiply the denominators to rewrite the bottom line
of Eq. (6-84) as

(6-85)

By inspection of Eq. (6-85), we can now get the time-domain expression for our IIR filter. Performing
Method 1, Steps 6 and 7, we multiply the x(n−1) coefficient by the sample period value of ts = 0.01
to allow for proper scaling as

(6-86)

and there we (finally) are. The coefficients from Eq. (6-86) are what we use in implementing the
improved IIR structure shown in Figure 6-22 to approximate the original 2nd-order Chebyshev analog
lowpass filter.
Let’s see if we get the same result if we use the impulse invariance design Method 2 to approximate
the example prototype analog filter.

6.10.2 Impulse Invariance Design Method 2 Example
Given the original prototype filter’s Laplace transfer function as

(6-87)



and the value of ts = 0.01 for the sample period, we’re ready to proceed with Method 2’s Step 3. To
express Hc(s) as the sum of single-pole filters, we’ll have to factor the denominator of Eq. (6-87) and
use partial fraction expansion methods. For convenience, let’s start by replacing the constants in Eq.
(6-87) with variables in the form of

(6-88)

where b = 137.94536, and c = 17410.145. Next, using Eq. (6-15) with a = 1, we can factor the
quadratic denominator of Eq. (6-88) into

(6-89)

If we substitute the values for b and c in Eq. (6-89), we’ll find that the quantity under the radical sign
is negative. This means that the factors in the denominator of Eq. (6-89) are complex. Because we
have lots of algebra ahead of us, let’s replace the radicals in Eq. (6-89) with the imaginary term jR,
where  and R = |(b2−4c)/4|, such that

(6-90)

OK, partial fraction expansion methods allow us to partition Eq. (6-90) into two separate fractions of
the form

(6-91)

where the K1 constant can be found to be equal to jc/2R and constant K2 is the complex conjugate of
K1, or K2 = −jc/2R. (To learn the details of partial fraction expansion methods, the interested reader
should investigate standard college algebra or engineering mathematics textbooks.) Thus, Hc(s) can
be of the form in Eq. (6-65) or

(6-92)

We can see from Eq. (6-92) that our 2nd-order prototype filter has two poles, one located at p1 =
−b/2 − jR and the other at p2 = −b/2 + jR. We’re now ready to map those two poles from the s-plane
to the z-plane as called out in Method 2, Step 4. Making our 1 − e−pkts z−1 substitution for the s + pk



terms in Eq. (6-92), we have the following expression for the z-domain single-pole digital filters:
(6-93)

Our objective in Method 2, Step 5, is to massage Eq. (6-93) into the form of Eq. (6-69), so that we
can determine the IIR filter’s feedforward and feedback coefficients. Putting both fractions in Eq. (6-
93) over a common denominator gives us

(6-94)

Collecting like terms in the numerator and multiplying out the denominator gives us
(6-95)

Factoring the exponentials and collecting like terms of powers of z in Eq. (6-95),
(6-96)

Continuing to simplify our H(z) expression by factoring out the real part of the exponentials,
(6-97)

We now have H(z) in a form with all the like powers of z combined into single terms, and Eq. (6-97)
looks something like the desired form of Eq. (6-69). Knowing that the final coefficients of our IIR
filter must be real numbers, the question is “What do we do with those imaginary j terms in Eq. (6-
97)?” Once again, Euler to the rescue.† Using Euler’s equations for sinusoids, we can eliminate the
imaginary exponentials and Eq. (6-97) becomes
† From Euler, we know that sin(ø) = (ejø − e−jø)/2j, and cos(ø) = (ejø + e−jø)/2.

(6-98)

If we plug the values c = 17410.145, b = 137.94536, R = 112.48517, and ts = 0.01 into Eq. (6-98),
we get the following IIR filter transfer function:

(6-99)



Because the transfer function H(z) = Y(z)/X(z), we can again cross-multiply the denominators to
rewrite Eq. (6-99) as

(6-100)

Now we take the inverse z-transform of Eq. (6-100), by inspection, to get the time-domain expression
for our IIR filter as

(6-101)

One final step remains. To force the IIR filter gain to be equal to the prototype analog filter’s gain, we
multiply the x(n−1) coefficient by the sample period ts as suggested in Method 2, Step 6. In this case,
there’s only one x(n) coefficient, giving us

(6-102)

That compares well with the Method 1 result in Eq. (6-86). (Isn’t it comforting to work a problem
two different ways and get the same result?)
Figure 6-35 shows, in graphical form, the result of our IIR design example. The s-plane pole
locations of the prototype filter and the z-plane poles of the IIR filter are shown in Figure 6-35(a).
Because the s-plane poles are to the left of the origin and the z-plane poles are inside the unit circle,
both the prototype analog and the discrete IIR filters are stable. We find the prototype filter’s s-plane
pole locations by evaluating Hc(s) in Eq. (6-92). When s = −b/2 − jR, the denominator of the first
term in Eq. (6-92) becomes zero and Hc(s) is infinitely large. That s = −b/2 − jR value is the location
of the lower s-plane pole in Figure 6-35(a). When s = −b/2 + jR, the denominator of the second term
in Eq. (6-92) becomes zero and s = −b/2 + jR is the location of the second s-plane pole.

Figure 6-35 Impulse invariance design example filter characteristics: (a) s-plane pole locations of
prototype analog filter and z-plane pole locations of discrete IIR filter; (b) frequency magnitude

response of the discrete IIR filter.



The IIR filter’s z-plane pole locations are found from Eq. (6-93). If we multiply the numerators and
denominators of Eq. (6-93) by z,

(6-103)

In Eq. (6-103), when z is set equal to e(−b/2 + jR)ts, the denominator of the first term in Eq. (6-103)
becomes zero and H(z) becomes infinitely large. The value of z of

(6-104)

defines the location of the lower z-plane pole in Figure 6-35(a). Specifically, this lower pole is
located at a distance of e−bts/2 = 0.5017 from the origin, at an angle of θ = −Rts radians, or −64.45°.
Being conjugate poles, the upper z-plane pole is located the same distance from the origin at an angle
of θ = Rts radians, or +64.45°. Figure 6-35(b) illustrates the frequency magnitude response of the IIR
filter in Hz.
Two different implementations of our IIR filter are shown in Figure 6-36. Figure 6-36(a) is an
implementation of our 2nd-order IIR filter based on the general IIR structure given in Figure 6-22,
and Figure 6-36(b) shows the 2nd-order IIR filter implementation based on the alternate structure
from Figure 6-21(b). Knowing that the b(0) coefficient on the left side of Figure 6-36(b) is zero, we
arrive at the simplified structure on the right side of Figure 6-36(b). Looking carefully at Figure 6-
36(a) and the right side of Figure 6-36(b), we can see that they are equivalent.

Figure 6-36 Implementations of the impulse invariance design example filter.



Although both impulse invariance design methods are covered in the literature, we might ask, “Which
one is preferred?” There’s no definite answer to that question because it depends on the Hc(s) of the
prototype analog filter. Although our Method 2 example above required more algebra than Method 1,
if the prototype filter’s s-domain poles were located only on the real axis, Method 2 would have been
much simpler because there would be no complex variables to manipulate. In general, Method 2 is
more popular for two reasons: (1) the inverse Laplace and z-transformations, although
straightforward in our Method 1 example, can be very difficult for higher-order filters, and (2) unlike
Method 1, Method 2 can be coded in a software routine or a computer spreadsheet.
Upon examining the frequency magnitude response in Figure 6-35(b), we can see that this 2nd-order
IIR filter’s roll-off is not particularly steep. This is, admittedly, a simple low-order filter, but its
attenuation slope is so gradual that it doesn’t appear to be of much use as a lowpass filter.† We can
also see that the filter’s passband ripple is greater than the desired value of 1 dB in Figure 6-34.
What we’ll find is that it’s not the low order of the filter that contributes to its poor performance, but
the sampling rate used. That 2nd-order IIR filter response is repeated as the shaded curve in Figure 6-
37. If we increased the sampling rate to 200 Hz, we’d get the frequency response shown by the
dashed curve in Figure 6-37. Increasing the sampling rate to 400 Hz results in the much improved
frequency response indicated by the solid line in the figure. Sampling rate changes do not affect our
filter order or implementation structure. Remember, if we change the sampling rate, only the sample
period ts changes in our design equations, resulting in a different set of filter coefficients for each new
sampling rate. So we can see that the smaller we make ts (larger fs), the better the resulting filter
when either impulse invariance design method is used because the replicated spectral overlap
indicated in Figure 6-32(b) is reduced due to the larger fs sampling rate. The bottom line here is that
impulse invariance IIR filter design techniques are most appropriate for narrowband filters, that is,
lowpass filters whose cutoff frequencies are much smaller than the sampling rate.
† A piece of advice: whenever you encounter any frequency representation (be it a digital filter magnitude response or a signal spectrum)
that has nonzero values at +fs/2, be suspicious—be very suspicious—that aliasing is taking place.



Figure 6-37 IIR filter frequency magnitude response, on a linear scale, at three separate sampling
rates. Notice how the filter’s absolute cutoff frequency of 20 Hz shifts relative to the different fs

sampling rates.

The second analytical technique for analog filter approximation, the bilinear transform method,
alleviates the impulse invariance method’s aliasing problems at the expense of what’s called
frequency warping. Specifically, there’s a nonlinear distortion between the prototype analog filter’s
frequency scale and the frequency scale of the approximating IIR filter designed using the bilinear
transform. Let’s see why.

6.11 Bilinear Transform IIR Filter Design Method
There’s a popular analytical IIR filter design technique known as the bilinear transform method. Like
the impulse invariance method, this design technique approximates a prototype analog filter defined
by the continuous Laplace transfer function Hc(s) with a discrete filter whose transfer function is
H(z). However, the bilinear transform method has great utility because

• it allows us simply to substitute a function of z for s in Hc(s) to get H(z), thankfully eliminating the
need for Laplace and z-transformations as well as any necessity for partial fraction expansion
algebra;

• it maps the entire s-plane to the z-plane, enabling us to completely avoid the frequency-domain
aliasing problems we had with the impulse invariance design method; and

• it induces a nonlinear distortion of H(z)’s frequency axis, relative to the original prototype analog
filter’s frequency axis, that sharpens the final roll-off of digital lowpass filters.

Don’t worry. We’ll explain each one of these characteristics and see exactly what they mean to us as
we go about designing an IIR filter.
If the transfer function of a prototype analog filter is Hc(s), then we can obtain the discrete IIR filter z-
domain transfer function H(z) by substituting the following for s in Hc(s)

(6-105)



where, again, ts is the discrete filter’s sampling period (1/fs). Just as in the impulse invariance design
method, when using the bilinear transform method, we’re interested in where the analog filter’s poles
end up on the z-plane after the transformation. This s-plane to z-plane mapping behavior is exactly
what makes the bilinear transform such an attractive design technique.†
† The bilinear transform is a technique in the theory of complex variables for mapping a function on the complex plane of one variable to
the complex plane of another variable. It maps circles and straight lines to straight lines and circles, respectively.

Let’s investigate the major characteristics of the bilinear transform’s s-plane to z-plane mapping. First
we’ll show that any pole on the left side of the s-plane will map to the inside of the unit circle in the
z-plane. It’s easy to show this by solving Eq. (6-105) for z in terms of s. Multiplying Eq. (6-105) by
(ts/2)(1 + z−1) and collecting like terms of z leads us to

(6-106)

If we designate the real and imaginary parts of s as
(6-107)

where the subscript in the radian frequency ωa signifies analog, Eq. (6-106) becomes
(6-108)

We see in Eq. (6-108) that z is complex, comprising the ratio of two complex expressions. As such, if
we denote z as a magnitude at an angle in the form of z = |z|∠θz, we know that the magnitude of z is
given by

(6-109)

OK, if σ is negative (σ < 0), the numerator of the ratio on the right side of Eq. (6-109) will be less
than the denominator, and |z| will be less than 1. On the other hand, if σ is positive (σ > 0), the
numerator will be larger than the denominator, and |z| will be greater than 1. This confirms that when
using the bilinear transform defined by Eq. (6-105), any pole located on the left side of the s-plane (σ
< 0) will map to a z-plane location inside the unit circle. This characteristic ensures that any stable s-
plane pole of a prototype analog filter will map to a stable z-plane pole for our discrete IIR filter.
Likewise, any analog filter pole located on the right side of the s-plane (σ > 0) will map to a z-plane
location outside the unit circle when using the bilinear transform. This reinforces our notion that to
avoid filter instability, during IIR filter design, we should avoid allowing any z-plane poles to lie
outside the unit circle.
Next, let’s show that the jωa axis of the s-plane maps to the perimeter of the unit circle in the z-plane.
We can do this by setting σ = 0 in Eq. (6-108) to get

(6-110)



Here, again, we see in Eq. (6-110) that z is a complex number comprising the ratio of two complex
numbers, and we know the magnitude of this z is given by

(6-111)

The magnitude of z in Eq. (6-111) is always 1. So, as we stated, when using the bilinear transform,
the jωa axis of the s-plane maps to the perimeter of the unit circle in the z-plane. However, this
frequency mapping from the s-plane to the unit circle in the z-plane is not linear. It’s important to
know why this frequency nonlinearity, or warping, occurs and to understand its effects. So we shall,
by showing the relationship between the s-plane frequency and the z-plane frequency that we’ll
designate as ωd.

If we define z on the unit circle in polar form as z = re−jωd as we did for Figure 6-13, where r is 1 and
ωd is the angle, we can substitute z = ejωd in Eq. (6-105) as

(6-112)

If we show s in its rectangular form and partition the ratio in brackets into half-angle expressions,
(6-113)

Using Euler’s relationships of sin(ø) = (ejø − e−jø)/2j and cos(ø) = (ejø + e−jø)/2, we can convert the
right side of Eq. (6-113) to rectangular form as

(6-114)

If we now equate the real and imaginary parts of Eq. (6-114), we see that σ = 0, and
(6-115)



The analog frequency ωa (radians/second) can have any value and its equivalent fa cyclic frequency
is

(6-115′)

Rearranging Eq. (6-115) to give us the useful expression for the z-domain frequency ωd, in terms of
the s-domain frequency ωa, we write

(6-116)

It’s critical to notice that the range of ωd is ±π, and the dimensions of digital frequency ωd are
radians/sample (not radians/second). The important relationship in Eq. (6-116), which accounts for
the so-called frequency warping due to the bilinear transform, is illustrated in Figure 6-38. Notice
that because tan−1(ωats/2) approaches π/2 as ωa becomes large, ωd must then approach twice that
value, or π. This means that no matter how large the s-plane’s analog ωa becomes, the z-plane’s ωd
will never be greater than π radians/sample (fs/2 Hz).

Figure 6-38 Nonlinear relationship between the z-domain frequency ωd and the s-domain frequency
ωa.

Remember how we considered Figure 6-14 and stated that only the −π fs to +π fs radians/second
frequency range for ωa can be accounted for on the z-plane? Well, our new mapping from the bilinear
transform maps the entire s-plane to the z-plane, and not just the primary strip of the s-plane shown in
Figure 6-14. Now, just as a walk along the jωa frequency axis on the s-plane takes us to infinity in
either direction, a trip halfway around the unit circle in a counterclockwise direction takes us from ωa
= 0 to ωa = +∞ radians/second. As such, the bilinear transform maps the s-plane’s entire jωa axis onto
the unit circle in the z-plane. We illustrate these bilinear transform mapping properties in Figure 6-39.

Figure 6-39 Bilinear transform mapping of the s-plane to the z-plane.



In an attempt to show the practical implications of this frequency warping, let’s relate the s-plane and
z-plane frequencies to a more practical measure of frequencies in Hz. Because a ωd frequency of ωd =
π radians/sample corresponds to a cyclic frequency of fs/2 Hz, we relate ωd and a digital cyclic
frequency fd using

(6-117)

Substituting Eq. (6-117) into Eq. (6-115), and recalling that ωa = 2πfa, gives us
(6-118)

Solving Eq. (6-118) for fd yields
(6-119)

Equation (6-119) is plotted in Figure 6-40(a). Equations (6-118) and (6-119) are very useful! They
relate the analog s-plane frequency fa in Hz to the digital z-plane’s warped frequency fd in Hz. This
important nonlinear relationship is plotted in Figure 6-40(b). There we see that the fd frequency
warping (compression) becomes more severe as fd approaches fs/2.
Figure 6-40 Nonlinear relationship between the fd and fa frequencies: (a) frequency warping curve;

(b) s-domain frequency response transformation to a z-domain frequency response; (c) example
|Ha(fa)| and transformed |Hd(fd)|.



So what does all this fa to fd mapping rigmarole mean? It means two things. First, if a bandpass
analog filter’s upper cutoff frequency is fa1 Hz, a bilinear-transform-designed digital bandpass filter
operating at a sample rate of fs Hz will have an upper cutoff frequency of fd1 Hz as shown in Figure 6-
40(c). Likewise if a bilinear-transform-designed digital bandpass filter is desired to have an upper
cutoff frequency of fd1 Hz, then the original prototype analog bandpass filter must be designed
(prewarped) to have an upper cutoff frequency of fa1 Hz using Eq. (6-118).
Second, no IIR filter response aliasing can occur with the bilinear transform design method. No
matter what the shape, or bandwidth, of the |Ha(fa)| prototype analog filter, none of the |Hd(fd)|
magnitude responses can extend beyond half the sampling rate of fs/2 Hz—and that’s what makes the
bilinear transform IIR filter design method as popular as it is.
The steps necessary to perform an IIR filter design using the bilinear transform method are as
follows:
Step 1: Obtain the Laplace transfer function Hc(s) for the prototype analog filter in the form of Eq.

(6-43).
Step 2: Determine the digital filter’s equivalent sampling frequency fs and establish the sample

period ts = 1/fs.

Step 3: In the Laplace Hc(s) transfer function, substitute the expression



(6-120)

for the variable s to get the IIR filter’s H(z) transfer function.

Step 4: Multiply the numerator and denominator of H(z) by the appropriate power of (1 + z−1) and
grind through the algebra to collect terms of like powers of z in the form

(6-121)

Step 5: Just as in the impulse invariance design methods, by inspection, we can express the IIR
filter’s time-domain equation in the general form of

(6-122)

Although the expression in Eq. (6-122) only applies to the filter structure in Figure 6-18, to
complete our design, we can apply the a(k) and b(k) coefficients to the improved IIR structure
shown in Figure 6-22.

To show just how straightforward the bilinear transform design method is, let’s use it to solve the IIR
filter design problem first presented for the impulse invariance design method.

6.11.1 Bilinear Transform Design Example
Again, our goal is to design an IIR filter that approximates the 2nd-order Chebyshev prototype analog
lowpass filter, shown in Figure 6-26, whose passband ripple is 1 dB. The fs sampling rate is 100 Hz
(ts = 0.01), and the filter’s 1 dB cutoff frequency is 20 Hz. As before, given the original prototype
filter’s Laplace transfer function as

(6-123)

and the value of ts = 0.01 for the sample period, we’re ready to proceed with Step 3. For
convenience, let’s replace the constants in Eq. (6-123) with variables in the form of

(6-124)

where b = 137.94536 and c = 17410.145. Performing the substitution of Eq. (6-120) in Eq. (6-124),
(6-125)



To simplify our algebra a little, let’s substitute the variable a for the fraction 2/ts to give
(6-126)

Proceeding with Step 4, we multiply Eq. (109)’s numerator and denominator by (1 + z−1)2 to yield
(6-127)

Multiplying through by the factors in the denominator of Eq. (6-127), and collecting like powers of z,
(6-128)

We’re almost there. To get Eq. (6-128) into the form of Eq. (6-121) with a constant term of one in the
denominator, we divide Eq. (6-128)’s numerator and denominator by (a2 + ab + c), giving us

(6-129)

We now have H(z) in a form with all the like powers of z combined into single terms, and Eq. (6-129)
looks something like the desired form of Eq. (6-121). If we plug the values a = 2/ts = 200, b =
137.94536, and c = 17410.145 into Eq. (6-129), we get the following IIR filter transfer function:

(6-130)

and there we are. Now, by inspection of Eq. (6-130), we get the time-domain expression for our IIR
filter as

(6-131)

The frequency magnitude response of our bilinear transform IIR design example is shown as the dark



curve in Figure 6-41(a), where, for comparison, we’ve shown the result of that impulse invariance
design example as the shaded curve. Notice how the bilinear-transform-designed filter’s magnitude
response approaches zero at the folding frequency of fs/2 = 50 Hz. This is as it should be—that’s the
whole purpose of the bilinear transform design method. Figure 6-41(b) illustrates the nonlinear phase
response of the bilinear-transform-designed IIR filter.

Figure 6-41 Comparison of the bilinear transform and impulse invariance design IIR filters: (a)
frequency magnitude responses; (b) phase of the bilinear transform IIR filter.

We might be tempted to think that not only is the bilinear transform design method easier to perform
than the impulse invariance design method, but that it gives us a much sharper roll-off for our lowpass
filter. Well, the frequency warping of the bilinear transform method does compress (sharpen) the roll-
off portion of a lowpass filter, as we saw in Figure 6-40, but an additional reason for the improved
response is the price we pay in terms of the additional complexity of the implementation of our IIR
filter. We see this by examining the implementation of our IIR filter as shown in Figure 6-42. Notice
that our new filter requires five multiplications per filter output sample where the impulse invariance
design filter in Figure 6-28(a) required only three multiplications per filter output sample. The
additional multiplications are, of course, required by the additional feedforward z terms in the
numerator of Eq. (6-130). These added b(k) coefficient terms in the H(z) transfer function correspond
to zeros in the z-plane created by the bilinear transform that did not occur in the impulse invariance
design method.

Figure 6-42 Implementation of the bilinear transform design example filter.



Because our example prototype analog lowpass filter had a cutoff frequency that was fs/5, we don’t
see a great deal of frequency warping in the bilinear transform curve in Figure 6-41. (In fact, Kaiser
has shown that when fs is large, the impulse invariance and bilinear transform design methods result
in essentially identical H(z) transfer functions[18].) Had our cutoff frequency been a larger
percentage of fs, bilinear transform warping would have been more serious, and our resultant |Hd(fd)|
cutoff frequency would have been below the desired value. What the pros do to avoid this is to
prewarp the prototype analog filter’s cutoff frequency requirement before the analog Hc(s) transfer
function is derived in Step 1.
In that way, they compensate for the bilinear transform’s frequency warping before it happens. We can
use Eq. (6-115) to determine the prewarped prototype analog filter lowpass cutoff frequency that we
want mapped to the desired IIR lowpass cutoff frequency. We plug the desired IIR cutoff frequency ωd
in Eq. (6-115) to calculate the prototype analog ωa cutoff frequency used to derive the prototype
analog filter’s Hc(s) transfer function.

Although we explained how the bilinear transform design method avoids the impulse invariance
method’s inherent frequency response aliasing, it’s important to remember that we still have to avoid
filter input data aliasing. No matter what kind of digital filter or filter design method is used, the
original input signal data must always be obtained using a sampling scheme that avoids the aliasing
described in Chapter 2. If the original input data contains errors due to sample rate aliasing, no filter
can remove those errors.
Our introductions to the impulse invariance and bilinear transform design techniques have, by
necessity, presented only the essentials of those two design methods. Although rigorous mathematical
treatment of the impulse invariance and bilinear transform design methods is inappropriate for an
introductory text such as this, more detailed coverage is available to the interested
reader[20,21,25,26]. References [25] and [26], by the way, have excellent material on the various
prototype analog filter types used as a basis for the analytical IIR filter design methods. Although our
examples of IIR filter design using the impulse invariance and bilinear transform techniques
approximated analog lowpass filters, it’s important to remember that these techniques apply equally
well to designing bandpass and highpass IIR filters. To design a highpass IIR filter, for example, we’d
merely start our design with a Laplace transfer function for the prototype analog highpass filter. Our
IIR digital filter design would then proceed to approximate that prototype highpass filter.
As we have seen, the impulse invariance and bilinear transform design techniques are both powerful
and a bit difficult to perform. The mathematics is intricate and the evaluation of the design equations
is arduous for all but the simplest filters. As such, we’ll introduce a third class of IIR filter design
methods based on software routines that take advantage of iterative optimization computing



techniques. In this case, the designer defines the desired filter frequency response, and the algorithm
begins generating successive approximations until the IIR filter coefficients converge (ideally) to an
optimized design.

6.12 Optimized IIR Filter Design Method
The final class of IIR filter design methods we’ll introduce is broadly categorized as optimization
methods. These IIR filter design techniques were developed for the situation when the desired IIR
filter frequency response was not of the standard lowpass, bandpass, or highpass form. When the
desired response has an arbitrary shape, closed-form expressions for the filter’s z-transform do not
exist, and we have no explicit equations to work with to determine the IIR filter’s coefficients. For
this general IIR filter design problem, algorithms were developed to solve sets of linear, or nonlinear,
equations on a computer. These software routines mandate that the designer describe, in some way,
the desired IIR filter frequency response. The algorithms, then, assume a filter transfer function H(z)
as a ratio of polynomials in z and start to calculate the filter’s frequency response. Based on some
error criteria, the algorithm begins iteratively adjusting the filter’s coefficients to minimize the error
between the desired and the actual filter frequency response. The process ends when the error cannot
be further minimized, or a predefined number of iterations has occurred, and the final filter
coefficients are presented to the filter designer. Although these optimization algorithms are too
mathematically complex to cover in any detail here, descriptions of the most popular optimization
schemes are readily available in the literature [20,21,29–34].
The reader may ask, “If we’re not going to cover optimization methods in any detail, why introduce
the subject here at all?” The answer is that if we spend much time designing IIR filters, we’ll end up
using optimization techniques in the form of computer software routines most of the time. The vast
majority of commercially available digital signal processing software packages include one or more
IIR filter design routines that are based on optimization methods. When a computer-aided design
technique is available, filter designers are inclined to use it to design the simpler lowpass, bandpass,
or highpass forms even though analytical techniques exist. With all due respect to Laplace, Heaviside,
and Kaiser, why plow through all the z-transform design equations when the desired frequency
response can be applied to a software routine to yield acceptable filter coefficients in a few seconds?
As it turns out, using commercially available optimized IIR filter design routines is very
straightforward. Although they come in several flavors, most optimization routines only require the
designer to specify a few key amplitude and frequency values, and the desired order of the IIR filter
(the number of feedback taps), and the software computes the final feedforward and feedback
coefficients. In specifying a lowpass IIR filter, for example, a software design routine might require
us to specify the values for δp, δs, f1, and f2 shown in Figure 6-43. Some optimization design routines
require the user to specify the order of the IIR filter. Those routines then compute the filter
coefficients that best approach the required frequency response. Some software routines, on the other
hand, don’t require the user to specify the filter order. They compute the minimum order of the filter
that actually meets the desired frequency response.

Figure 6-43 Example lowpass IIR filter design parameters required for the optimized IIR filter
design method.



6.13 A Brief Comparison of IIR and FIR Filters
The question naturally arises as to which filter type, IIR or FIR, is best suited for a given digital
filtering application. That’s not an easy question to answer, but we can point out a few factors that
should be kept in mind. First, we can assume that the differences in the ease of design between the
two filter types are unimportant. There are usually more important performance and implementation
properties to consider than design difficulty when choosing between an IIR and an FIR filter. One
design consideration that may be significant is the IIR filter’s ability to simulate a predefined
prototype analog filter. FIR filters do not have this design flexibility.
From a hardware standpoint, with so many fundamental differences between IIR and FIR filters, our
choice must be based on those filter characteristics that are most and least important to us. For
example, if we need a filter with exactly linear phase, then an FIR filter is the only way to go. If, on
the other hand, our design requires a filter to accept very high data rates and slight phase nonlinearity
is tolerable, we might lean toward IIR filters with their reduced number of necessary multipliers per
output sample.
One caveat, though: Just because an FIR filter has, say, three times the number of multiplies per output
sample relative to an IIR filter, that does not mean the IIR filter will execute faster on a programmable
DSP chip. Typical DSP chips have a zero-overhead looping capability whose parallelism speeds the
execution of multiply and accumulate (MAC) routines, with which FIR filtering is included. The
code for IIR filtering has more data/coefficient pointer bookkeeping to accommodate than FIR filter
code. So, if you’re choosing between an IIR filter requiring K multiplies per output sample and an
FIR filter needing 2K (or 3K) multiplies per output sample, code both filters and measure their
execution speeds.
Table 6-1 presents a brief comparison of IIR and FIR filters based on several performance and
implementation properties.

Table 6-1 IIR and Nonrecursive FIR Filter Characteristics Comparison
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Chapter 6 Problems
6.1 Review the z-plane depiction in Figure P6-1. Draw a rough sketch of the Laplace s-plane

showing a shaded area (on the s-plane) that corresponds to the shaded circular band in Figure P6-
1.

Figure P6-1

6.2 Write the H(z) z-domain transfer function equations for the filters described by the following
difference equations:
(a) y(n) = x(n) − y(n−2),
(b) y(n) = x(n) + 3x(n−1) + 2x(n−2) − y(n−3),
(c) y(n) = x(n) + x(n−1) + x(n−3) + x(n−4) − y(n−2).

6.3 Knowing the order of a digital filter is important information. It typically gives us a direct
indication of the computational workload (number of additions and multiplications) necessary to
compute a single filter output sample. State the order of the filters in Problem 6.2.

6.4 Write the H(ω) frequency response equations, in both polar and rectangular form, for the filters in
Problem 6.2. By “polar form” we mean we want H(ω) expressed as a ratio of terms using e−jkω,
where k is an integer. By “rectangular form” we mean we want H(ω) expressed as a ratio in the



form of

where a, b, c, and d are cosine and/or sine functions whose arguments are kω.
(Note: This problem is not “busy work.” The rectangular form of H(ω) is the expression you
would model using generic signal processing software to compute and plot a filter’s magnitude and
phase response in the frequency domain.)

6.5 Considering the z-domain transfer function associated with a digital filter:
(a) What does it mean if the filter has one or more poles outside the z-plane’s unit circle?
(b) What does it mean if the filter has a zero lying exactly on the z-plane’s unit circle?

6.6 In the literature of DSP, we usually see filter transfer functions expressed in terms of z where z
always has a negative exponent. But sometimes we see transfer functions in terms of z having
positive exponents. For example, you might encounter an IIR filter’s transfer function expressed as

(a) What is the transfer function expression equivalent to H(z) in terms of z with z having negative-
only exponents?

(b) Is this IIR filter stable? Justify your answer.
(c) Draw the Direct Form I structure (block diagram), showing the filter’s coefficients.
(d) Draw the Direct Form II structure, showing the filter’s coefficients.

6.7 Although we didn’t need to use the z-transform to analyze the tapped-delay line (nonrecursive)
FIR filters in Chapter 5, we could have done so. Let’s try an FIR filter analysis example using the
z-transform. For the filter in Figure P6-7:

Figure P6-7

(a) Write the time-domain difference equation describing the filter output y(n) in terms of the x(n)
input and the h(k) coefficients.

(b) Write the z-transform of the y(n) difference equation from Part (a).
(c) Write the z-domain transfer function, H(z) = Y(z)/X(z), of the filter.
(d) What is the order of this FIR filter?

6.8 Thinking about IIR digital filters:
(a) Is it true that to determine the frequency response of an IIR filter, we need to know both the

filter’s time-domain difference equation and the impulse response of that filter? Explain your



answer.
(b) If we know the H(z) z-domain transfer function equation for a digital filter, what must we do to

determine the frequency response of that filter?
6.9 Draw the Direct Form I and the Direct Form II block diagrams of the filter represented by the

following z-domain transfer function:

6.10 Consider the two filters in Figure P6-10. (Notice the minus sign at the first adder in Figure P6-
10(b).) Determine whether each filter is an IIR or an FIR filter. Justify your answers.

Figure P6-10

6.11 The author once read a design document describing how an engineer was tasked to implement
Network A in Figure P6-11(a), using a programmable DSP chip, as part of a specialized digital
filter. The engineer suggested that, due to the chip’s internal architecture, for computational speed
reasons Network B shown in Figure P6-11(b) should be used instead of Network A. He also stated
that the frequency magnitude responses of the two networks are identical. Is that last statement true?
Justify your answer.

Figure P6-11

6.12 Prove that the z-plane pole locations for the two filters in Figure P6-12 are identical.
Figure P6-12



Hint: For Filter #2, write two different equations for U(z) and set those equations equal to each
other.

6.13 The discrete-sequence output of commercial analog-to-digital (A/D) converters is often
contaminated with a DC bias (a constant-level amplitude offset). Stated in different words, even
though the converter’s analog x(t) input signal’s average value is zero, the converter’s x(n) output
sequence may have a small nonzero average. As such, depending on the application, A/D
converters are sometimes followed by an IIR filter shown in Figure P6-13 that removes the DC
bias level from the filter’s x(n) input sequence. (The coefficient A is a positive value slightly less
than unity.)
(a) Derive the z-domain transfer function of the DC bias removal filter.
(b) Prove that the filter has a z-plane zero at z = 1, yielding the desired infinite attenuation at the

cyclic frequency of zero Hz.
(c) Draw the block diagram of the Direct Form II version of the DC bias removal filter.

Figure P6-13

6.14 Assume we have the software code to implement a notch filter (a filter that attenuates a very
narrow band of frequencies and passes frequencies that are above and below the notch’s ωc center
frequency), and the software documentation states the filter is defined by the following transfer
function:

(a) If R = 0.9, draw the locations of the notch filter’s poles and zeros on the z-plane in relation to
the notch frequency ωc.

(b) Let’s say we’re processing the signal from a photodiode light sensor in our laboratory and our



signal’s time samples are arriving at a sample rate of fs = 1.8 kHz. Assume that 120 Hz flicker
noise from fluorescent lights is contaminating our photodiode output signal. What would be the
correct value for ωc to use in the notch filter code to attenuate the 120 Hz noise? Show your
work.

6.15 Show that for a 2nd-order FIR filter, whose z-domain transfer function is

H(z) = 1 + Bz−1 + z−2,
the sum of the locations of the filter’s two z-plane zeros is equal to −B.

6.16 Consider the filter in Figure P6-16.
(a) Determine the z-domain transfer function, H(z) = Y(z)/X(z), of the filter.
(b) Draw the z-plane pole/zero diagram of the filter.
(c) Using the notion of pole-zero cancellation, draw the block diagram of an exact equivalent, but

simpler, filter having fewer multipliers than shown in Figure P6-16.
Figure P6-16

6.17 Assume we have a digital filter (having real-valued coefficients) whose complex frequency
response is the product of an M(ω) magnitude response and a θ(ω) phase response as

H(ω) = M(ω)ejθ(ω)

where ω is a normalized frequency variable (in the range of −π to π, corresponding to a cyclic
frequency range of −fs/2 to fs/2 Hz) measured in radians/sample. Is it possible to have such a real-
coefficient filter whose θ(ω) phase response is of the form

θ(ω) = C
where C is a nonzero constant? Explain your answer.

6.18 Determine the H(z) transfer function of the recursive network in Figure P6-18.
Figure P6-18



6.19 The recursive networks (networks with feedback) that we discussed in this chapter, if they’re
simple enough, can be analyzed with pencil and paper. This problem gives us practice in such an
analysis and prompts us to recall the process of converting a geometric series into a closed-form
equation.
(a) Looking at the discrete network in Figure P6-19, show that the y(n) output is equal to D/Q for

large values of time index n when the x(n) input samples have a constant amplitude of D. (To
keep the system stable, assume that Q is a positive number less than one and the network is “at
rest” at time n = 0. That is, w(0) = 0.)

Figure P6-19

Hint: Write equations for y(n) when n = 0, 1, 2, 3, . . . etc., and develop a general series
expression for the y(n) output in terms of D, Q, and n. Next, use Appendix B to obtain a closed-
form (no summation sign) expression for the y(n) when n is a large number.

(b) When we arrive at a solution to a problem, it’s reassuring to verify (double-check) that solution
using a different technique. Following this advice, determine the z-domain H(z) transfer function
of the network in Figure P6-19 and show that its zero Hz (DC) gain is 1/Q, verifying your
solution to Part (a) of this problem.

(c) Prove that the recursive network is stable if Q is in the range 0 < Q ≤ 1.
6.20 A discrete system that has at least one pole on the z-plane’s unit circle is called a discrete

resonator, such as the system in Figure P6-20. Such resonators have impulse responses that
oscillate indefinitely.

Figure P6-20

(a) Draw the z-plane pole/zero diagram of the resonator in the figure.



(b) At what frequency, measured in terms of the x(n) input fs sample rate, does the pole of this
system reside?

(c) Draw the time-domain impulse response of the system in Figure P6-20.
(d) Comment on how the frequency of the oscillating impulse response output samples relates to the

system’s pole location on the z-plane.
6.21 Given the following six difference equations for various digital filters, determine which

equation is associated with which |H?(f)| filter frequency magnitude response in Figure P6-21.
Justify your answers.

Figure P6-21

6.22 A standard 2nd-order IIR filter (a biquad) is shown in its Direct Form I structure in Figure P6-
22. Knowing the DC gain (the value H(ω) at ω = 0 radians/sample) of a filter is critical
information when we implement filtering using binary arithmetic. What is the DC gain of the filter
in terms of the filter’s coefficients?

Figure P6-22



6.23 Review the brief description of allpass filters in Appendix F.
(a) Prove that the 1st-order allpass filter, defined by the following Hap(z) transfer function, has an

|Hap(ω)| frequency magnitude response that is unity over its full operating frequency range of −π ≤
ω ≤ π radians/sample (−fs/2 ≤ f ≤ fs/2 Hz):

Variable K is a real-valued scalar constant.
Hint: Rather than prove |Hap(ω)| = 1 for all ω, prove that the frequency magnitude response

squared, |Hap(ω)|2, is equal to unity for all ω.

(b) Draw the Direct Form I and Direct Form II block diagrams of the H(z) allpass filter.
(c) Explain why the Hap(z) allpass filter can never have a transfer function zero on its z-plane’s unit

circle.
6.24 A simple 1st-order IIR filter, whose z-domain transfer function is

has been proposed for use in synthesizing (simulating) guitar music. Is the Hg(z) filter a lowpass or
a highpass filter? Justify your answer. [Karjalainen, M., et al. “Towards High-Quality Sound
Synthesis of the Guitar and String Instruments,” International Computer Music Conference,
September 10–15, 1993, Tokyo, Japan.]

6.25 There are general 2nd-order recursive networks used in practice, such as that shown in Figure
P6-25, where the a(0) coefficient is not unity. Assuming you need to analyze such a network,
determine its z-domain transfer function that includes the a(0) coefficient. Show your steps.

Figure P6-25



6.26 Consider the recursive highpass filter shown in Figure P6-26(a).
(a) Derive the H(ω) frequency response equation for the filter.
(b) What is the location of the filter’s single z-plane pole?
(c) The |H(ω)| frequency magnitude response of the filter is shown in Figure P6-26(b). What are the

values of magnitudes M0 and Mπ? Show your work.

Figure P6-26

6.27 The recursive network shown in Figure P6-27 can be used to compute the N-point average of N
input samples. Although this process works well, it has the disadvantage that as time index n
(where n = 1, 2, 3, 4, ...) increases, it requires the real-time computation of both the 1/n and (n−1)n
coefficients upon the arrival of each new x(n) input sample.

Figure P6-27

(a) A clever DSP engineer always tries to minimize computations. Show how to modify the
network’s diagram so that the real-time coefficient-computation workload is reduced.

(b) Our N-point averager network has a feedback loop, with possible stability problems. Show
how your solution to Part (a) of this problem is a stable network as n increases starting at n = 1.

6.28 Given the z-plane pole/zero plot, associated with a 2nd-order IIR digital filter, in Figure P6-28:

(a) What is the H(z) transfer function, in terms of z−1 and z−2, of the Figure P6-28 filter having two
poles and a single zero on the z-plane? Show how you arrived at your answer.



(b) Draw the Direct Form I block diagram of the H(z) filter that implements the transfer function
arrived at in Part (a) of this problem.

(c) Draw a new block diagram of the H(z) filter that eliminates one of the multipliers in the Direct
Form I block diagram.

Figure P6-28

6.29 In the text’s Section 6.5 we learned to derive a filter transfer function based on knowing the
locations of the filter’s poles and zeros. We implied that the roots of polynomial P,

P = z2 + bz + c,
are equal to the roots of polynomial Q, where

Q = GP = Gz2 + Gbz + Gc,
with variable G being a real-valued constant. Prove that the roots of P are indeed equal to the roots
of Q.

6.30 Given the z-plane pole/zero plots in Figure P6-30, associated with the H(z) transfer functions of
four digital filters, draw a rough sketch of the four filters’ frequency magnitude responses over the
frequency range of −fs/2 to fs/2, where fs is the filter’s input signal sample rate.

Figure P6-30



Note: The two poles, near z = 1 in Figure P6-30(c), are lying exactly on top of two zeros.
6.31 Assume that you must implement the lowpass H(z) filter shown in Figure P6-31. Good DSP

engineers always simplify their digital networks whenever possible. Show a simplified block
diagram of the filter, without changing the filter’s frequency response, that has a reduced
computational workload and reduced data storage (number of delay elements).

Figure P6-31

Hint: Study the filter’s z-plane pole/zero diagram.
6.32 In Chapter 5 we had a homework problem whose solution revealed that the 3-tap FIR notch filter

in Figure P6-32(a) has complex conjugate z-plane zeros on the unit circle as shown in Figure P6-
32(b). That efficient filter, useful for attenuating narrowband noise located at a normalized
frequency of ωn (−π ≤ ωn ≤ π), has a frequency magnitude response shown in Figure P6-32(c). If
we want the FIR filter’s stopband notches to be narrower, we can implement the 2nd-order IIR
filter shown in Figure P6-32(d) that has conjugate z-plane poles at a radius of R just inside the unit
circle as shown in Figure P6-32(e). The frequency magnitude response of the IIR notch filter is
given in Figure P6-32(f). Here’s the problem: Express the Figure P6-32(d) IIR filter’s a(1) and
a(2) coefficients, in terms of ωn and R, that will place the z-plane poles as shown in Figure P6-
32(e). Show your work.



Figure P6-32

Hint: Recall Euler’s identity: 2cos(θ) = (ejθ + e−jθ).
6.33 Let’s exercise our IIR filter analysis skills. Suppose your colleague proposes the 2nd-order IIR

filter shown in Figure P6-33(a) to provide narrow passband filtering as shown in Figure P6-33(b).
(The |H(ω)| frequency axis uses the discrete-signal frequency variable ω (radians/sample) with ω =
π corresponding to a cyclic frequency of fs/2 Hz.)

Figure P6-33



(a) Is this 2nd-order IIR filter unconditionally stable?
(b) Over what range of negative values of the A coefficient will the filter be stable?
(c) For what negative value of A will the filter be conditionally stable (at least one pole on, and no

poles outside, the unit circle)?
(d) What is the resonant frequency (positive frequency) of the filter in terms of the fs sample rate

(in Hz) of the x(n) input?
Hint: If the z-plane’s positive-frequency pole is near the unit circle, think about how the angle of
that pole is related to the filter’s resonant frequency measured in Hz.

6.34 Think about a 4th-order (5-tap) tapped-delay line finite impulse response (FIR) filter whose z-
domain transfer function is

H(z) = b0 + b1z−1 + b2z−2+ b3z−3+ b4z−4.

Assume the filter has real-valued bk coefficients and that the filter is a linear-phase filter. If one of
the filter’s z-plane zeros has a value of z0 = 0.5657 + j0.5657, what are the values of the other
three z-plane zeros of this filter?

6.35 Here’s an interesting problem. As of this writing, in an application note on their website
(www.zilog.com), the skilled folks at Zilog Inc. describe a multistage digital bandpass filter used
to detect the pitch (frequency) of a musical tone. A two-stage Direct Form II version, where each
stage is a 2nd-order IIR filter, of this detection system is the cascaded bandpass filter shown in
Figure P6-35(a). The frequency magnitude responses of the first and second filters, over the
positive frequency range, are provided in Figure P6-35(b), and the combined (cascaded) frequency
magnitude response is provided in Figure P6-35(c).

Figure P6-35

http://www.zilog.com


(a) Given that the sample rate of the signal is fs = 8000 samples/second, what musical note will the
Figure P6-35(a) two-stage bandpass filter detect? That is, what musical note is closest to the fc
center frequency of the two-stage filter’s passband in Figure P6-35(c)? Explain how you arrived
at your answer. For your convenience, the frequencies of several musical notes of an equal-
tempered scale are provided in the following table.

Table P6-1 Musical Note Frequencies

(b) Finally, are the two 2nd-order IIR filters stable? Explain how you arrived at your answer.
6.36 Consider the Direct Form II IIR filter shown in Figure P6-36, which requires three multiplies

per filter output sample. Smart DSP engineers reduce computations wherever possible. Draw a
block diagram of a filter equivalent to that in Figure P6-36 that requires fewer than three multiplies
per filter output sample.



Figure P6-36

6.37 In high-speed, hardware-only, linear-phase filtering, the transposed structure of a tapped-delay
line FIR filter is often preferred over a traditional tapped-delay line FIR filter. That’s because the
parallel structure of transposed FIR filters reduces the time required to perform multiple addition
operations. Draw the transposed structure of the traditional FIR filter in Figure P6-37. In your
solution, make sure the x(n) input is on the left-hand side.

Figure P6-37

6.38 Draw the transposed structures of the networks in Figure P6-38. In your solutions, make sure the
x(n) inputs are on the left-hand side.

Figure P6-38

6.39 In the text we discussed the problem of limit cycles in IIR filters when finite-precision values
(finite binary word width) are used to represent data values. To reiterate that concept, the unit-
sample impulse response of the 1st-order IIR filter in Figure P6-39(a) is shown in Figure P6-39(c).
That impulse response was computed using the very high precision of a 64-bit floating-point binary
number system within the filter. In Figure P6-39(c) we see that this stable IIR filter’s y(n) impulse
response properly decays toward zero amplitude as time advances.

Figure P6-39



In fixed-point binary filter implementations, if rounding is used to limit the binary word width (the
precision of data sample values) at the output of the filter’s adder, the ill effects of limit cycles may
occur. This rounding operation is shown in Figure P6-39(b) where the y(n) output is rounded to a
value that is a multiple of a rounding precision factor whose value is q. If rounding to the nearest q
= 0.1 value is implemented, the filter’s impulse response exhibits unwanted limit cycles as shown
in Figure P6-39(d), where the y(n) impulse response continually oscillates between ±0.1 as time
advances.
(a) Reducing the value of the rounding precision factor q is supposed to help reduce the level of the

unwanted limit cycle oscillations. Plot the unit-sample impulse response of the quantizing filter in
Figure P6-39(b) when q = 0.05.
Note: If an A(n) data value is exactly between two multiples of q, round away from zero.

(b) Comparing Figure P6-39(c), Figure P6-39(d), and your solution from the above Part (a), make
a statement regarding how the peak-to-peak amplitude of the quantizing filter’s limit cycle
behavior is related to the value of the rounding precision factor q.

6.40 Given the h1(k) and h2(k) impulse responses of the two filters in Figure P6-40, what is the
impulse response of the hCas(k) cascaded combination filter?

Figure P6-40



6.41 Here’s a problem whose solution may, someday, be useful to the reader. Many commercial
digital filter design software packages require the user to specify a desired filter’s maximum
passband ripple, in terms of a linear peak deviation parameter represented by R, for a lowpass
filter magnitude response in Figure P6-41.

Figure P6-41

(a) Let’s say that in a lowpass filter design effort, we only know the desired passband ripple
specified in terms of a peak-peak logarithmic (dB) parameter P shown in Figure P6-41. If P = 2
dB, what is R? Stated in different words, if we only have the P = 2 dB desired passband ripple
value available to us, what R value must we specify in our filter design software? Show how you
arrived at your solution.

(b) Given your solution to the above Part (a), now derive a general equation that defines the linear
R deviation parameter in terms of the logarithmic (dB) peak-peak passband ripple parameter P.

6.42 Many digital filters are implemented as both cascaded (series) and parallel combinations of
subfilters. Given the four individual Hk(ω) subfilter frequency responses in Figure P6-42, what is
the equation for the overall frequency response of this combination of subfilters in terms of H1(ω),
H2(ω), H3(ω), and H4(ω)?

Figure P6-42

6.43 Many feedback systems can be reduced to the form of the generic feedback system shown in
Figure P6-43(a).

Figure P6-43



(a) Prove that the z-domain transfer function of the feedback system in Figure P6-43(a) is the
following expression:

Note: The above H(z) expression is well known, particularly in the field of digital control
systems, because it is encountered so often in practice.

(b) If we replace the z variable in H(z) with ejω, we obtain an H(ω) equation, describing the
frequency response of the system in Figure P6-43(a), whose generic form is

(Notice that we don’t use the ejω term, for example H(ejω), in our notation for a frequency
response. We use the standard H(ω) notation instead.) With the above H(ω) equation in mind,
what is the expression for the H(ω) frequency response of the system shown in Figure P6-43(b)?
Hint: Use the principles of cascaded and parallel subsystems to obtain a simplified network
structure.

6.44 In the text we discussed the analysis of digital filters comprising the parallel combination of two
subfilters. Using a highpass filter whose impulse response is the hHigh(k) samples in Figure P6-
44(a), we can implement a lowpass filter if we’re able to build a parallel network whose impulse
response is the hPar(k) samples in Figure P6-44(b). The parallel network’s hPar(k) samples are
defined by

Figure P6-44



(a) If the parallel lowpass filter network is that shown in Figure P6-44(c), what is the impulse
response of the h(k) subfilter?

(b) Draw the parallel lowpass filter network showing what processing elements are in the h(k)
subfilter block.

6.45 Assume we are given the lowpass filter shown in Figure P6-45 and, based on the IIR discussion
in the text’s Section 6.9, we must scale the filter to reduce its passband gain without changing its
frequency response shape. Draw a block diagram of the scaled filter.

Figure P6-45

6.46 You’re working on a project to upgrade an analog temperature-sensing and processing system.
Your job is to design a digital integrator, to replace an analog integrator whose Laplace s-domain
transfer function is

that will receive a new temperature sample once every 2 seconds. Because ideal integrators have a
frequency magnitude response of zero at high frequencies, your digital integrator must have a
frequency magnitude response less than 0.01 at fs/2.



(a) What is the z-domain transfer function of a digital integrator replacement for H(s) designed
using the impulse invariance Method 2 design technique?

(b) What is the z-domain transfer function of a digital integrator designed using the bilinear
transform design technique?

(c) Verify that each of your digital integrators has a z-plane pole at the same frequency at which the
H(s) analog integrator had an s-plane pole.

(d) Which of the two digital integrators, from Part (a) and Part (b), will you submit as your final
design, and why?

6.47 Due to its simplicity, the 1st-order analog lowpass filter shown in Figure P6-47(a) is often used
to attenuate high-frequency noise in a vin(t) input signal voltage. This lowpass filter’s s-domain
transfer function is

Figure P6-47

(a) Determine a digital filter’s Hii(z) z-domain transfer function that simulates H(s), using the
impulse invariance Method 2 process. Draw the digital filter’s Direct Form II block diagram
(structure) where the coefficients are in terms of R and C. For simplicity, assume that ts = 1.

(b) Determine a digital filter’s Hbt(z) z-domain transfer function that simulates H(s), using the
bilinear transform process. Draw the digital filter’s Direct Form II block diagram where the
coefficients are in terms of R and C. Again, assume that ts = 1.

(c) When properly designed, the filters’ normalized frequency magnitude responses, |Hii| and |Hbt|,
are those shown in Figure P6-47(b) (plotted on a logarithmic vertical scale). Why does the |Hbt|
response have such large attenuation at high frequencies?

6.48 A 1st-order analog highpass filter’s s-domain transfer function is

Determine a digital filter’s H(z) z-domain transfer function that simulates H(s) using the bilinear
transform process. Given that frequency ωo = 62.832 radians/second, assume that the digital filter’s
sample rate is fs = 100 Hz. Manipulate your final H(z) expression so that it is in the following



form:

where A, B, and C are constants. The above H(z) form enables convenient modeling of the digital
filter’s transfer function using commercial signal processing software.

6.49 Let’s plow through the algebra to design a 2nd-order digital IIR filter that approximates an
analog lowpass filter. Assume the filter’s s-domain transfer function is

and the digital filter’s sample rate is 1000 samples/second. Derive, using the bilinear transform,
the z-domain transfer function equation of the discrete filter that simulates the above H(s)
continuous lowpass filter.

6.50 Let’s say that your colleague has designed a prototype analog lowpass filter whose cutoff
frequency is 3.8 kHz. (By “cutoff frequency” we mean the frequency where the lowpass filter’s
magnitude response is 3 dB below its average passband magnitude response.) Next, assume your
colleague wants you to use the bilinear transform method to design a digital filter whose
performance is equivalent to that of the analog filter when the sample rate is fs = 11 kHz.

(a) Given that the analog lowpass filter’s fa cutoff frequency is 3.8 kHz, what will be the fd cutoff
frequency of the digital lowpass filter in Hz?

(b) Given that we want the digital lowpass filter’s cutoff frequency to be exactly 3.8 kHz, the
prototype analog filter will have to be redesigned. What should be the fa cutoff frequency of the
new analog lowpass filter?





Chapter Seven. Specialized Digital Networks and Filters

We begin this chapter by presenting three useful digital networks—differentiators, integrators, and
matched filters—that are common in the world of DSP. Beyond generic applications that require
derivatives to be computed, differentiators are a key component of FM (frequency modulation)
demodulation. A common application of integration is computing the integral of stock market prices
over some period of days to determine trends in stock price data. Matched filters are used to detect
the arrival of a specific discrete signal sequence, such as a radar return signal.
Later in this chapter we introduce two specialized implementations of finite impulse response (FIR)
filters: interpolated lowpass FIR filters and frequency sampling filters. The common thread between
these two FIR filter types is that they’re lean mean filtering machines. They wring every last drop of
computational efficiency from a guaranteed-stable linear-phase filter. In many lowpass filtering
applications these FIR filter types can attain greatly reduced computational workloads compared to
the traditional Parks-McClellan-designed FIR filters discussed in Chapter 5.
We discuss this chapter’s specialized digital networks and FIR filters now because their behavior
will be easier to understand using the z-transform concepts introduced in the last chapter.

7.1 Differentiators
This section focuses on simple tapped-delay line (FIR) differentiators. The idea of differentiation is
well defined in the world of continuous (analog) signals, but the notion of derivatives is not strictly
defined for discrete signals. However, fortunately we can approximate the calculus of a derivative
operation in DSP. To briefly review the notion of differentiation, think about a continuous sinewave,
whose frequency is ω radians/second, represented by

(7-1)

The derivative of that sinewave is
(7-1′)

So the derivative of a sinewave is a cosine wave whose amplitude is proportional to the original
sinewave’s frequency. Equation (7-1) tells us that an ideal digital differentiator’s frequency
magnitude response is a straight line linearly increasing with frequency ω as shown in Figure 7-1(a).
The differentiator’s phase is that shown in Figure 7-1(b), where the digital frequency ω = π
radians/sample is equivalent to half the signal data sample rate in Hz (fs/2).

Figure 7-1 Ideal differentiator frequency response: (a) magnitude; (b) phase in radians; (c) real part;



(d) imaginary part.

Given the magnitude and phase response of our ideal digital differentiator, we can draw the real and
imaginary parts of its frequency response as shown in Figures 7-1(c) and 7-1(d). (The real part of the
response is identically zero.) What we can say is that our ideal differentiator has the simple frequency
response described, in rectangular form, by

(7-2)

With these thoughts in mind, let’s see how we can build a digital differentiator. We start by exploring
two simple discrete-time FIR (nonrecursive) differentiators: a first-difference and a central-
difference differentiator. They are computationally simple schemes for approximating the derivative
of an x(n) time-domain sequence with respect to time.

7.1.1 Simple Differentiators
With respect to the x(n) samples in Figure 7-2(a), the first-difference differentiator is simply the
process of computing the difference between successive x(n) samples. (While DSP purists prefer to
use the terminology digital differencer, we’ll use the popular term differentiator for our purposes.) If
we call yFd(n) the output of a first-difference differentiator, then yFd(n) is

(7-3)



Figure 7-2 Simple differentiators.

For the x(n) samples in Figure 7-2(b), the central-difference differentiator is the process of
computing the average difference between alternate pairs of x(n) samples. If we call yCd(n) the output
of a central-difference differentiator, then yCd(n) is

(7-4)

The two simple differentiators are implemented with tapped-delay line structures, just like our
standard FIR filters in Chapter 5, as shown in Figure 7-2(c). (In fact, the two differentiators are
merely two different forms of a comb filter, as discussed in detail in Section 7.5.1, and this is why
differentiators are often called differentiating filters.) So what’s the difference (no pun intended)
between these two simple differentiators? They are different with respect to their frequency
responses, which we now investigate.
The first-difference differentiator is the most fundamental notion of digital differentiation, i.e.,
computing the difference between successive samples of a discrete sequence. The problem with this
differentiator is that many real-world signals have high-frequency spectral components consisting of
noise, and the first-difference differentiator amplifies that noise. The frequency magnitude response of
a first-difference differentiator is



(7-5)

as shown by the dashed curve in Figure 7-3, where it has the characteristic of a highpass filter. (For
comparison, we show an ideal differentiator’s straight-line |HIdeal(ω)| = ω magnitude response in
Figure 7-3.) Looking at that dashed curve, we see how the first-difference differentiator tends to
amplify high-frequency spectral components, and this may be detrimental because real-world signals
often contain high-frequency noise.

Figure 7-3 Frequency magnitude responses of simple differentiators.

The central-difference differentiator’s |HCd(ω)| frequency magnitude response, on the other hand, is
(7-6)

as shown by the dotted curve in Figure 7-3, and this differentiator can be useful in that it tends to
attenuate high-frequency (noise) spectral components. Looking at the |HCd(ω)| curve, we see that the
price we pay for that high-frequency attenuation is a reduction in the frequency range over which the
central-difference differentiator approaches an ideal differentiator’s linear |HIdeal(ω)|. The central-
difference differentiator’s linear range is from 0 to only, say, 0.2π radians/sample (0.1fs Hz). The
useful operating frequency ranges of the first-difference and central-difference differentiators are
fairly narrow. This means the differentiators are only accurate when the spectral content of the input
signal is low in frequency with respect to the input signal’s fs sample rate.
Another dissimilarity between the Figure 7-2(c) differentiators is their group delay. Because the
impulse response (coefficients) of these tapped-delay line networks are antisymmetrical, both
differentiators have linear phase responses, and thus both networks have a constant time delay (delay
between the input and output, also called group delay). Like the tapped-delay line FIR filters in
Chapter 5, antisymmetrical-coefficient differentiators have a group delay (measured in samples)
determined by

(7-7)

where D is the number of unit-delay elements in their tapped-delay lines. (D can also be viewed as
one less than the length of the impulse response of a differentiator.) Hence the first-difference
differentiator, where D = 1, has an input-to-output delay of 1/2 = 0.5 samples. The central-difference



differentiator, where D = 2, has a group delay of 2/2 = 1 sample. Whether or not a differentiator’s
time delay is an integer number of samples is very important in applications where multiple-signal
sequences must be aligned (synchronized) in time. (An example of this integer-delay differentiation
issue is the FM demodulator discussion in Section 13.22.)
DSP folk have improved, in certain respects, upon the above two computationally simple
differentiators in an attempt to (1) extend the linear operating frequency range, (2) continue to
attenuate high-frequency spectral components, and (3) keep the number of arithmetic computations as
low as possible. It is to those specialized differentiators that we now turn our attention.

7.1.2 Specialized Narrowband Differentiators
DSP pioneer Richard Hamming provided the following

(7-8)

as an expression to compute the coefficients of what he called “low-noise Lanczos,” differentiating
filters having 2M+1 coefficients[1]. Variable k, the integer index of those coefficients, ranges from
−M to M. If we set M = 1 in Eq. (7-8), we obtain the coefficients of the standard central-difference
differentiator in Figure 7-2(c). Assigning M = 2 to Eq. (7-8) yields the coefficients

(7-9)

for a five-coefficient differentiator whose |HL(ω)| magnitude response is the dotted curve in Figure 7-
4. The hL(k) differentiator in Eq. (7-9) is of interest because if we’re willing to multiply those
coefficients by 10, we have a high-gain differentiator requiring only two multiplies per output sample.
(Happily, those multiplications can be implemented with a binary arithmetic left shift, thus eliminating
the multiplications altogether.) The disadvantage of this hL(k) differentiator is that its linear operating
frequency range is the smallest of any differentiator we’ve considered so far.

Figure 7-4 Frequency magnitude responses of Lanczos differentiators.

Hamming presented two expressions for what he called “super Lanczos low-noise differentiators.”
The first expression yielded the five-coefficient differentiator defined by

(7-10)



whose normalized |HSL1(ω)| magnitude response is the long-dash curve in Figure 7-4. The hSL1(k)
differentiator has a wider linear operating frequency range than the hL(k) differentiator, but at the
expense of degraded high-frequency attenuation. However, hSL1(k) is also of interest because if we’re
willing to multiply the coefficients by 6, we again have a high-gain differentiator requiring only two
multiplies per output sample. (Again, those multiplications by ±8 can be implemented with binary
arithmetic left shifts to eliminate the multiplication operations.)
Hamming’s second expression for a super Lanczos low-noise differentiator generated the seven-
coefficient differentiator defined by

(7-11)

whose normalized |HSL2(ω)| magnitude response is the short-dash curve in Figure 7-4. In terms of
linear operating frequency range and high-frequency attenuation, the hSL2(k) differentiator is a
reasonable compromise between the hL(k) and hSL1(k) differentiators. Notice how the hSL2(k)
differentiator has a good high-frequency noise attenuation characteristic. Then again, in one respect,
the hSL2(k) differentiator is not all that super because it requires six multiplies per output sample.
(We can do better. Section 13.38 presents a very computationally efficient narrowband differentiator
whose linear operating frequency range exceeds that of the hSL1(k) differentiator.)

With the exception of the first-difference differentiator, after accounting for their constant integer
group delays, all of the above differentiators achieve the ideal Hideal(ω) phase response in Figure 7-
1(b). In the next section we introduce high-performance wideband differentiators.

7.1.3 Wideband Differentiators
Nonrecursive discrete-time differentiators having wider linear operating frequency ranges than the
above simple differentiators can be built. All we must do is find the coefficients of a general
wideband differentiator whose frequency magnitude response is shown in Figure 7-5(a), having a
cutoff frequency of ωc.

Figure 7-5 Frequency response of a general wideband differentiator: (a) desired magnitude
response; (b) 30 hgen(k) coefficients; (c) actual magnitude response.



We can derive an equation defining the hgen(k) coefficients of a general wideband differentiator by
defining those coefficients to be the inverse Fourier transform of our desired frequency response from
Eq. (7-2) of Hideal(ω) = jω for continuous ω defined over the range of −ωc≤ω≤ωc. Following this
strategy, the coefficients of our general differentiator are given by

(7-12)

We can perform the integration in Eq. (7-12) using the dreaded (but useful) integration by parts
method, or by searching our math reference books for a closed-form integral expression in the form of
Eq. (7-12)[2]. Being successful in this second approach, we find that the integral of (ωejωk)dω is
(ejωk) (jωk−1)/(jk)2. Using this information, we can write

(7-13)

where integer index k is −∞≤k≤∞, and k ≠ 0.
The real-valued hgen(k) in Eq. (7-13) can be used to compute the coefficients of a tapped-delay line



digital differentiator. This expression, however, is based on the notion that we need an infinite
number of differentiator coefficients to achieve the desired response in Figure 7-5(a). Because
implementing an infinite-tap differentiator is not possible in our universe, Figure 7-5(b) shows Eq.
(7-13) limited (truncated) to a manageable 30 coefficients, and Figure 7-5(c) provides the frequency
magnitude response of that 30-tap differentiator with ωc = 0.85π. (The ripples in that magnitude
response are to be expected once we think about it. Truncation in one domain causes ripples in the
other domain, right?)
As a brief aside, if we set ωc = π in Eq. (7-13), the coefficients of an N-coefficient differentiator
become

(7-14)

where −(N−1)/2≤k≤(N−1)/2, and k ≠ 0. When index k = 0, hωc=π(0) is set to zero. Equation (7-14) is
by far the most popular form given in the standard DSP textbooks for computing digital differentiator
coefficients. Using Eq. (7-14), however, is only valid for even-order (N is odd) differentiators, and it
is applicable only when the cutoff frequency is ωc = π (fs/2 Hz).

So where do we stand regarding these wideband differentiators? We’ve obtained Eq. (7-13) for
computing the coefficients of a general wideband differentiator. Unfortunately that expression has a
time-domain index (k) having negative values, which can be inconvenient to model using commercial
signal processing software. We’ve discussed the widely disseminated Eq. (7-14) and mentioned its
limitations. Again, we can do better.
For a more useful form of an hgen(k) expression for an arbitrary-length N-tap differentiator we
propose the following:

(7-15)

where M = (N−1)/2, and 0≤k≤N−1. For odd N we set hgen((N−1)/2), the center coefficient, to zero.
Eq. (7-15) looks a bit messy, but it’s quite practical because

• the differentiator passband width, ωc, is a design variable, and not fixed at ωc = π as in Eq. (7-
14);

• the number of taps, N, can be odd or even; and
• the coefficient index k is never negative.

Fortunately, because of the range of index k, Eq. (7-15) is straightforward to model using
commercially available signal processing software.

7.1.4 Optimized Wideband Differentiators
For completeness, we point out that the widely available Parks-McClellan algorithm can be used to
design wideband digital differentiators whose performance is superior to those produced by Eq. (7-
15) when the number of taps N is greater than, say, 25. That behavior is illustrated in Figure 7-6,



where the solid curve shows the frequency magnitude response of an N = 30 Parks-McClellan-
designed differentiator for ωc = 0.85π, and the bold dashed curve is an N = 30 differentiator designed
using Eq. (7-15).

Figure 7-6 Frequency magnitude responses of 30-tap wideband differentiators.

What the DSP pioneers found, in studying the Parks-McClellan algorithm, is that it computes
coefficients that provide more accurate differentiation when N is even as opposed to when N is odd.
(However, we must keep in mind that the group delay through an even-tap differentiator is not an
integer number of samples, and this could be troublesome in systems that require time synchronization
among multiple signals.) Design curves showing the relative error for various-length even- and odd-N
Parks-McClellan differentiators versus ωc are available[3,4].
Of course, windowing a wideband differentiator’s coefficients, using one of the common window
sequences described in Chapters 3 and 5, will greatly reduce the ripples in a differentiator’s
magnitude response. (Windowing in one domain reduces ripples in the other domain, right?)
Improved magnitude response linearity, through time-domain windowing, comes at the expense of
degrading the sharpness of the response’s transition region near ωc.

7.2 Integrators
The idea of integration is well defined in the domain of continuous (analog) signals, but not so clearly
defined in the world of discrete signals. With that said, here we discuss approximating continuous
integration by using digital filters that perform numerical integration of sampled signals. We’ll
discuss digital integration networks whose outputs estimate the area under a continuous curve such as
the x(t) function shown in Figure 7-7(a).

Figure 7-7 Integrator areas of summation.



7.2.1 Rectangular Rule Integrator
One simple way to estimate, to approximate, the area under the x(t) curve is to merely sum the x(n)
samples. Such a rectangular rule integrator computes the sum of the shaded rectangles shown in
Figure 7-7(b). In the time domain we define the rectangular rule integrator, a running summation, as

(7-16)

where the current sum, yRe(n), is the previous yRe(n−1) sum plus the current input sample x(n). When
n = 2, for example, Eq. (7-16) adds the area under the right-side shaded rectangle shown in Figure 7-
7(b) to the previous sum yRe(1) to compute yRe(2). The height and width of that right-side shaded
rectangle are x(2) and one, respectively.
The frequency response of this rectangular rule integrator is

(7-16′)

7.2.2 Trapezoidal Rule Integrator
A useful area integration estimation scheme is the trapezoidal rule defined by



(7-17)

When n = 2, for example, Eq. (7-17) computes the area (the average of x(2) + x(1)) under the right-
side shaded trapezoid shown in Figure 7-7(c) and adds that value to the previous yTr(1) to compute
yTr(2). The frequency response of the trapezoidal rule integrator is

(7-17′)

7.2.3 Simpson’s Rule Integrator
A popular discrete-time integration scheme is Simpson’s rule defined by

(7-18)

where three samples are used to compute the area under the single shaded curve in Figure 7-7(d). The
frequency response of the Simpson’s rule integrator is

(7-18′)

(Simpson’s rule is named after the eighteenth-century English mathematician Thomas Simpson. Oddly
enough, Simpson’s rule was actually developed by Sir Isaac Newton rather than Simpson. But don’t
hold that against Simpson because the famous iterative method for finding the roots of a polynomial,
called Newton’s method, was developed by Simpson!)
The above three time-domain integration approximations were developed using the principles of
polynomial curve fitting where Simpson’s rule fits three signal samples to a second-order
polynomial in x, the trapezoidal rule fits two samples to a first-order polynomial in x, and the
rectangular rule uses a single sample in a zero-order polynomial in x.

7.2.4 Tick’s Rule Integrator
For completeness, we point out an integration approximation similar to Simpson’s rule that you may
encounter in the literature of DSP called Tick’s rule. It’s defined as

(7-19)

having a frequency response given by
(7-19′)

The Tick’s rule integrator was designed to be especially accurate over the low-frequency range of
0≤ω≤π/2 radians/sample (zero to fs/4 Hz) with little concern for its accuracy at higher frequencies[5].



7.2.5 Integrator Performance Comparison
OK, so how well do the above discrete integrators perform? We can measure their performance by
comparing their behavior to an ideal continuous (analog) integrator. Doing so, we first recall that the
integral of the continuous function cos(ωt) is

(7-20)

telling us that if we apply a sinusoid to an ideal integrator, the output of the integrator will be a
sinusoid, phase-shifted by −π/2 radians (−90°), whose amplitude is reduced by a factor of 1/ω. Thus
the frequency magnitude response of an ideal integrator is |Hideal| = |1/ω| as shown in Figure 7-8(a),
and the integrator’s phase is that shown in Figure 7-8(b), where the digital frequency ω = π
radians/sample is equivalent to half the signal data sample rate in Hz (fs/2).
Figure 7-8 Ideal integrator frequency response: (a) magnitude; (b) phase in radians; (c) real part; (d)

imaginary part.

The frequency magnitude responses of an ideal integrator and our four digital integrators are shown in
Figure 7-9 over various bandwidths in the positive-frequency range of 0≤ω≤π. For ease of
comparison, the magnitude curves are all normalized so that their peak values, in the vicinity of ω =



0, are unity. (Note that the ideal integrator’s response curve in Figure 7-9(b) is obscured by the
Simpson’s rule and Tick’s rule curves.) What we see from Figure 7-9 is that the various integrators
have very little difference over the ω frequency range of 0 to π/2 radians/sample (zero to fs/4 Hz), but
above that range there are meaningful differences that we’ll discuss in a moment.

Figure 7-9 Normalized frequency magnitude responses of four integrators.

The magnitude response curves in Figure 7-9 are a bit difficult to interpret when a linear magnitude
axis is used. With that thought in mind, Figure 7-10 shows the various integrators’ percent absolute
errors using logarithmic axis scaling. We defined the percent absolute error as

(7-21)

Figure 7-10 Integrator absolute errors in percent.

Looking at the error curves in Figure 7-10 might cause you to think, “These integrators aren’t very
accurate. For example, the Simpson’s rule integrator has roughly a 7 percent error at ω = 0.5π (fs/4
Hz).” Well, the situation is not as bad as it first appears. Looking at the ideal integrator’s response in



Figure 7-9(a), we must realize that a 7 percent error of the small magnitude response values near ω =
0.5π is not nearly as significant as a 7 percent error for the larger magnitude response values below ω
= 0.1π. So this means our simple integrators are quite accurate at low frequencies where we most
need high accuracy.
What we learn from Figure 7-10 is that all of the digital integrators have good accuracy at low
frequencies, with the Tick’s rule and Simpson’s rule integrators being the most accurate. (The phrase
“low frequencies” means that the spectral components of the function, the signal, we are trying to
integrate are low in frequency relative to the fs sample rate.) However, if the integrators’ input signals
have appreciable noise spectral components near fs/2 Hz, the Tick’s rule and Simpson’s rule
integrators will amplify that noise because those integrators have z-domain transfer function poles
(infinite gain) at z = −1, corresponding to a cyclic frequency of fs/2 Hz. In such high-frequency noise
scenarios the rectangular or trapezoidal rule integrators should be used because they provide
improved attenuation of spectral components in the vicinity of fs/2 Hz.
The integrators that we’ve discussed are interesting because they are recursive networks and they all
have linear phase. However, only the trapezoidal, Simpson’s, and Tick’s rule integrators achieve the
ideal Hideal(ω) phase response in Figure 7-8(b).

The above integrators all have z-domain transfer function poles at z = 1, corresponding to a cyclic
frequency of zero Hz, and this has an important consequence when we implement integrators in digital
hardware. Those poles force us to ensure that the numerical format of our integrator hardware can
accommodate summation results when the x(n) input sequence has a nonzero average value (a
constant amplitude bias). Stated in different words, the widths of our binary data registers must be
large enough to guarantee that any nonzero amplitude bias on x(n) will not cause numerical overflow
and corrupt the data within an integrator. Chapter 10’s discussion of cascaded integrator-comb (CIC)
filters elaborates on this integrator data register width issue.

7.3 Matched Filters
In this section we introduce a signal processing operation known as matched filtering. A matched
filter is a process that maximizes the signal-power-to-noise-power ratio (SNR) of its y(t) output
when a specified xs(t) signal of interest arrives at its input. Such a process is widely used in radar,
sonar, oil exploration, digital communications systems, and frequency-domain processing of two-
dimensional images. Those systems are designed to reliably detect (recognize) if, and at what instant
in time or position in space, a well-defined s(t) signal of interest arrived at their inputs.
Matched filtering, for continuous signals, is depicted in Figure 7-11(a). In that figure the system’s
xin(t) input signal is an xs(t) signal of interest, which may be a radar signal or perhaps a small portion
of a digital communications signal, contaminated with an xn(t) noise signal. The matched filter’s task
is to maximize the SNR of the y(t) signal so that reliable detection of xs(t) can be performed.

Figure 7-11 Matched filtering: (a) continuous signal implementation; (b) digital implementation with
h(k) impulse response.



7.3.1 Matched Filter Properties
So the question is “What should the frequency response of the matched filter be to maximize our
chances of detecting the presence of xs(t) in the noisy xin(t) signal?” The answer can be found in most
communications textbooks[6], and here’s how we interpret that answer. Given the S(f) spectrum of
xs(t), the desire to maximize the SNR of y(t), lots of calculus, plus an application of Schwarz’s
inequality, the optimum H(f) frequency response of the matched filter can be shown to be

(7-22)

where T is the time duration of the xs(t) signal measured in seconds, and * signifies conjugation.
Equation (7-22) tells us that the optimum H(f) frequency response of the continuous matched filter
should be the complex conjugate of the spectrum of our signal of interest multiplied by a phase shift
that’s a linear function of frequency. Stated in different words, the time-domain impulse response of
the optimum matched filter is the inverse Fourier transform of S*(f) shifted in the negative-time
direction by T seconds. We now provide a physical meaning of all of this as we determine how to
implement a matched filter in discrete-time sampled systems.
To show how to build a digital (discrete-time) matched filter, as shown in Figure 7-11(b), first we
need to determine the h(k) impulse response of the filter. Let’s make the following assumptions:

• Our discrete signal of interest is an N-sample xs(n) sequence.

• S(m) is the N-point discrete Fourier transform (DFT) of xs(n).

• m is the discrete frequency index 0 ≤ m ≤ N−1.
• The xin(n) data input sample rate is fs samples/second.

Under these assumptions we convert the continuous frequency f in Eq. (7-22) to the DFT’s discrete
frequencies of mfs/N to express the digital matched filter’s H(m) discrete frequency response as

(7-23)



where T is the time duration of the xs(n) signal. OK, our next step is to define T such that the inverse
DFT of H(m), our desired h(k), is the inverse DFT of S*(m) shifted in the negative-time direction by
an amount equal to the time duration of xs(n). This sounds a bit complicated, but it’s really not so bad,
as we shall see.
To determine T in Eq. (7-23) we need to know how many sample periods (with 1/fs being one period)
comprise the time duration of an N-sample xs(n) sequence. The answer is: The time duration of an N-
sample discrete sequence is N−1 sample periods. (Readers should convince themselves that this is
true.) So T in Eq. (7-23) is (N−1)/fs seconds, and we write the discrete frequency response of our
discrete matched filter as

(7-24)

Finally, our discrete matched filter’s h(k) impulse response is the N-point inverse DFT of H(m),
which, from Appendix C, is merely the straight time reversal (left-to-right flip) of xs(n). And there
you have it—we express our optimum h(k) as

(7-25)

where k ranges from 0 to N−1. We struggled through the above process of developing Eq. (7-25) so
the reader would understand the origin of our expression for h(k).

7.3.2 Matched Filter Example
As an example of matched filtering, Figure 7-12(a) shows an N = 9 sample xs(n) signal-of-interest
sequence and the optimum h(k) matched filter impulse response. If the matched filter’s xin(n) input
contains two occurrences of xs(n), as shown in Figure 7-12(b), the filter’s y(n) output will be the two
pulses (each one symmetrical) shown in Figure 7-12(c). Our signal recognition process is then
making sure the threshold detection process in Figure 7-11(a) detects the high-level peaks in y(n). It’s
useful to remind ourselves that the xin(n) sequence enters the filter in a reversed order from that
shown in Figure 7-12(b). That is, sample xin(0) enters the filter first, followed by the xin(1) sample,
and so on. So the xs(n) sequences within xin(n), arriving at the filter’s input, are in the same left-right
orientation as the filter’s h(k) impulse response.
Figure 7-12 Matched filtering example: (a) signal of interest xs(n) and h(k); (b) filter xin(n) input; (c)

filter y(n) output.



To show the value of matched filtering, Figure 7-13(a) shows an xin(n) input sequence, having two
occurrences of the previous xs(n), but this time badly contaminated with random noise. It’s very
difficult to see the two xs(n) sequences in xin(n). In this noisy-signal case the filter’s y(n) output,
shown in Figure 7-13(b), still distinctly exhibits the two peaks similar to the noise-free example in
Figure 7-12(c). Actually, we should call the two peaks in Figure 7-12(c) “correlation peaks” because
our matched filter is performing a correlation between the xin(n) input signal and the predefined xs(n)
signal of interest. The y(n) output is not the xs(n) signal of interest—y(n) is a quantitative measure of
the similarity between the xin(n) input signal and xs(n).
Figure 7-13 Matched filtering example: (a) filter xin(n) input contaminated with noise; (b) filter y(n)

output.

7.3.3 Matched Filter Implementation Considerations
There are a number of important topics to consider when implementing matched filters. They are:

• Matched filters are most conveniently implemented with tapped-delay line FIR filters like those



we studied in Chapter 5. The h(k) sequence merely becomes the coefficients of the FIR filter.
Again, our digital matched filter performs convolution of xin(n) and h(k), which is equivalent to
performing correlation between xin(n) and xs(n). In the 1980s the TRW LSI Products organization
produced an integrated circuit that contained a 32-tap FIR architecture used for matched filtering.
The chip was justifiably called a digital correlator.

• As we discussed in Section 5.9.2, time-domain convolution can be implemented by way of
frequency-domain multiplication. When the lengths of xs(n) and h(k) are large (say, N > 80) and
forward and inverse FFTs are used, frequency-domain multiplication may be more computationally
efficient than traditional time-domain convolution.

• The H(m) frequency response given in Eq. (7-23) is based on two assumptions: (1) that the xn(n)
noise is truly random, having a flat-level broadband power spectrum, which means there is no
correlation between one xn(n) noise sample and any subsequent xn(n+k) sample in Figure 7-11(b);
and (2) the xn(n) noise’s probability density function (PDF) is Gaussian in shape. Such noise is
referred to as additive white noise (AWN). If the xn(n) noise is not AWN, for example, when xs(n)
is a radio signal and xn(n) is a high-level intentional jamming signal, or when xs(n) is a single data
symbol of a digital communications signal contaminated with some previous-in-time data symbol,
then Eq. (7-22) must be modified. References [7–9] provide additional information regarding this
non-AWN scenario.

• Matched filtering is easy to perform. However, the detection threshold operation in Figure 7-11, to
detect the peaks in Figure 7-13(b), can become difficult to implement reliably depending on the
nature of xs(n), xn(n), and the SNR of xin(n). If we set the threshold too high, then we reduce our
probability of detection by risking failure to detect xs(n). If we set the threshold too low, then we
increase our probability of false alarm by incorrectly identifying a noise spike in y(n) as an
occurrence of our desired xs(n). Advanced signal processing textbooks, by way of statistics and an
abundance of probability theory, cover these topics. Representative descriptions of these concepts
are provided in references[10,11].

7.4 Interpolated Lowpass FIR Filters
In this section we cover a class of digital filters, called interpolated FIR filters, used to build
narrowband lowpass FIR filters that can be more computationally efficient than the traditional Parks-
McClellan-designed tapped-delay line FIR filters that we studied in Chapter 5. Interpolated FIR
filters can reduce traditional narrowband lowpass FIR filter computational workloads by more than
80 percent. In their description, we’ll introduce interpolated FIR filters with a simple example,
discuss how filter parameter selection is made, provide filter performance curves, and go through a
simple lowpass filter design example showing their computational savings over traditional FIR
filters[12,13].
Interpolated FIR (IFIR) filters are based upon the behavior of an N-tap nonrecursive linear-phase FIR
filter when each of its unit delays is replaced with M unit delays, with the expansion factor M being
an integer, as shown in Figure 7-14(a). If the hp(k) impulse response of a 9-tap FIR filter is that
shown in Figure 7-14(b), the impulse response of an expanded FIR filter, where for example M = 3,
is the hsh(k) in Figure 7-14(c). The M unit delays result in the zero-valued samples, the white dots, in



the hsh(k) impulse response. Our variable k is merely an integer time-domain index where 0 ≤ k ≤ N
−1. To define our terminology, we’ll call the original FIR filter the prototype filter—that’s why we
used the subscript “p” in hp(k)—and we’ll call the filter with expanded delays the shaping subfilter.
Soon we’ll see why this terminology is sensible.

Figure 7-14 Filter relationships: (a) shaping FIR filter with M unit delays between the taps; (b)
impulse response of a prototype FIR filter; (c) impulse response of an expanded-delay shaping FIR

filter with M = 3.

We can express a prototype FIR filter’s z-domain transfer function as
(7-26)

where Np is the length of hp. The transfer function of a general shaping FIR filter, with z in Eq. (7-26)
replaced with zM, is

(7-27)

Later we’ll see why we chose to provide Eqs. (7-26) and (7-27). If the number of coefficients in the
prototype filter is Np, the shaping filter has Np nonzero coefficients and an expanded impulse response
length of

(7-28)



Later we’ll see how Nsh has an important effect on the implementation of IFIR filters.

The frequency-domain effect of those M unit delays is shown in Figure 7-15. As we should expect, an
M-fold expansion of the time-domain filter impulse response causes an M-fold compression (and
repetition) of the frequency-domain |Hp(f)| magnitude response as in Figure 7-15(b). While Hp(f) has
a single passband, Hsh(f) has M passbands. (The frequency axis of these curves is normalized to the fs
filter input signal sample rate. For example, the normalized frequency fpass is equivalent to a
frequency of fpassfs Hz.) Those repetitive passbands in |Hsh(f)| centered about integer multiples of 1/M
(fs/M Hz) are called images, and on them we now focus our attention.
Figure 7-15 IFIR filter magnitude responses: (a) the prototype filter; (b) shaping subfilter; (c) image-

reject subfilter; (d) final IFIR filter.

If we follow the shaping subfilter with a lowpass image-reject subfilter, Figure 7-15(c), whose task
is to attenuate the image passbands, we can realize a multistage filter whose frequency response is
shown in Figure 7-15(d). The resultant |Hifir(f)| frequency magnitude response is, of course, the
product

(7-29)

The structure of the cascaded subfilters is the so-called IFIR filter shown in Figure 7-16(a), with its
interpolated impulse response given in Figure 7-16(b).

Figure 7-16 Lowpass interpolated FIR filter: (a) cascade structure; (b) resultant impulse response.



If the original desired lowpass filter’s passband width is fpass, its stopband begins at fstop, and the
transition region width is ftrans = fstop−fpass, then the prototype subfilter’s normalized frequency
parameters are defined as

(7-30)

(7-30′)

(7-30″)

The image-reject subfilter’s frequency parameters are
(7-31)

(7-31′)

The stopband attenuations of the prototype filter and image-reject subfilter are identical and set equal
to the desired IFIR filter stopband attenuation. The word interpolated in the acronym IFIR is used
because the image-reject subfilter interpolates samples in the prototype filter’s hp(k) impulse
response, making the overall IFIR filter’s impulse response equal to the hifir(k) sequence in Figure 7-
34(b). Note that hifir(k) does not represent the coefficients used in any FIR subfilter filter. Sequence
hifir(k) is the convolution of the shaping and image-reject subfilters’ impulse responses (coefficients).
Some authors emphasize this attribute by referring to the image-reject subfilter as an interpolator.
The fs sample rate remains unchanged within an IFIR filter, so no actual signal interpolation takes
place.
To give you an incentive to continue reading, the following example shows the terrific computational
advantage of using IFIR filters. Consider the design of a desired linear-phase FIR filter whose



normalized passband width is fpass = 0.1, its passband ripple is 0.1 dB, the transition region width is
ftrans = 0.02, and the stopband attenuation is 60 dB. (The passband ripple is a peak-peak specification
measured in dB.) With an expansion factor of M = 3, the |Hp(f)| frequency magnitude response of the
prototype filter is shown in Figure 7-17(a). The normalized frequency axis for these curves is such
that a value of 0.5 on the abscissa represents the cyclic frequency fs/2 Hz, half the sample rate. The
frequency response of the shaping subfilter, for M = 3, is provided in Figure 7-17(b) with an image
passband centered about (1/M) Hz. The response of the image-reject subfilter is the solid curve in
Figure 7-17(c), and the response of the overall IFIR filter is provided in Figure 7-17(d).

Figure 7-17 Example lowpass IFIR filter magnitude responses: (a) the prototype filter; (b) shaping
subfilter; (c) image-reject subfilter; (d) final IFIR filter.

Satisfying the original desired filter specifications in Figure 7-17(d) would require a traditional
tapped-delay FIR filter with Ntfir = 137 taps, where the “tfir” subscript means traditional FIR. In our
IFIR filter, the shaping and the image-reject subfilters require Np = 45 and Nir = 25 taps respectively,
for a total of Nifir = 70 taps. We can define the percent reduction in computational workload (number
of multiplies per filter output sample) of an IFIR filter, over a traditional tapped-delay line FIR filter,
as

(7-32)

As such, the above example IFIR filter has achieved a multiplication computational workload
reduction, over a traditional FIR filter, of

(7-32′)

Figure 7-17 shows how the transition region width (the shape) of |Hifir(f)| is determined by the
transition region width of |Hsh(f)|, and this justifies the decision to call hsh(k) the shaping subfilter.

7.4.1 Choosing the Optimum Expansion Factor M



The expansion factor M deserves our attention because it can have a profound effect on the
computational efficiency of IFIR filters. To show this, had we used M = 2 in our Figure 7-17
example, we would have realized an IFIR filter described by the M = 2 row in Table 7-1. In that case
the computation reduction over a conventional FIR filter is 43 percent. With M = 2, a reduced amount
of frequency-domain compression occurred in Hsh(f), which mandated more taps in hsh(k) than were
needed in the M = 3 case.

Table 7-1 IFIR Filter Computation Reduction versus M

Now had M = 4 been used, the computation reduction, over a single traditional tapped-delay line FIR
filter, would only be 8 percent as shown in Table 7-1. This is because the Hsh(f) passband images
would be so close together that a high-performance (increased number of taps) image-reject subfilter
would be required. As so often happens in signal processing designs, there is a trade-off to be made.
We would like to use a large value for M to compress the Hsh(f)’s transition region width as much as
possible, but a large M reduces the transition region width of the image-reject subfilter, which
increases the number of taps in hir(k) and its computational workload. In our Figure 7-17 IFIR filter
example an expansion factor of M = 3 is optimum because it yields the greatest computation reduction
over a traditional tapped-delay line FIR filter.
The optimum IFIR filter expansion factor was found by Mehrnia and Willson[14] to be

(7-33)

We’ll explore the meaning, and effects, of Eq. (7-33) in the next few pages, but first let’s determine
the percent computation reduction afforded to us by IFIR filters.

7.4.2 Estimating the Number of FIR Filter Taps
To estimate the computation reduction achieved by using IFIR filters, an algorithm is needed to
compute the number of taps, Ntfir, in a traditional tapped-delay line FIR filter. Several authors have
proposed empirical relationships for estimating Ntfir for traditional tapped-delay line FIR filters
based on passband ripple, stopband attenuation, and transition region width[15−17]. A particularly
simple expression for Ntfir, giving results consistent with other estimates for passband ripple values
near 0.1 dB, is

(7-34)



where Atten is the stopband attenuation measured in dB, and fpass and fstop are the normalized
frequencies in Figure 7-15(d)[17]. (Again, by “normalized” we mean that the fpass and fstop frequency
values are normalized to the filter input sample rate, fs, in Hz. For example, fpass = 0.1 is equivalent to
a continuous-time frequency of fpass = 0.1fs Hz.) Likewise, the number of taps in the prototype and
image-reject subfilters can be estimated using

(7-34′)

(7-34″)

7.4.3 Modeling IFIR Filter Performance
As it turns out, IFIR filter computational workload reduction depends on the expansion factor M, the
passband width, and the transition region width of the desired IFIR filter. To show this, we substitute
the above expressions for Ntfir, Np, and Nir into Eq. (7-32) and write

(7-35)

where ftrans = fstop−fpass.

Having Eqs. (7-33) and (7-35) available to us, we can now see the performance of IFIR filters. The
optimum expansion factor curves from Eq. (7-33) are plotted, versus desired IFIR filter transition
region width, for various values of passband width in Figure 7-18(a). When various optimum
expansion factors are used in an IFIR filter design, the percent computation reduction, when an Mopt
value is plugged into Eq. (7-35), is that shown in Figure 7-18(b).

Figure 7-18 IFIR filter performance versus desired transition region width for various passband
widths: (a) optimum expansion factors; (b) percent computation reduction.



So in IFIR filter design, we use our desired filter transition region width and passband width values
to determine the Mopt optimum expansion factor using either Eq. (7-33) or the curves in Figure 7-
18(a). Given that Mopt value, we estimate our IFIR filter’s percent computation reduction from either
Eq. (7-35) or the curves in Figure 7-18(b). We’ll go through an IFIR filter design example shortly.

7.4.4 IFIR Filter Implementation Issues
The computation reduction of IFIR filters is based on the assumption that they are implemented as two
separate subfilters as in Figure 7-16. We have resisted the temptation to combine the two subfilters
into a single filter whose coefficients are the convolution of the subfilters’ impulse responses. Such a
maneuver would eliminate the zero-valued coefficients of the shaping subfilter, and we’d lose all our
desired computation reduction.
The curves in Figure 7-18(a) indicate an important implementation issue when using IFIR filters. With
decreasing IFIR filter passband width, larger expansion factors, M, can be used. When using
programmable DSP chips, larger values of M require that a larger block of hardware data memory, in
the form of a circular buffer, be allocated to hold a sufficient number of input x(n) samples for the
shaping subfilter. The size of this data memory must be equal to at least Nsh as indicated in Eq. (7-
28). Some authors refer to this data memory allocation requirement, to accommodate all the stuffed
zeros in the hsh(k) impulse response, as a disadvantage of IFIR filters. This is a misleading viewpoint
because, as it turns out, the Nsh length of hsh(k) is only a few percent larger than the length of the
impulse response of a traditional FIR filter having the same performance as an IFIR filter. So from a
data storage standpoint the price we pay to use IFIR filters is a slight increase in the size of memory
to accommodate Nsh, plus the data memory of size Kir needed for the image-reject subfilter. In
practice, for narrowband lowpass IFIR filters, Kir is typically less than 10 percent of Nsh.

When implementing an IFIR filter with a programmable DSP chip, the filter’s computation reduction
gain can only be realized if the chip’s architecture enables zero-overhead looping through the
circular data memory using an increment equal to the expansion factor M. That looping capability
ensures that only the nonzero-valued coefficients of hsh(k) are used in the shaping subfilter
computations.



In practice the shaping and image-reject subfilters should be implemented with a folded tapped-delay
line FIR structure, exploiting their impulse response symmetry, to reduce the number of necessary
multiplications by a factor of two. (See Section 13.7.) Using a folded structure does not alter the
performance curves provided in Figure 7-18. Regarding an IFIR filter’s implementation in fixed-point
hardware, its sensitivity to coefficient quantization errors is no greater than the errors exhibited by
traditional FIR filters[12].

7.4.5 IFIR Filter Design Example
The design of practical lowpass IFIR filters is straightforward and comprises four steps:

1. Define the desired lowpass filter performance requirements.
2. Determine a candidate value for the expansion factor M.
3. Design and evaluate the shaping and image-reject subfilters.
4. Investigate IFIR performance for alternate expansion factors near the initial M value.

As a design example, refer to Figure 7-15(d) and assume we want to build a lowpass IFIR filter with
fpass = 0.02, a peak-peak passband ripple of 0.5 dB, a transition region bandwidth of ftrans = 0.01
(thus fstop = 0.03), and 50 dB of stopband attenuation. First, we find the ftrans = 0.01 point on the
abscissa of Figure 7-18(a) and follow it up to the point where it intersects the fpass = 0.02 curve. This
intersection indicates that we should start our design with an expansion factor of M = 7. (The same
intersection point in Figure 7-18(b) suggests that we can achieve a computational workload reduction
of roughly 75 percent.)
With M = 7, and applying Eq. (7-30), we use our favorite traditional FIR filter design software to
design a linear-phase prototype FIR filter with the following parameters:

fp-pass = M(0.02) = 0.14,
passband ripple = (0.5)/2 dB = 0.25 dB,
fp-stop = M(0.03) = 0.21, and
stopband attenuation = 50 dB.

(Notice how we used our cascaded filters’ passband ripple rule of thumb from Section 6.8.1 to
specify the prototype filter’s passband ripple to be half our final desired ripple, and we’ll do the
same for the image-reject subfilter.) Such a prototype FIR filter will have Np = 33 taps and, from Eq.
(7-28), when expanded by M = 7 the shaping subfilter will have an impulse response length of Nsh =
225 samples.
Next, using Eq. (7-31), we design an image-reject subfilter having the following parameters:

fir-pass = fpass = 0.02,
passband ripple = (0.5)/2 dB = 0.25 dB,
fir-stop = 1/M −fstop = 1/7 − 0.03 = 0.113, and
stopband attenuation = 50 dB.

This image-reject subfilter will have Nir = 27 taps and when cascaded with the shaping subfilter will
yield an IFIR filter requiring 60 multiplications per filter output sample. The frequency response of
the IFIR filter is shown in Figure 7-19(a), with passband response detail provided in Figure 7-19(b).



Figure 7-19 IFIR filter design example magnitude responses: (a) full response; (b) passband
response detail.

A traditional FIR filter satisfying our design example specifications would require approximately Ntfir
= 240 taps. Because the IFIR filter requires only 60 multiplications per output sample, using Eq. (7-
32), we have realized a computational workload reduction of 75 percent. The final IFIR filter design
step is to sit back and enjoy a job well done.
Further modeling of our design example for alternate expansion factors yields the IFIR filter
performance results in Table 7-2. There we see how the M expansion factors of 5 through 8 provide
very similar computational reductions and Nsh-sized data storage requirements for the shaping
subfilter.

Table 7-2 Design Example Computation Reduction versus M

IFIR filters are suitable whenever narrowband lowpass linear-phase filtering is required, for
example, the filtering prior to decimation for narrowband channel selection within wireless
communications receivers, or in digital television. IFIR filters are essential components in sharp-
transition wideband frequency-response masking FIR filters[18,19]. In addition, IFIR filters can also
be employed in narrowband two-dimensional filtering applications.
Additional, and more complicated, IFIR design methods have been described in the literature.
Improved computational workload reduction, on the order of 30 to 40 percent beyond that presented
here, has been reported using an intricate design scheme when the Figure 7-16 image-reject subfilter
is replaced with multiple stages of filtering[20].
If you “feel the need for speed,” there are additional ways to reduce the computational workload of
IFIR filters. Those techniques are available in references [21] and [22]. We will revisit IFIR filters in
Chapter 10 to see how they are used in sample rate conversion (decimation or interpolation)



applications.
To conclude our linear-phase narrowband IFIR filter material, we reiterate that they can achieve
significant computational workload reduction (as large as 90 percent) relative to traditional tapped-
delay line FIR filters, at the cost of less than a 10 percent increase in hardware data memory
requirements. Happily, IFIR implementation is a straightforward cascade of filters designed using
readily available traditional FIR filter design software.

7.5 Frequency Sampling Filters: The Lost Art
This section describes a class of digital filters, called frequency sampling filters, used to implement
linear-phase FIR filter designs. Although frequency sampling filters were developed over 35 years
ago, the advent of the powerful Parks-McClellan tapped-delay line FIR filter design method has
driven them to near obscurity. Thus in the 1970s frequency sampling filter implementations lost favor
to the point where their coverage in today’s DSP classrooms and textbooks ranges from very brief to
nonexistent. However, we’ll show how frequency sampling filters remain more computationally
efficient than Parks-McClellan-designed filters for certain applications where the desired passband
width is less than roughly one-fifth the sample rate. The purpose of this material is to introduce the
DSP practitioner to the structure, performance, and design of frequency sampling filters, and to
present a detailed comparison between a proposed high-performance frequency sampling filter
implementation and its tapped-delay line FIR filter equivalent. In addition, we’ll clarify and expand
the literature of frequency sampling filters concerning the practical issues of phase linearity, filter
stability, gain normalization, and computational workload using design examples.
Frequency sampling filters were founded upon the fact that a traditional N-tap nonrecursive tapped-
delay line (direct convolution) FIR filter as shown in Figure 7-20(a) can be implemented as a comb
filter in cascade with a bank of N complex resonators as shown in Figure 7-20(b). We call the filter in
Figure 7-20(b) a general frequency sampling filter (FSF), and its equivalence to the nonrecursive
FIR filter has been verified[23−25]. While the h(k) coefficients, where 0 < k < N−1, of N-tap
nonrecursive FIR filters are typically real-valued, in general they can be complex, and that’s the
initial assumption made in equating the two filters in Figure 7-20. The H(k) gain factors, the discrete
Fourier transform of the h(k) time-domain coefficients, are, in the general case, complex values
represented by |H(k)|ejϕ(k).
Figure 7-20 FIR filters: (a) N-tap nonrecursive tapped-delay line; (b) equivalent N-section frequency

sampling filter.



The basis of FSF design is the definition of a desired FIR filter frequency response in the form of
H(k) frequency-domain samples, whose magnitudes are depicted as dots in Figure 7-21. Next, those
complex H(k) sample values are used as gain factors following the resonators in the FSF structure
(block diagram). If you haven’t seen it before, please don’t be intimidated by this apparently
complicated FSF structure. We’ll soon understand every part of it, and how those parts work together.

Figure 7-21 Defining a desired filter response by frequency sampling.

Later we’ll develop the math to determine the interpolated (actual) frequency magnitude response
|H(ejω)| of an FSF shown by the continuous curve in Figure 7-21. In this figure, the frequency axis
labeling convention is a normalized angle measured in π radians/sample with the depicted ω
frequency range covering 0 to 2π radians/sample, corresponding to a cyclic frequency range of 0 to fs,
where fs is the sample rate in Hz.

To avoid confusion, we remind the reader that there is a popular nonrecursive FIR filter design
technique known as the frequency sampling design method described in the DSP literature. That



design scheme begins (in a manner similar to an FSF design) with the definition of desired H(k)
frequency response samples, then an inverse discrete Fourier transform is performed on those
samples to obtain a time-domain impulse response sequence that’s used as the h(k) coefficients in the
nonrecursive N-tap FIR structure of Figure 7-20(a). In the FSF design method described here, the
desired frequency-domain H(k) sample values are the coefficients used in the FSF structure of Figure
7-20(b) which is typically called the frequency sampling implementation of an FIR filter.
Although more complicated than nonrecursive FIR filters, FSFs deserve study because in many
narrowband filtering situations they can implement a linear-phase FIR filter at a reduced
computational workload relative to an N-tap nonrecursive FIR filter. The computation reduction
occurs because, while all of the h(k) coefficients are used in the nonrecursive FIR filter
implementation, most of the H(k) values will be zero-valued, corresponding to the stopband, and need
not be implemented. To understand the function and benefits of FSFs, we start by considering the
behavior of the comb filter and then review the performance of a single digital resonator.

7.5.1 Comb Filter and Complex Resonator in Cascade
A single section of a complex FSF is a comb filter followed by a single complex digital resonator as
shown in Figure 7-22.

Figure 7-22 A single section of a complex FSF.

The 1/N gain factor following a resonator in Figure 7-20(b) is omitted, for simplicity, from the single-
section complex FSF. (The effect of including the 1/N factor will be discussed later.) To understand
the single-section FSF’s operation, we first review the characteristics of the nonrecursive comb filter
whose time-domain difference equation is

(7-36)

with its output equal to the input sequence minus the input delayed by N samples. The comb filter’s z-
domain transfer function is

(7-37)

The frequency response of a comb filter, derived in Section G.1 of Appendix G, is
(7-38)

with a magnitude response of |Hcomb(ejω)| = 2|sin(ωN/2)| whose maximum value is 2. It’s meaningful



to view the comb filter’s time-domain impulse response and frequency-domain magnitude response as
shown in Figure 7-23 for N = 8. The magnitude response makes it clear why the term comb is used.

Figure 7-23 Time- and frequency-domain characteristics of an N = 8 comb filter.

Equation (7-37) leads to a key feature of this comb filter; its transfer function has N periodically
spaced zeros around the z-plane’s unit circle as shown in Figure 7-23(c). Each of those zeros, located
at z(k) = ej2πk/N, where k = 0, 1, 2, . . ., N−1, corresponds to a magnitude null in Figure 7-23(b),
where the normalized frequency axis is labeled from −π to +π radians/sample. Those z(k) values are
the N roots of unity when we set Eq. (7-37) equal to zero, yielding z(k)N = (ej2πk/N)N = 1. We can
combine the magnitude response (on a linear scale) and z-plane information in the three-dimensional
z-plane depiction shown in Figure 7-24, where we see the intersection of the |Hcomb(z)| surface and
the unit circle. Breaking the curve at the z = −1 point, and laying it flat, corresponds to the magnitude
curve in Figure 7-23(b).

Figure 7-24 The z-plane frequency magnitude response of the N = 8 comb filter.

To preview where we’re going, soon we’ll build an FSF by cascading the comb filter with a digital
resonator having a transfer function pole lying on top of one of the comb’s z-plane zeros, resulting in a
linear-phase bandpass filter. With this thought in mind, let’s characterize the digital resonator in
Figure 7-22.
The complex resonator’s time-domain difference equation is

(7-39)



where the angle ωr, −π ≤ ωr ≤ π determines the resonant frequency of our resonator. We show this by
considering the resonator’s z-domain transfer function

(7-40)

and the resonator’s complex time-domain impulse response, for ωr = π/4, in Figure 7-25.
Figure 7-25 Single complex digital resonator impulse response with ωr = π/4.

The ωr = π/4 resonator’s impulse response is a complex sinusoid, the real part (a cosine sequence) of
which is plotted in Figure 7-26(a), and can be considered infinite in duration. (The imaginary part of
the impulse response is, as we would expect, a sinewave sequence.) The frequency magnitude
response is very narrow and centered at ωr. The resonator’s Hres(z) has a single zero at z = 0, but
what concerns us most is its pole, at z = ejωr, on the unit circle at an angle of ωr as shown in Figure 7-
26(c). We can think of the resonator as an infinite impulse response (IIR) filter that’s conditionally
stable because its pole is neither inside nor outside the unit circle.

Figure 7-26 Time- and frequency-domain characteristics of a single complex digital resonator with
ωr = π/4.

We now analyze the single-section complex FSF in Figure 7-22. The z-domain transfer function of
this FSF is the product of the individual transfer functions and H(k), or

(7-41)



If we restrict the resonator’s resonant frequency ωr to be 2πk/N, where k = 0, 1, 2, . . ., N−1, then the
resonator’s z-domain pole will be located atop one of the comb’s zeros and we’ll have an FSF
transfer function of

(7-42)

where the “ss” subscript means a single-section complex FSF. We can understand a single-section
FSF by reviewing its time- and frequency-domain behavior for N = 32, k = 2, and H(2) = 1 as shown
in Figure 7-27.
Figure 7-27 Time- and frequency-domain characteristics of a single-section complex FSF where N =

32, k = 2, and H(2) = 1.

Figure 7-27 is rich in information. We see that the complex FSF’s impulse response is a truncated
complex sinusoid whose real part is shown in Figure 7-27(a). The positive impulse from the comb
filter started the resonator oscillation at zero time. Then at just the right sample, N = 32 samples later,
which is k = 2 cycles of the sinusoid, the negative impulse from the comb arrives at the resonator to
cancel all further oscillation. The frequency magnitude response, being the Fourier transform of the
truncated sinusoidal impulse response, takes the form of a sin(x)/x-like function. In the z-plane plot of
Figure 7-27, the resonator’s pole is indeed located atop the comb filter’s k = 2 zero on the unit circle,
canceling the frequency magnitude response null at 2πk/N = π/8 radians. (Let’s remind ourselves that
a normalized angular frequency of 2πk/N radians/sample corresponds to a cyclic frequency of kfs/N,
where fs is the sample rate in Hz. Thus the filter in Figure 7-27 resonates at fs/16 Hz.)

We can determine the FSF’s interpolated frequency response by evaluating the Hss(z) transfer function
on the unit circle. Substituting ejω for z in Hss(z) in Eq. (7-42), as detailed in Appendix G, Section
G.2, we obtain an Hss(ejω) frequency response of

(7-43)

Evaluating |Hss(ejω)| over the frequency range of −π < ω < π yields the curve in Figure 7-27(b). Our
single-section FSF has linear phase because the e−jπk/N term in Eq. (7-43) is a fixed phase angle



based on constants N and k, the angle of H(k) is fixed, and the e−jω(N−1)/2 phase term is a linear
function of frequency (ω). As derived in Appendix G, Section G.2, the maximum magnitude response
of a single-section complex FSF is N when |H(k)| = 1, and we illustrate this fact in Figure 7-28.
Figure 7-28 The z-plane frequency magnitude response of a single-section complex FSF with N = 32

and k = 2.

7.5.2 Multisection Complex FSFs
In order to build useful FSFs we use multiple resonator sections, as indicated in Figure 7-20(b), to
provide bandpass FIR filtering. For example, let’s build a three-section complex bandpass FSF by
establishing the following parameters: N = 32, and the nonzero frequency samples are H(2), H(3),
and H(4). The desired frequency magnitude response is shown in Figure 7-29(a) with the bandpass
FSF structure provided in Figure 7-29(b).

Figure 7-29 Three-section N = 32 complex FSF: (a) desired frequency magnitude response; (b)
implementation.



Exploring this scenario, recall that the z-domain transfer function of parallel filters is the sum of the
individual transfer functions. So, the transfer function of an N-section complex FSF from Eq. (7-42) is

(7-44)

where the subscript “cplx” means a complex multisection FSF.
Let’s pause for a moment to understand Eq. (7-44); the first factor on the right side represents a comb
filter, and the comb is in cascade (multiplication) with the sum of ratio terms. The summation of the
ratios (each ratio is a resonator) means those resonators are connected in parallel. Recall from
Section 6.8.1 that the combined transfer function of filters connected in parallel is the sum of the
individual transfer functions. It’s important to be comfortable with the form of Eq. (7-44) because
we’ll be seeing many similar expressions in the material to come.
So a comb filter is driving a bank of resonators. For an N = 32 complex FSF we could have up to 32
resonators, but in practice only a few resonators are needed for narrowband filters. In Figure 7-29,
we used only three resonators. That’s the beauty of FSFs; most of the H(k) gain values in Eq. (7-44)
are zero-valued and those resonators are not implemented, keeping the FSF computationally efficient.
Using the same steps as in Appendix G, Section G.2, we can write the frequency response of a
multisection complex FSF, such as in Figure 7-29, as

(7-45)



The designer of a multisection complex FSF can achieve any desired filter phase response by
specifying the ϕ(k) phase angle value of each nonzero complex H(k) = |H(k)|ejϕ(k) gain factor.
However, to build a linear-phase complex FSF, the designer must (1) specify the ϕ(k) phase values to
be a linear function of frequency, and (2) define the ϕ(k) phase sequence so its slope is −(N-1)/2.
This second condition forces the FSF to have a positive time delay of (N−1)/2 samples, as would the
N-tap nonrecursive FIR filter in Figure 7-20(a). The following expressions for ϕ(k), with N being
even, satisfy those two conditions.

(7-46)

(7-46′)

(7-46″)

If N is odd, the linear-phase H(k) phase values are
(7-47)

(7-47′)

Two example linear-phase ϕ(k) sequences, for N = 19 and N = 20, are shown in Figure 7-30. The
ϕ(0) = 0 values set the phase to be zero at zero Hz, and the ϕ(N/2) = 0, at the cyclic frequency of fs/2
in Figure 7-30(b), ensures a symmetrical time-domain impulse response.

Figure 7-30 Linear phase of H(k) for a single-section FSF: (a) N = 19; (b) N = 20.

Assigning the appropriate phase for the nonzero H(k) gain factors is, however, only half the story in
building a multisection FSF. There’s good news to be told. Examination of the frequency response in
Eq. (7-45) shows us a simple way to achieve phase linearity in practice. Substituting |H(k)|ejϕ(k), with



ϕ(k) defined by Eq. (7-46) above, for H(k) in Eq. (7-45) provides the expression for the frequency
response of an even-N multisection linear-phase complex FSF,

(7-48)

where the “lp” subscript indicates linear phase.
Equation (7-48) is not as complicated as it looks. It merely says the total FSF frequency response is
the sum of individual resonators’ sin(x)/x-like frequency responses. The first term within the brackets
represents the resonator centered at k = N/2 (fs/2). The first summation is the positive-frequency
resonators and the second summation represents the negative-frequency resonators.
The (−1)k terms in the numerators of Eq. (7-48) deserve our attention because they are an alternating
sequence of plus and minus ones. Thus a single-section frequency response will be 180° out of phase
relative to its neighboring section. That is, the outputs of neighboring single-section FSFs will have a
fixed π-radians phase difference over the passband common to both filters as shown in Figure 7-31.
(The occurrence of the (−1)k factors in Eq. (7-48) is established in Appendix G, Section G.3.)
Figure 7-31 Comparison of the magnitude and phase responses, and phase difference, between the k

= 3 and the k = 4 FSFs, when N = 32.

The effect of those (−1)k factors is profound and not emphasized nearly enough in the literature of
FSFs. Rather than defining each nonzero complex H(k) gain factor with its linearly increasing phase
angles ϕ(k), we can build a linear-phase multisection FSF by using just the |H(k)| magnitude values
and incorporating the alternating signs for those real-valued gain factors. In addition, if the nonzero
|H(k)| gain factors are all equal to one, we avoid Figure 7-29’s gain factor multiplications altogether
as shown in Figure 7-32(a).

Figure 7-32 Simplified N = 32 three-section linear-phase complex bandpass FSF: (a)
implementation; (b) frequency response.



The unity-valued |H(k)| gain factors and the alternating-signed summation allow the complex gain
multiplies in Figure 7-29(b) to be replaced by simple adds and subtracts as in Figure 7-32(a). We add
the even-k and subtract the odd-k resonator outputs. Figure 7-32(b) confirms the linear phase, with
phase discontinuities at the magnitude nulls, of these multisection complex FSFs. The transfer function
of the simplified complex linear-phase FSF is

(7-49)

(We didn’t use the “lp” subscript, meaning linear phase, in Eq. (7-49) because, from here on, all our
complex FSFs will be linear phase.)

7.5.3 Ensuring FSF Stability
So far we’ve discussed complex FSFs with pole/zero cancellation on the unit circle. However, in
practice exact cancellation requires infinite-precision arithmetic, and real-world binary word
quantization errors in the FSF’s coefficients can make the filter poles lie outside the unit circle. The
result would be an unstable filter, whose impulse response is no longer finite in duration, which must
be avoided. (This is a beautiful example of the time-honored axiom “In theory, there’s no difference
between theory and practice. In practice, sometimes the theory doesn’t work.”) Even if a pole is
located only very slightly outside the unit circle, roundoff noise will grow as time increases,
corrupting the output samples of the filter. We prevent this problem by moving the comb filter’s zeros
and the resonators’ poles just inside the unit circle as depicted in Figure 7-33(a). Now the zeros and a
pole are located on a circle of radius r, where the damping factor r is just slightly less than 1.

Figure 7-33 Ensuring FSF stability: (a) poles and zeros are inside the unit circle; (b) real part of a
stable single-section FSF impulse response; (c) FSF structure.



We call r the damping factor because a single-stage FSF impulse response becomes a damped
sinusoid. For example, the real part of the impulse response of a single-stage complex FSF, where N
= 32, k = 2, H(2) = 2, and r = 0.95, is shown in Figure 7-33(b). Compare that impulse response to
Figure 7-27(a). The structure of a single-section FSF with zeros and a pole inside the unit circle is
shown in Figure 7-33(c).
The comb filter’s feedforward coefficient is −rN because the new z-domain transfer function of this
comb filter is

(7-50)

with the N zeros for this comb being located at zr<1(k) = rej2πk/N, where k = 0, 1, 2, . . ., N−1.

Those zr<1(k) values are the N roots of rN when we set Eq. (7-50) equal to zero, yielding zr<1(k)N =
(rej2πk /N)N = rN. The z-domain transfer function of the resonator in Figure 7-33(b), with its pole
located at a radius of r, at an angle of 2πk/N, is

(7-51)

leading us to the transfer function of a guaranteed-stable single-section complex FSF of
(7-52)

whose implementation is shown in Figure 7-33(c). The subscript “gs,ss” means a guaranteed-stable
single-section FSF. The z-domain transfer function of a guaranteed-stable N-section complex FSF is

(7-53)

where the subscript “gs,cplx” means a guaranteed-stable complex multisection FSF. The frequency
response of a guaranteed-stable multisection complex FSF (derived in Appendix G, Section G.4) is

(7-54)



If we modify the bandpass FSF structure in Figure 7-32(a) to force the zeros and poles inside the unit
circle, we have the structure shown in Figure 7-34(a). The frequency-domain effects of zeros and
poles inside the unit circle are significant, as can be seen in Figure 7-34(b) for the two cases where r
= 0.95 and r = 0.9999.

Figure 7-34 Guaranteed-stable N = 32 three-section linear-phase complex bandpass FSF: (a)
implementation; (b) frequency response for two values of damping factor r.

Figure 7-34(b) shows how a value of r = 0.95 badly corrupts our complex bandpass FSF
performance; the stopband attenuation is degraded, and significant phase nonlinearity is apparent.
Damping factor r values of less than unity cause phase nonlinearity because the filter is in a
nonreciprocal zero condition. Recall a key characteristic of FIR filters: To maintain linear phase, any
z-plane zero located inside the unit circle at z = zr<1(k), where zr<1(k) is not equal to 0, must be
accompanied by a zero at a reciprocal location, namely, z = 1/zr<1(k) outside the unit circle. We do
not satisfy this condition here, leading to phase nonlinearity. (The reader should have anticipated
nonlinear phase due to the asymmetrical impulse response in Figure 7-33(b).) The closer we can
place the zeros to the unit circle, the more linear the phase response. So the recommendation is to
define r to be as close to unity as your binary number format allows[26]. If integer arithmetic is used,
set r = 1−1/2B, where B is the number of bits used to represent a filter coefficient magnitude.
Another stabilization method worth considering is decrementing the largest component (either real or
imaginary) of a resonator’s ej2πk /N feedback coefficient by one least significant bit. This technique
can be applied selectively to problematic resonators and is effective in combating instability due to
rounding errors, which results in finite-precision ej2πk /N coefficients having magnitudes greater than
unity.
Thus far we’ve reviewed FSFs with complex coefficients and frequency magnitude responses not
symmetrical about zero Hz. Next we explore FSFs with real-only coefficients having conjugate-
symmetric frequency magnitude and phase responses.

7.5.4 Multisection Real-Valued FSFs



We can obtain real-FSF structures (real-valued coefficients) by forcing our complex N-section FSF,
where N is even, to have conjugate poles, by ensuring that all nonzero H(k) gain factors are
accompanied by conjugate H(N−k) gain factors, so that H(N−k) = H*(k). That is, we can build real-
valued FSFs if we use conjugate pole pairs located at angles of ±2πk/N radians. The transfer function
of such an FSF (derived in Appendix G, Section G.5) is

(7-55)

where the subscript “gs,real” means a guaranteed-stable real-valued multisection FSF, and ϕk is the
desired phase angle of the kth section. Eq. (7-55) defines the structure of a Type-I real FSF to be as
shown in Figure 7-35(a), requiring five multiplies per resonator output sample. The implementation
of a real pole-pair resonator, using real-only arithmetic, is shown in Figure 7-35(b).
Figure 7-35 Guaranteed-stable, even-N, Type-I real FSF: (a) structure; (b) using real-only resonator

coefficients.

Of course, for lowpass FSFs the stage associated with the H(N/2) gain factor in Figure 7-35 would
not be implemented, and for bandpass FSFs neither stage associated with the H(0) and H(N/2) gain
factors would be implemented. The behavior of a single-section Type-I real FSF with N = 32, k = 3,
H(3) = 1, r = 0.99999, and ϕ3 = 0 is provided in Figure 7-36.

Figure 7-36 Time- and frequency-domain characteristics of a single-section Type-I FSF when N = 32,
k = 3, H(3) = 1, r = 0.99999, and ϕ3 = 0.



An alternate version of the Type-I FSF, with a simplified resonator structure, can be developed by
setting all ϕk values equal to zero and moving the gain factor of two inside the resonators. Next we
incorporate the alternating signs in the final summation as shown in Figure 7-37 to achieve linear
phase, just as we did to arrive at the linear-phase multisection complex FSF in Figure 7-32(a), by
adding the even-k and subtracting the odd-k resonator outputs. The “±” symbol in Figure 7-37(a)
warns us that when N is even, k = (N/2) −1 can be odd or even.

Figure 7-37 Linear-phase, even-N, Type-II real FSF: (a) structure; (b) real-only resonator
implementation.

If the nonzero |H(k)| gain factors are unity, this Type-II real FSF requires only three multiplies per
section output sample. When a resonator’s multiply by 2 can be performed by a hardware binary
arithmetic left shift, only two multiplies are needed per output sample. The transfer function of this
real-valued FSF is

(7-56)

Neither the Type-I nor the Type-II FSF has exactly linear phase. While the phase nonlinearity is



relatively small, their passband group delays can have a peak-to-peak fluctuation of up to two sample
periods (2/fs) when used in multisection applications. This phase nonlinearity is unavoidable because
those FSFs have isolated zeros located at z = rcos(2πk/N), when ϕk = 0, as shown in Figure 7-36(c).
Because the isolated zeros inside the unit circle have no accompanying reciprocal zeros located
outside the unit circle at z = 1/[rcos(2πk/N)], sadly, this causes phase nonlinearity.
While the Type-I and -II FSFs are the most common types described in the literature of FSFs, their
inability to yield exact linear phase has not received sufficient attention or analysis. In the next
section we take steps to obtain linear phase by repositioning the isolated zero.

7.5.5 Linear-Phase Multisection Real-Valued FSFs
We can achieve exact real-FSF phase linearity by modifying the Type-I real FSF resonator’s
feedforward coefficients, in Figure 7-35(b), moving the isolated zero on top of the comb filter’s zero
located at z = r. We do this by setting ϕk = πk/N. The numerator of the transfer function of one section
of the real FSF, from Eq. (7-55), is

cos(ϕk) −rcos(ϕk−2πk/N)z−1.

If we set this expression equal to zero, and let ϕk = πk/N, we find that the shifted isolated zero
location z0 is

cos(ϕk) −rcos(ϕk−2πk/N)z0
−1 = cos(πk/N) −rcos(πk/N−2πk/N)z0

−1 = 0

or

Substituting πk/N for ϕk in Eq. (7-55) yields the transfer function of a linear-phase Type-III real FSF
as

(7-57)

The implementation of the linear-phase Type-III real FSF is shown in Figure 7-38, requiring four
multiplies per section output sample.

Figure 7-38 Even-N, linear-phase, Type-III real FSF: (a) structure; (b) real-only resonator
implementation.



Notice that the H(N/2), fs/2, section is absent in Figure 7-38(a). We justify this as follows: The even-
N Type-I, -II, and -III real-FSF sections have impulse responses comprising N nonzero samples. As
such, their k = N/2 sections’ impulse responses, comprising even-length sequences of alternating plus
and minus ones, are not symmetrical. This asymmetry property would corrupt the exact linear phase
should a k = N/2 section be included. Consequently, as with even-length nonrecursive FIR filters,
even-N Type-I, -II, and -III real FSFs cannot be used to implement linear-phase highpass filters.
Figure 7-39 shows the frequency-domain performance of an eight-section Type-III FSF, for N = 32
where the eight sections begin at DC (0 ≤ k ≤ 7). Figure 7-39(c) provides a group delay comparison
between the Type-III FSF and an equivalent eight-section Type-II FSF showing the improved Type-III
phase linearity having a constant group delay of (N−1)/2 samples over the passband.
Figure 7-39 Interpolated frequency-domain response of a Type-III FSF having eight sections with N =
32: (a) magnitude response; (b) phase response; (c) group delay compared with an equivalent Type-II

FSF.



7.5.6 Where We’ve Been and Where We’re Going with FSFs
We’ve reviewed the structure and behavior of a complex FSF whose complex resonator stages had
poles residing atop the zeros of a comb filter, resulting in a recursive FIR filter. Next, to ensure filter
implementation stability, we forced the pole/zero locations to be just inside the unit circle. We
examined a guaranteed-stable even-N Type-I real FSF having resonators with conjugate pole pairs,
resulting in an FSF with real-valued coefficients. Next, we modified the Type-I real-FSF structure,
yielding the more computationally efficient but only moderately linear-phase Type-II real FSF.
Finally, we modified the coefficients of the Type-I real FSF and added post-resonator gain factors,
resulting in the exact linear-phase Type-III real FSF. During this development, we realized that the
even-N Type-I, -II, and -III real FSFs cannot be used to implement linear-phase highpass filters.
In the remainder of this section we introduce a proposed resonator structure that provides superior
filtering properties compared to the Type-I, -II, and -III resonators. Next we’ll examine the use of
nonzero transition band filter sections to improve overall FSF passband ripple and stopband
attenuation, followed by a discussion of several issues regarding modeling and designing FSFs. We’ll
compare the performance of real FSFs to their equivalent Parks-McClellan-designed N-tap
nonrecursive FIR filters. Finally, a detailed FSF design procedure is presented.

7.5.7 An Efficient Real-Valued FSF
There are many real-valued resonators that can be used in FSFs, but of particular interest to us is the
Type-IV resonator presented in Figure 7-40(a). This resonator deserves attention because it

• is guaranteed stable,
• exhibits highly linear phase,
• uses real-valued coefficients,
• is computationally efficient,
• can implement highpass FIR filters, and
• yields stopband attenuation performance superior to the Type-I, -II, and -III FSFs.

Figure 7-40 Type-IV resonator: (a) original structure; (b) simplified version.

From here on, the Type IV will be our FSF of choice.
Cascading Type-IV resonators with a comb filter provide a Type-IV real-only FSF with a transfer
function of

(7-58)



where N is even. (Note: When N is odd, k = N/2 is not an integer and the |H(N/2)| term does not
exist.) As derived in Appendix G, Section G.6, the Type-IV FSF frequency response is

(7-59)

The even-N frequency and resonance magnitude responses for a single Type-IV FSF section are
(7-60)

and
(7-61)

and its resonant magnitude gains at k = 0 (DC), and k = N/2 (fs/2), are
(7-62)

To reduce the number of resonator multiply operations, it is tempting to combine the dual −r2 factors
in Figure 7-40(a) to simplify the Type-IV resonator as shown in Figure 7-40(b). However, a
modification reducing both the number of multiply and addition operations in each FSF resonator is to
implement the (1−r2z−2) term in the numerator of Eq. (7-58) as a second-order comb filter as shown
in Figure 7-41(a)[27]. This transforms the Type-IV resonator to that shown in Figure 7-41(b). The
|H(0)|/2 and |H(N/2)|/2 gain factors compensate for the gain of 2N for a Type-IV resonator in Eq. (7-
62).

Figure 7-41 Type-IV, even-N, real FSF: (a) structure; (b) its modified resonator.



The cascaded-comb subfilter combination has N zeros spaced around the unit circle with dual z-plane
zeros at z = 1 (0 Hz) and dual zeros at z = −1 (fs/2 Hz). However, the k = 0 and k = N/2 Type-IV
resonators have dual poles at z = ±1, respectively, enabling the necessary pole/zero cancellation.
The “±” symbols in Figure 7-41(a) remind us, again, that when N is even, k = N/2 could be odd or
even. This FSF has the very agreeable characteristic of having an impulse response whose length is
N+1 samples. Thus, unlike the Type-I, -II, and -III FSFs, an even-N Type-IV FSF’s k = N/2 section
impulse response (alternating ±1s) is symmetrical, and Type-IV FSFs can be used to build linear-
phase highpass filters. When N is odd, the k = N/2 section is absent in Figure 7-41, and the odd-N
Type-IV transfer function is identical to Eq. (7-58) with the summation’s upper limit being (N−1)/2
instead of N/2.
We’ve covered a lot of ground thus far, so Table 7-3 summarizes what we’ve discussed concerning
real-valued FSFs. The table lists the average passband group delay measured in sample periods, the
number of multiplies and additions necessary per output sample for a single FSF section, and a few
remarks regarding the behavior of the various real FSFs. The section gains at their resonant
frequencies, assuming the desired |H(k)| gain factors are unity, is N for all four of the real-valued
FSFs.

Table 7-3 Summary of Even-N Real FSF Properties



7.5.8 Modeling FSFs

We derived several different H(ejω) frequency response equations here, not so much to use them for
modeling FSF performance but to examine them in order to help define the structure of our FSF block
diagrams. For example, it was analyzing the properties of HType-IV(ejω) that motivated the use of the
1/2 gain factors in the Type-IV FSF structure.
When modeling the FSFs, fortunately it’s not necessary to write code to calculate frequency-domain
responses using the various H(ejω) equations provided here. All that’s necessary is code to compute
the time-domain impulse response of the FSF being modeled, pad the impulse response with enough
zeros so the padded sequence is 10 to 20 times the length of the original, perform a discrete Fourier
transform (DFT) on the padded sequence, and plot the resulting interpolated frequency-domain
magnitude and phase. Of course, forcing your padded sequence length to be an integer power of two
enables the use of the efficient FFT to calculate frequency-domain responses. Alternatively, many
commercial signal processing software packages have built-in functions to calculate filter frequency
response curves based solely on the filter’s transfer function coefficients.

7.5.9 Improving Performance with Transition Band Coefficients
We can increase FSF stopband attenuation if we carefully define |H(k)| magnitude samples in the
transition region, between the passband and stopband. For example, consider a lowpass Type-IV FSF
having seven sections, of unity gain, with N = 32, whose desired performance is shown in Figure 7-
42(a), and whose interpolated (actual) frequency magnitude response is provided in Figure 7-42(b).

Figure 7-42 Seven-section, N = 32, Type-IV FSF: (a) desired frequency response; (b) actual
performance; (c) using one transition sample; (d) improved stopband attenuation.



The assignment of a transition magnitude sample, coefficient T1 whose value is between 0 and 1 as in
Figure 7-42(c), reduces the abruptness in the transition region between the passband and the stopband
of our desired magnitude response. Setting T1 = 0.389 results in reduced passband ripple and the
improved stopband sidelobe suppression shown in Figure 7-42(d). The price we pay for the
improved performance is the computational cost of an additional FSF section and increased width of
the transition region.
Assigning a coefficient value of T1 = 0.389 was not arbitrary or magic. Measuring the maximum
stopband sidelobe level for various values of 0 ≤ T1 ≤ 1 reveals the existence of an optimum value
for T1. Figure 7-43 shows that the maximum stopband sidelobe level is minimized when T1 = 0.389.
The minimum sidelobe level of −46 dB (when T1 = 0.389) corresponds to the height of the maximum
stopband sidelobe in Figure 7-42(d). This venerable and well-known method of employing a
transition region coefficient to reduce passband ripple and minimize stopband sidelobe levels also
applies to bandpass FSF design where the transition sample is used just before and just after the
filter’s passband unity-magnitude |H(k)| samples.
Figure 7-43 Maximum stopband sidelobe level as a function of the transition region coefficient value

for a seven-section Type-IV real FSF when N = 32.



Further stopband sidelobe level suppression is possible if two transition coefficients, T1 and T2, are
used such that 0 ≤ T2 ≤ T1 ≤ 1. (Note: For lowpass filters, if T1 is the |H(k)| sample, then T2 is the
|H(k+1)| sample.) Each additional transition coefficient used improves the stopband attenuation by
approximately 25 dB. However, finding the optimum values for the T coefficients is a daunting task.
Optimum transition region coefficient values depend on the number of unity-gain FSF sections, the
value of N, and the number of coefficients used; and unfortunately there’s no closed-form equation
available to calculate optimum transition coefficient values. We must search for them empirically.
If one coefficient (T1) is used, finding its optimum value can be considered a one-dimensional search.
If two coefficients are used, the search becomes two-dimensional, and so on. Fortunately,
descriptions of linear algebra search techniques are available[23,28−30], and commercial
mathematical software packages have built-in optimization functions to facilitate this computationally
intensive search. For Type-I/II FSFs, tables of optimum transition region coefficients for various N,
and number of FSF sections used, have been published[23], and a subset of those tables is provided
as an appendix in a textbook[24]. For the higher-performance Type-IV FSFs, tables of optimum
coefficient values have been compiled by the author and are provided in Appendix H. With this good
news in mind, shortly we’ll look at a real-world FSF design example to appreciate the benefits of
FSFs.

7.5.10 Alternate FSF Structures

With the primary comb filter in Figure 7-41 having a feedforward coefficient of −rN, its even-N
transfer function zeros are equally spaced around and inside the unit circle, as shown in Figures 7-
23(c) and 7-44(a), so the k = 1 zero is at an angle of 2π/N radians. In this Case I, if N is odd, the
comb’s zeros are spaced as shown in Figure 7-44(b). An alternate situation, Case II, exists when the
comb filter’s feedforward coefficient is +rN. In this mode, an even-N comb filter’s zeros are rotated
counterclockwise on the unit circle by π/N radians as shown in Figure 7-44(c), where the comb’s k =
1 zero is at an angle of 3π/N radians[27]. The k = 0 zeros are shown as solid dots.

Figure 7-44 Four possible orientations of comb filter zeros near the unit circle.



The structure of a Case II FSF is identical to that of a Case I FSF; however, the Case II resonators’
coefficients must be altered to rotate the poles by π/N radians to ensure pole/zero cancellation. As
such, the transfer function of a Case II, even-N, Type-IV FSF is

(7-63)

Because a Case II FSF cannot have a pole or a zero at z = 1 (DC), these FSFs are unable to build
lowpass filters, in which case the z−2-delay comb filter in Figure 7-41(a) is not implemented. Table
7-4 lists the filtering capabilities of the various Case I and Case II Type-IV FSFs.

Table 7-4 Type-IV FSF Modes of Operation

Their inability to implement lowpass filtering limits the utility of Case II FSFs, but their resonators’
shifted center frequencies do provide some additional flexibility in defining the cutoff frequencies of
bandpass and highpass filters. The remainder of this material considers only the Case I Type-IV FSFs.

7.5.11 The Merits of FSFs
During the formative years of FIR filter theory (early 1970s) a computer program was made available
for designing nonrecursive FIR filters using the Parks-McClellan (PM) method[31]. This filter design
technique provided complete control in defining desired passband ripple, stopband attenuation, and
transition region width. (FIR filters designed using the PM method are often called optimal FIR,
Remez Exchange, or equiripple filters.) Many of the early descriptions of the PM design method



included a graphical comparison of various lowpass FIR filter design methods similar to that
redrawn in Figure 7-45[29,32,33]. In this figure, a given filter’s normalized (to impulse response
length N, and the sample rate fs) transition bandwidth is plotted as a function of its minimum stopband
attenuation. (Passband peak-to-peak ripple values, measured in dB, are provided numerically within
the figure.)
Figure 7-45 Comparison of the Kaiser window, frequency sampling, and Parks-McClellan-designed

FIR filters.

Because the normalized transition bandwidth measure D in Figure 7-45 is roughly independent of N,
this diagram is considered to be a valid performance comparison of the three FIR filter design
methods. For a given passband ripple and stopband attenuation, the PM-designed FIR filter could
exhibit the narrowest transition bandwidth, thus the highest performance filter. The wide
dissemination of Figure 7-45 justifiably biased filter designers toward the PM design method.
(During his discussion of Figure 7-45, one author boldly declared, “The smaller is D, the better is the
filter”[32].) Given its flexibility, improved performance, and ease of use, the PM method quickly
became the predominant FIR filter design technique. Consequently, in the 1970s FSF implementations
lost favor to the point where they’re rarely mentioned in today’s DSP classrooms or textbooks.
However, from a computational workload standpoint, Figure 7-45 is like modern swimwear: what it
shows is important; what it does not show is vital. That design comparison does not account for those
situations where both frequency sampling and PM filters meet the filter performance requirements but
the frequency sampling implementation is more computationally efficient. The following FIR filter
design example illustrates this issue and shows why FSFs should be included in our bag of FIR filter
design tools.

7.5.12 Type-IV FSF Example
Consider the design of a linear-phase lowpass FIR filter whose cutoff frequency is 0.05 times the
sample rate fs, the stopband must begin at 0.095 times fs, the maximum passband ripple is 0.3 dB peak
to peak, and the minimum stopband attenuation must be 65 dB. If we designed a six-section Type-IV
FSF with N = 62 and r = 0.99999, its frequency-domain performance satisfies our requirements and
is the solid curve in Figure 7-46(a).

Figure 7-46 An N = 62, six-section Type-IV real FSF (solid) versus a 60-tap PM-designed filter



(dashed): (a) frequency magnitude response; (b) passband response detail.

For this FSF, two transition region coefficients of |H(4)| = T1 = 0.589921 and |H(5)| = T2 = 0.104964
were used. Included in Figure 7-46(a), the dashed curve, is the magnitude response of a PM-designed
60-tap nonrecursive FIR filter. Both filters meet the performance requirements and have linear phase.
The structure of the Type-IV FSF is provided in Figure 7-47. A PM-designed filter implemented using
a folded nonrecursive FIR structure (as discussed in Section 13.7), exploiting its impulse response
symmetry to halve the number of multipliers, requires 30 multiplies and 59 adds per output sample.
We see the computational savings of the Type-IV FSF, which requires only 17 multiplies and 19 adds
per output sample. (Note: The FSF’s H(k) gain factors are all zero for 6 ≤ k ≤ 31.)

Figure 7-47 Structure of the N = 62, six-section, lowpass, Type-IV FSF with two transition region
coefficients.

7.5.13 When to Use an FSF
In this section we answer the burning question “When is it smarter (more computationally efficient) to
use a Type-IV FSF instead of a PM-designed FIR filter?” The computational workload of a PM-
designed FIR filter is directly related to the length of its time-domain impulse response, which in turn
is inversely proportional to the filter transition bandwidth. The narrower the transition bandwidth, the
greater the nonrecursive FIR filter’s computational workload measured in arithmetic operations per
output sample. On the other hand, the computational workload of an FSF is roughly proportional to its
passband width. The more FSF sections needed for wider bandwidths and the more transition region
coefficients used, the higher the FSF’s computational workload. So in comparing the computational



workload of FSFs to PM-designed FIR filters, both transition bandwidth and passband width must be
considered.
Figure 7-48 provides a computational comparison between even-N Type-IV FSFs and PM-designed
nonrecursive lowpass FIR filters. The curves represent desired filter performance parameters where
a Type-IV FSF and a PM-designed filter have approximately equal computational workloads per
output sample. (The bandwidth values in the figure axis are normalized to the sample rate, so, for
example, a frequency value of 0.1 equals fs/10.) If the desired FIR filter transition region width and
passband width combination (a point) lies beneath the curves in Figure 7-48, then a Type-IV FSF is
computationally more efficient than a PM-designed filter. Figure 7-48(a) is a comparison accounting
only for multiply operations. For filter implementations where multiplies and adds require equal
processor clock cycles, Figure 7-48(b) provides the appropriate comparison. The solitary black dot
in the figure indicates the comparison curves location for the above Figure 7-46 Type-IV FSF filter
example. (A Type-IV FSF design example using the curves in Figure 7-48 will be presented later.)

Figure 7-48 Computational workload comparison between even-N lowpass Type-IV FSFs and
nonrecursive PM FIR filters: (a) only multiplications considered; (b) multiplications and additions

considered. (No 1/N gain factor used.)

The assumptions made in creating Figure 7-48 are an even-N Type-IV FSF, damping factor r =
0.99999, and no 1/N gain scaling from Figure 7-20(b). The PM filter implementation used in the
comparison assumes a symmetrical impulse response, an M-tap folded structure requiring M/2
multiplies, and M−1 additions. The performance criteria levied on the PM filter are typical Type-IV
FSF properties (when floating-point coefficients are used) given in Table 7-5.

Table 7-5 Typical Even-N Type-IV FSF Properties

The Type-IV resonators have a gain of N, so the subsequent gain of the FSF in Figure 7-47 is N. For
FSF implementations using floating-point numbers, this gain may not be a major design issue. In
filters implemented with fixed-point numbers, the gain of N could cause overflow errors, and a gain
reduction by a scaling factor of 1/N may be necessary. Occasionally, in the literature, a 1/N scaling



factor is shown as a single multiply just prior to an FSF’s comb filter[24,34]. This scale factor
implementation is likely to cause an intolerable increase in the input signal quantization noise. A more
practical approach is to apply the 1/N scaling at the output of each FSF section, prior to the final
summation, as indicated in Figure 7-20(b). Thus every FSF resonator output is multiplied by a non-
unity value, increasing the computational workload of the FSF. In this situation, the computational
comparison between even-N Type-IV FSFs and PM filters becomes as shown in Figure 7-49.

Figure 7-49 Computational workload comparison between even-N lowpass Type-IV FSFs, with
resonator output 1/N scaling included, and nonrecursive PM FIR filters: (a) only multiplications

considered; (b) multiplications and additions considered.

Of course, if N is an integer power of two, some hardware implementations may enable resonator
output 1/N scaling with hardwired binary arithmetic right shifts to avoid explicit multiply operations.
In this situation, the computational workload comparison in Figure 7-48 applies.
As of this writing, programmable DSP chips typically cannot take advantage of the folded FIR filter
structure assumed in the creation of Figures 7-29 and 7-30. In this case, an M-tap direct convolution
FIR filter has the disadvantage that it must perform the full M multiplies per output sample. However,
DSP chips have the advantage of zero-overhead looping and single-clock-cycle multiply and
accumulate (MAC) capabilities, making them more efficient for direct convolution FIR filtering than
for filtering using the recursive FSF structures. Thus, a DSP chip implementation’s disadvantage of
more necessary computations and its advantage of faster execution of those computations roughly
cancel each other. With those thoughts in mind, we’re safe to use Figures 7-48 and 7-49 as guides in
deciding whether to use a Type-IV FSF or a PM-designed FIR filter in a programmable DSP chip
filtering application.
Finally, we conclude, from the last two figures, that Type-IV FSFs are more computationally efficient
than PM-designed FIR filters in lowpass applications where the passband is less than approximately
fs/5 and the transition bandwidth is less than roughly fs/8.

7.5.14 Designing FSFs
The design of a practical Type-IV FSF comprises three stages: (1) determine if an FSF can meet the
desired filter performance requirements, (2) determine if a candidate FSF is more, or less,
computationally efficient than an equivalent PM-designed filter, and (3) design the FSF and verify its
performance. To aid in the first stage of the design, Figure 7-50 shows the typical minimum stopband



attenuation of Type-IV FSFs, as a function of transition bandwidth, for various numbers of transition
region coefficients. (Various values for N, and typical passband ripple performance, are given within
Figure 7-50 as general reference parameters.)

Figure 7-50 Typical Type-IV lowpass FSF stopband attenuation performance as a function of
transition bandwidth.

In designing an FSF, we find the value N to be a function of the desired filter transition bandwidth,
and the number of FSF sections required is determined by both N and the desired filter bandwidth.
Specifically, given a linear-phase FIR filter’s desired passband width, passband ripple, transition
bandwidth, and minimum stopband attenuation, the design of a linear-phase lowpass Type-IV FSF
proceeds as follows:

1. Using Figure 7-50, determine which shaded performance band in the figure satisfies the desired
minimum stopband attenuation. This step defines the number of transition coefficients necessary to
meet stopband attenuation requirements.

2. Ensure that your desired transition bandwidth value resides within the chosen shaded band. (If
the transition bandwidth value lies to the right of a shaded band, a PM-designed filter will be
more computationally efficient than a Type-IV FSF and the FSF design proceeds no further.)

3. Determine if the typical passband ripple performance, provided in Figure 7-50, for the candidate
shaded band is acceptable. If so, a Type-IV FSF can meet the desired lowpass filter performance
requirements. If not, a PM design should be investigated.

4. Based on arithmetic implementation priorities, determine the appropriate computational
workload comparison chart to be used from Figure 7-48 or Figure 7-49 in determining if an FSF is
more efficient than a PM-designed nonrecursive filter.

5. Using the desired filter’s transition bandwidth and passband width as coordinates of a point on
the selected computational workload comparison chart, determine if that point lies beneath the
appropriate curve. If so, an FSF can meet the filter performance requirements with fewer
computations per filter output sample than a PM-designed filter. (If the transition
bandwidth/passband point lies above the appropriate curve, a PM design should be investigated
and the FSF design proceeds no further.)

6. Assuming the designer has reached this step of the evaluation process, the design of a Type-IV



FSF proceeds by selecting the filter order N. The value of N depends on the desired transition
bandwidth and the number of transition coefficients from Step 1 and, when the transition
bandwidth is normalized to fs, can be estimated using

(7-64)

7. The required number of unity-gain FSF sections, integer M, is roughly proportional to the desired
normalized double-sided passband width divided by the FSF’s frequency resolution (fs/N) and is
estimated using

(7-65)

8. Given the initial integer values for N and M, find the appropriate optimized transition coefficient
gain values from the compiled tables in Appendix H. If the tables do not contain optimized
coefficients for the given N and M values, the designer may calculate approximate coefficients by
linear interpolation of the tabulated values. Alternatively, an optimization software program may
be used to find optimized transition coefficients.

9. Using the values for N, M, and the optimized transition coefficients, determine the interpolated
(actual) frequency response of the filter as a function of those filter parameters. This frequency
response can be obtained by evaluating Eq. (7-59). More conveniently, the frequency response can
be determined with a commercial signal processing software package to perform the DFT of the
FSF’s impulse response sequence, or by using the transfer function coefficients in Eq. (7-58).

10. Next the fun begins as the values for N and M are modified slightly, and Steps 8 and 9 are
repeated, as the design process converges to a minimum value of M to minimize the computational
workload, and optimized transition coefficients maximizing stopband attenuation.

11. When optimized filter parameters are obtained, they are then used in a Type-IV FSF
implementation, as in Figure 7-47.

12. The final FSF design step is to sit back and enjoy a job well done.
The Type-IV FSF example presented in Figures 7-46 and 7-47 provides an illustration of Steps 6 and
7. The initial design estimates for N and M are

Repeated iterations of Steps 8 through 11 converge to the parameters of N = 62 and M = 6 that satisfy
the desired filter performance specifications.

7.5.15 FSF Summary
We’ve introduced the structure, performance, and design of frequency sampling FIR filters. Special
emphasis was given to the practical issues of phase linearity, stability, and computational workload
of these filters. In addition, we presented a detailed comparison of the high-performance Type-IV FSF
and its nonrecursive FIR equivalent. Performance curves were presented to aid the designer in
choosing between a Type-IV FSF and a Parks-McClellan-designed FIR filter for a given narrowband



linear-phase filtering application. We found that
• Type-IV FSFs are more computationally efficient, for certain stopband attenuation levels, than
Parks-McClellan-designed nonrecursive FIR filters in lowpass (or highpass) applications where
the passband is less than fs/5 and the transition bandwidth is less than fs/8 (see Figures 7-29 and 7-
30);

• FSFs are modular; their components (sections) are computationally identical and well understood;
• tables of optimum transition region coefficients, used to improve Type-IV FSF performance, can
be generated (as was done in Appendix H); and

• although FSFs use recursive structures, they can be designed to be guaranteed stable and have
linear phase.
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Chapter 7 Problems
7.1 Prove that the frequency magnitude responses of the first-difference and central-difference

differentiators can be represented by
|HFd(ω)| = 2|sin(ω/2)|

and
|HCd(ω)| = |sin(ω)|

respectively. The ω frequency-domain variable has a range of −π ≤ ω ≤ π, corresponding to a
cyclic frequency range of −fs/2 to fs/2, where fs is the differentiator’s input signal sample rate in
Hz.
Hint: Keep a list of trigonometric identities close at hand.

7.2 Redraw the block diagram of the central-difference differentiator, shown in Figure P7-2, giving a
new reduced-computation structure having only one multiplier.

Figure P7-2

7.3 I once encountered an Internet web page that stated: “The central-difference differentiator is
equivalent to two first-difference differentiators in series (cascaded).” Upon his reading that
statement, if Rocky Balboa said, “This is very true,” would he be correct? Show how you arrived
at your answer.

7.4 Assume you are working on a system that contains a servomotor and the motor’s angular position,
Apos(n), is measured by a shaft encoder coupled directly to the motor shaft as shown in Figure P7-
4. With the Apos(n) discrete-signal sequence representing the motor shaft angular position, assume
that the Apos(n) sequence is contaminated with high-frequency noise and that the acceleration
measurement network is restricted to performing no more than one multiplication per Apos(n) input
sample. What is the block diagram of the acceleration measurement network that will generate the
Aacc(n) signal representing the acceleration of the motor shaft? Explain how you arrived at your
solution.

Figure P7-4



7.5 Here’s a differentiator design problem. Compute the coefficients of an N = 7-tap wideband
differentiator whose cutoff frequency is ωc = π.

7.6 Differentiators are often used in digital receivers to perform FM (frequency modulation)
demodulation. For a differentiator to be useful for FM demodulation its group delay should be an
integer number of samples. One proposed differentiating filter has the following difference
equation:

where ydiff(n) is the differentiator’s output. Prove that this differentiator’s group delay is an integer
number of samples.

7.7 This author once read, on the Internet, the surprising statement that “the real part of the frequency
response of the rectangular rule integrator is 0.5 for all input frequencies.” Prove the validity of
that statement.

7.8 In the text we introduced the rectangular rule integrator whose block diagram is shown in Figure
P7-8(a).
(a) Assume that, at time index n = 2, we apply an x(n) cosine sequence whose frequency is half the

input signal sample rate (fs/2), shown in Figure P7-8(b), to a rectangular rule integrator. Given
this x(n) input sequence, draw the y(n) output sequence of the integrator.

(b) Based on the y(n) sequence from Part (a), by what factor does the rectangular rule integrator
have an amplitude gain, or an amplitude loss, when the input is a sinusoid whose frequency is
fs/2 Hz?

(c) Use the text’s equation for the frequency response of the integrator to verify your answer to Part
(b) of this problem.

Figure P7-8



7.9 Examine the x(n) samples obtained from digitizing the continuous x(t) signal shown in Figure P7-
9, and assume we must estimate the shaded area, A, under the x(t) curve during the time interval of
0 to 3ts seconds. If we use a trapezoidal rule integrator for our computations, will our estimate of
the shaded area A be larger or smaller than the true area A? Justify your answer.

Figure P7-9

7.10 In the continuous-signal domain an integrator is defined by the following Laplace-domain
transfer function expression:

(a) Using the bilinear transform method (Chapter 6) for converting analog s-domain transfer
functions to discrete z-domain transfer functions, what is the H(ω) frequency response expression
for the bilinear transform-designed integrator corresponding to the H(s) above?

(b) Which of the integrator types discussed in this chapter’s text (rectangular rule, trapezoidal rule,
Simpson’s rule, and Tick’s rule) is most similar to the bilinear transform-designed integrator
obtained in Part (a)?

7.11 Considering the four discrete integrators discussed in the text, rectangular rule, trapezoidal rule,
Simpson’s rule, and Tick’s rule:
(a) Which integrator type is the most computationally simple?
(b) Which integrator has a transfer function pole (infinite gain) at z = −1? Show how you arrived at

your answer.
(c) Which integrator has a frequency magnitude response exactly equal to zero (infinite attenuation)

at fs/2 Hz? Show how you arrived at your answer.

7.12 Consider the following four-sample s(n) sequence to be a signal of interest that we want to



detect using a tapped-delay line FIR matched filter:
s(n) = [2, 4, −1, 1].

(a) Draw the block diagram of the FIR matched filter showing the filter coefficients.
(b) What is the y(n) output sequence of the filter as the s(n) sequence passes completely through the

delay line of the matched filter?
7.13 If xs(n) is an N-sample, noise-free signal of interest we wish to detect using a tapped-delay line

matched filter, what is a simple algebraic expression for the maximum filter output sample value?
7.14 Considering the signal-to-noise ratio (SNR) discussion at the end of the text’s matched filter

material, think about a signal of interest represented by the three-sample, triangular-like x1(n)
shown in Figure P7-14(a).

Figure P7-14

Next, consider representing the x1(n) signal’s triangular envelope with five samples like the x2(n)
sequence shown in Figure P7-14(b). What is the improvement in a matched filter’s y2(n) output
SNR, measured in decibels (dB), by using the x2(n) sequence as our signal of interest over the
y1(n) output SNR using the x1(n) sequence as our signal of interest? Justify your answer.

7.15 In designing lowpass IFIR filters we prefer to use large values for the M expansion factor
because large M reduces the number of taps in the shaping subfilter. How do large values for M
affect the number of taps in the associated image-reject subfilter?

7.16 Assume we’re designing a lowpass IFIR filter with an expansion factor of M = 5 and our
desired IFIR filter has a passband from zero to 4 kHz (fpass = 4 kHz).

(a) What is the passband width, in Hz, of the prototype FIR filter used to start our IFIR filter design
effort?

(b) How many passband images will reside between zero and fs/2 Hz in the IFIR shaping
subfilter?

7.17 Assume we’re tasked to design a lowpass IFIR filter, operating at a sampling rate of fs = 3 MHz,
having the following properties:
• Passband width of 60 kHz
• Maximum passband peak-to-peak ripple of 0.2 dB
• Stopband beginning at 61.2 kHz
(a) What is the value of the optimum M expansion factor for the shaping subfilter?
(b) What is the maximum passband peak-to-peak ripple requirement, in dB, for the prototype filter?



(c) Using the text’s Figure 7-18(b), what percent computational reduction should we expect from
the IFIR filter relative to a Parks-McClellan-designed tapped-delay line FIR filter?

7.18 In studying frequency sampling filters (FSFs) we encountered networks containing complex
multipliers like that shown in Figure P7-18. Let’s now explore the details of such a multiplier.
(a) Write the time-domain difference equation of the complex w(n) output of the complex multiplier

in terms of v(n) = vR(n) + jvI(n) and ejω where all the variables are in rectangular form. Variable
ω is a fixed radian angle in the range −π ≤ ω ≤ π.

(b) Based on the difference equation from Part (a), draw the block diagram of the complex
multiplier where the complex v(n) and w(n) discrete sequences, and the constant complex ejω

multiplicand, are shown in rectangular (real-only variables) form.
(c) How many real multiplies and how many real additions are required to perform a single

complex multiply?
Figure P7-18

7.19 To exercise your frequency sampling filter (FSF) analysis skills, consider the three-stage Type-
IV FSF in Figure P7-19.
(a) Draw the FSF’s pole and zero locations on the z-plane.

Hint: From Figure P7-19, determine the filter’s N and r parameters to find the zeros’ locations on
the unit circle, and use each resonator’s k index value to find the FSF’s pole locations on the unit
circle.

(b) Is this filter a lowpass, bandpass, or highpass filter? Justify your answer.
(c) Draw a rough sketch of the filter’s frequency magnitude response over the frequency range of

−π≤ω≤π radians/sample (−fs/2≤f≤fs/2 Hz).

Figure P7-19



7.20 Concerning cascaded subfilters used in frequency sampling filters (FSFs):
(a) What is the impulse response of the “two cascaded comb filters” combination in a Type-IV

FSF? (See the text’s Figure 7-41.) Assume N = 8, and the damping factor r = 1.
(b) Will this cascaded combination of comb filters have linear phase? Explain how you arrived at

your answer.
Hint: Recall what is an important characteristic of the impulse response of a linear-phase digital
filter.

(c) If we set r = 0.9, will the combination of comb filters have linear phase? Explain how you
arrived at your answer.

7.21 What is the range, roughly, of stopband attenuation that can be achieved with a Type-IV
frequency sampling filter (FSF) having a single non-unity transition band coefficient?

7.22 If a linear-phase lowpass filter needs to be designed to have a minimum of 85 dB of stopband
attenuation, is it possible to design a Type-IV frequency sampling filter (FSF) that satisfies this
attenuation requirement?

7.23 Assume you’ve designed a six-section, N = 23, lowpass, Type-IV frequency sampling filter
(FSF) (such as that in Figure 7-41) having three low-frequency passband sections, and the
remaining three sections will use transition coefficients to achieve your desired stopband
attenuation.
(a) What are the optimum values for those three coefficients? Show how you arrived at your

solution.



(b) Approximately what level of stopband attenuation (in dB) should we expect from our six-
section, N = 23 FSF? Show how you arrived at your solution.

(c) Draw the block diagram (the structure) of your FSF. No resonator details need be drawn. Just
show a resonator as a block labeled with its appropriate k value.

7.24 Here is a frequency sampling filter (FSF) problem whose solution is a network useful for
computing a single-bin discrete Fourier transform (DFT) output magnitude sample in a way that
avoids having to perform an entire DFT. Such a network can be used for sinusoidal tone detection.
Think about building a tapped-delay line FIR filter, with the complex coefficients shown in Figure
P7-24-I(a). After the arrival of the x(N−1) input sample the system’s output is equal to the mth DFT
bin’s power sample of an N-point DFT of the most recent N input samples. What we’re saying is
that we can build a real-time spectral power measurement system for computing successive single-
bin DFT power values (the mth DFT bin power samples over time). The tapped-delay line filter’s
h(k) coefficients are

h(k) = e−j2πm(N−1−k)/N

Figure P7-24-I

where filter coefficient index k is 0 ≤ k ≤ N−1. The output term |Xm(n)|2 in Figure P7-24-I(a)
represents the value of the DFT’s mth bin power at time instant n. (Power samples are computed by
multiplying Xm(n) samples by their conjugates Xm(n)*.)

As an example, if we needed to detect the power of the m = 2 bin of an N = 16-point DFT, the
complex h(k) coefficients of the tapped-delay line filter would be h(k) = e−j2π2(15−k)/16 as shown in
Figure P7-24-I(b). In this case our real-time spectral power detector would be the filter shown in
Figure P7-24-II(a). (Notice how those coefficients are a flipped-in-time version of an e−j2π2k /16

sequence. That’s necessary because the earlier-in-time x(n) samples are toward the right in the



tapped-delay line filter.)
(a) Reviewing the equivalency of a tapped-delay line FIR filter and a complex FSF in the text’s

Figure 7-20, draw the FSF block diagram that enables the real-time computation of the single m =
2 bin power for an N = 16-point DFT function performed in Figure P7-24-II(a). That is, show
what would be the network inside the FSF block in Figure P7-24-II(b), including the numerical
values for the H(k)/N gain factors following the FSF resonators.
Hint: There are two ways to solve this problem. You could (1) perform a customary DFT
analysis on the tapped-delay line filter’s h(k) coefficients to obtain the FSF’s H(k)/N gain
factors, or (2) you could determine the H(z) z-domain transfer function of the FSF to determine
its block diagram. (Pick your poison.)

(b) If the fs sample rate of the x(n) inputs in Figure P7-24-II is 200 kHz, what is the center
frequency of the m = 2 DFT bin of our real-time single-bin 16-point DFT power measurement
system?

Figure P7-24-II





Chapter Eight. Quadrature Signals

Quadrature signals are based on the notion of complex numbers. Perhaps no other topic causes more
heartache for newcomers to DSP than these numbers and their strange terminology of j-operator,
complex, analytic, imaginary, real, and orthogonal. If you’re a little unsure of the physical meaning
of complex numbers and the  operator, don’t feel bad because you’re in good company.
Sixteenth-century Italian mathematician Girolamo Cardano described an imaginary number “as subtle
as it is useless.” In the seventeenth century Gottfried Leibniz described imaginary numbers as being
“amphibian, halfway between existence and nonexistence.” (The term imaginary was first used by
the brilliant mathematician/philosopher René Descartes in the seventeenth century and was meant to
be derogatory. That’s because not only was the notion of the square root of a negative number dubious
at best, surprisingly there was no consensus at that time as to the true meaning of negative real
numbers.) Even Karl Gauss, one the world’s greatest mathematicians, called the j-operator the
“shadow of shadows.” Here we’ll shine some light on that shadow so you’ll never have to call the
Quadrature Psychic Hotline for help.
Quadrature signals, represented by complex numbers, are used in just about every field of science and
engineering.† Quadrature signals are of interest to us because they describe the effects of Fourier
analysis as well as the quadrature processing and implementations that take place in modern digital
communications systems. In this chapter we’ll review the fundamentals of complex numbers and get
comfortable with how they’re used to represent quadrature signals. Next we’ll examine the notion of
negative frequency as it relates to quadrature signal algebraic notation and learn to speak the language
of quadrature processing. In addition, we’ll use three-dimensional time- and frequency-domain plots
to clarify and give physical meaning to quadrature signals.
† That’s because complex sinusoids are solutions to those second-order linear differential equations used to describe so much of nature.

8.1 Why Care about Quadrature Signals?
Quadrature signal formats, also called complex signals, are used in many digital signal processing
applications, such as

• digital communications systems,
• radar systems,
• time difference of arrival processing in radio direction-finding schemes,
• coherent pulse measurement systems,
• antenna beamforming applications, and
• single sideband modulators.

These applications fall into the general category known as quadrature processing, and they provide



additional processing power through the coherent measurement of the phase of sinusoidal signals.
A quadrature signal is a two-dimensional signal whose value at some instant in time can be specified
by a single complex number having two parts: what we call the real part and the imaginary part.
(The words real and imaginary, although traditional, are unfortunate because of their meanings in our
everyday speech. Communications engineers use the terms in-phase and quadrature phase. More on
that later.) Let’s review the mathematical notation of these complex numbers.

8.2 The Notation of Complex Numbers
To establish our terminology, we define real numbers to be those numbers we use in everyday life,
like a voltage, a temperature on the Fahrenheit scale, or the balance of your checking account. These
one-dimensional numbers can be either positive or negative, as depicted in Figure 8-1(a). In that
figure we show a one-dimensional axis and say a single real number can be represented by a point on
the axis. Out of tradition, let’s call this axis the real axis.

Figure 8-1 Graphical interpretations: (a) a real number; (b) a complex number.

A complex number c is shown in Figure 8-1(b) where it’s also represented as a point. Complex
numbers are not restricted to lying on a one-dimensional line but can reside anywhere on a two-
dimensional plane. That plane is called the complex plane (some mathematicians like to call it an
Argand diagram), and it enables us to represent complex numbers having both real and imaginary
parts. For example, in Figure 8-1(b), the complex number c = 2.5 + j2 is a point lying on the complex
plane on neither the real nor the imaginary axis. We locate point c by going +2.5 units along the real
axis and up +2 units along the imaginary axis. Think of those real and imaginary axes exactly as you
think of the east-west and north-south directions on a road map.
We’ll use a geometric viewpoint to help us understand some of the arithmetic of complex numbers.
Taking a look at Figure 8-2, we can use the trigonometry of right triangles to define several different
ways of representing the complex number c.

Figure 8-2 The phasor representation of complex number c = a + jb on the complex plane.

Our complex number c is represented in a number of different ways in the literature, as shown in



Table 8-1.
Table 8-1 Complex Number Notation

Eqs. (8-3) and (8-4) remind us that c can also be considered the tip of a phasor on the complex plane,
with magnitude M, in the direction of ø degrees relative to the positive real axis as shown in Figure
8-2. Keep in mind that c is a complex number and the variables a, b, M, and ø are all real numbers.
The magnitude of c, sometimes called the modulus of c, is

(8-5)

The phase angle ø, the argument of c, is the arctangent of the ratio of the imaginary part over the real
part, or

(8-6)

If we set Eq. (8-3) equal to Eq. (8-2), Mejø = M[cos(ø) + jsin(ø)], we can state what’s named in his
honor and now called one of Euler’s identities as

(8-7)

The suspicious reader should now be asking, “Why is it valid to represent a complex number using
that strange expression of the base of the natural logarithms, e, raised to an imaginary power?” We
can validate Eq. (8-7) as did Europe’s wizard of infinite series, Leonhard Euler, by plugging jø in for
z in the series expansion definition of ez in the top line of Figure 8-3.† That substitution is shown on
the second line. Next we evaluate the higher orders of j to arrive at the series in the third line in the
figure. Those of you with elevated math skills like Euler (or who check some math reference book)
will recognize that the alternating terms in the third line are the series expansion definitions of the
cosine and sine functions.
† Leonhard Euler, born in Switzerland in 1707, is considered by many historians to be the world’s greatest mathematician. By the way, the
name Euler is pronounced ‘oy-ler.



Figure 8-3 One derivation of Euler’s equation using series expansions for ez, cos(ø), and sin(ø).

Figure 8-3 verifies Eq. (8-7) and justifies our representation of a complex number using the Eq. (8-3)
polar form: Mejø. If we substitute –jø for z in the top line of Figure 8-3, we end up with a slightly
different, and very useful, form of Euler’s identity:

(8-8)

The polar form of Eqs. (8-7) and (8-8) benefits us because:
• It simplifies mathematical derivations and analysis, turning trigonometric equations into the simple
algebra of exponents. Math operations on complex numbers follow exactly the same rules as real
numbers.

• It makes adding signals merely the addition of complex numbers (vector addition).
• It’s the most concise notation.
• It’s indicative of how digital communications system are implemented and described in the
literature.

Here’s a quick example of how the polar form of complex numbers can simplify a mathematical
analysis. Let’s say we wanted to understand the process of multiplying complex number c1 = cos(ø) +
jsin(ø) by another complex number, c2 = cos(2ø) – jsin(2ø), whose angle is the negative of twice c1’s
angle. The product is

(8-9)

Using the trigonometric function product identities, we can write Eq. (8-9) as
(8-10)

So the c1c2 product yields the complex conjugate of c1. That’s not too thrilling, but what is interesting
is how trivial a polar form c1c2 product analysis turns out to be. We can complete our polar form



analysis in one brief line:
(8-11)

which is equivalent to Eq. (8-10). For math analysis, polar form is usually the notation of choice.
Back to quadrature signals. We’ll be using Eqs. (8-7) and (8-8) to understand the nature of time-
domain quadrature signals. But first let’s take a deep breath and enter the Twilight Zone of the j
operator.
You’ve seen the definition  before. Stated in words, we say that j represents a number that
when multiplied by itself results in negative one. Well, this definition causes difficulty for the
beginner because we all know that any number multiplied by itself always results in a positive
number. (Unfortunately, engineering textbooks often define j and then, with justified haste, swiftly
carry on with all the ways the j operator can be used to analyze sinusoidal signals. Readers soon
forget about the question “What does  actually mean?”) Well,  had been on the
mathematical scene for some time but wasn’t taken seriously until it had to be used to solve cubic
polynomial equations in the sixteenth century[1,2]. Mathematicians reluctantly began to accept the
abstract concept of  without having to visualize it, because its mathematical properties were
consistent with the arithmetic of normal real numbers.
It was Euler’s equating complex numbers to real sines and cosines, and Gauss’s brilliant introduction
of the complex plane, that finally legitimized the notion of  to Europe’s mathematicians in the
eighteenth century. Euler, going beyond the province of real numbers, showed that complex numbers
had a clean, consistent relationship to the well-known real trigonometric functions of sines and
cosines. As Einstein showed the equivalence of mass and energy, Euler showed the equivalence of
real sines and cosines to complex numbers. Just as modern-day physicists don’t know what an
electron is but they understand its properties, we’ll not worry about what j is and be satisfied with
understanding its behavior. We’ll treat j not as a number, but as an operation performed on a number,
as we do with negation or multiplication. For our purposes, the j-operator means rotate a complex
number by 90 degrees counterclockwise. (For our friends in the UK, counterclockwise means your
anti-clockwise.) Let’s see why.
We’ll get comfortable with the complex plane representation of imaginary numbers by examining the
mathematical properties of the  operator as shown in Figure 8-4.

Figure 8-4 What happens to the real number 8 when multiplied by j and –j.

Multiplying any number on the real axis by j results in an imaginary product lying on the imaginary



axis. The example on the left in Figure 8-4 shows that if +8 is represented by the dot lying on the
positive real axis, multiplying +8 by j results in an imaginary number, +j8, whose position has been
rotated 90 degrees counterclockwise (from +8), putting it on the positive imaginary axis. Similarly,
multiplying +j8 by j results in another 90-degree rotation, yielding the –8 lying on the negative real
axis because j2 = –1. Multiplying –8 by j results in a further 90-degree rotation, giving the –j8 lying
on the negative imaginary axis. Whenever any number represented by a dot is multiplied by j, the
result is a counterclockwise rotation of 90 degrees. (Conversely, multiplication by –j results in a
clockwise rotation of –90 degrees on the complex plane.)
If we let ø = π/2 in Eq. 8-7, we can say

(8-12)

Here’s the point to remember. If you have a single complex number, represented by a point on the
complex plane, multiplying that number by j or by ejπ/2 will result in a new complex number rotated
90 degrees counterclockwise (CCW) on the complex plane. Don’t forget this, as it will be useful as
you begin reading the literature of quadrature processing systems!
Let’s pause for a moment here to catch our breath. Don’t worry if the ideas of imaginary numbers and
the complex plane seem a little mysterious. It’s that way for everyone at first—you’ll get comfortable
with them the more you use them. (Remember, the j-operator puzzled Europe’s heavyweight
mathematicians for many years.) Granted, not only is the mathematics of complex numbers a bit
strange at first, but the terminology is almost bizarre. While the term imaginary is an unfortunate one
to use, the term complex is downright weird. When first encountered, the phrase “complex numbers”
makes us think complicated numbers. This is regrettable because the concept of complex numbers is
not really so complicated.† Just know that the purpose of the above mathematical rigmarole was to
validate Eqs. (8-2), (8-3), (8-7), and (8-8). Now, let’s (finally!) talk about time-domain signals.
† The brilliant American engineer Charles P. Steinmetz, who pioneered the use of real and imaginary numbers in electrical circuit analysis
in the early twentieth century, refrained from using the term complex numbers—he called them general numbers.

8.3 Representing Real Signals Using Complex Phasors
We now turn our attention to a complex number that is a function of time. Consider a number whose
magnitude is one, and whose phase angle increases with time. That complex number is the ej2πfot point
shown in Figure 8-5(a). (Here the 2πfo term is frequency in radians/second, and it corresponds to a
frequency of fo cycles/second where fo is measured in Hz.) As time t gets larger, the complex
number’s phase angle increases and our number orbits the origin of the complex plane in a CCW
direction. Figure 8-5(a) shows the number, represented by the solid dot, frozen at some arbitrary
instant in time. If, say, the frequency fo = 2 Hz, then the dot would rotate around the circle two times
per second. We can also think of another complex number e–j2πfot (the white dot) orbiting in a
clockwise direction because its phase angle gets more negative as time increases.

Figure 8-5 A snapshot, in time, of two complex numbers whose exponents change with time: (a)
numbers shown as dots; (b) numbers shown as phasors.



Let’s now call our two complex expressions, ej2πfot and e–j2πfot, quadrature signals. Each has both real
and imaginary parts, and they are both functions of time. Those ej2πfot and e–j2πfot expressions are
often called complex exponentials in the literature.
We can also think of those two quadrature signals, ej2πfot and e–j2πfot, as the tips of two phasors
rotating in opposite directions, as shown in Figure 8-5(b). We’re going to stick with this phasor
notation for now because it’ll allow us to achieve our goal of representing real sinusoids in the
context of the complex plane. Don’t touch that dial!
To ensure that we understand the behavior of a simple quadrature signal, Figure 8-6 shows the three-
dimensional path of the ej2πfot signal as time passes. We’ve added the time axis, coming out of the
page, to show how ej2πfot follows a corkscrew path spiraling along, and centered about, the time axis.
The real and imaginary parts of ej2πfot are shown as the sine and cosine projections in Figure 8-6 and
give us additional insight into Eq. 8-7.

Figure 8-6 The motion of the ej2πfot complex signal as time increases.

To appreciate the physical meaning of our discussion here, let’s remember that a continuous
quadrature signal ej2πfot = cos(2πfot) + jsin(2πfot) is not just mathematical mumbo jumbo. We can
generate ej2πfot in our laboratory and transmit it to another lab down the hall. All we need is two



sinusoidal signal generators, set to the same frequency fo. (However, somehow we have to
synchronize those two hardware generators so their relative phase shift is fixed at 90 degrees.) Next
we connect coax cables to the generators’ output connectors and run those two cables, labeled cos for
the cosine signal and sin for the sinewave signal, to their destination as shown in Figure 8-7.

Figure 8-7 Displaying a quadrature signal using an oscilloscope.

Now for a two-question pop quiz. First question: In the other lab, what would we see on the screen of
an oscilloscope if the continuous real cos(2πfot) and sin(2πfot) signals were connected to the
horizontal and vertical input channels, respectively, of the scope (remembering, of course, to set the
scope’s horizontal sweep control to the External position)? That’s right. We’d see the scope’s
electron beam rotating counterclockwise in a circle on the scope’s screen.
Next, what would be seen on the scope’s display if the cables were mislabeled and the two signals
were inadvertently swapped? We’d see another circle, but this time it would be orbiting in a
clockwise direction. This would be a neat little real-world demonstration if we set the signal
generators’ fo frequencies to, say, 1 Hz.

This oscilloscope example is meaningful and helps us answer the important question “When we work
with quadrature signals, how is the j-operator implemented in hardware?” The j-operator is
implemented by how we treat the two signals relative to each other. We have to treat them
orthogonally such that the real cos(2πfot) signal represents an east-west value, and the real sin(2πfot)
signal represents an orthogonal north-south value. (By “orthogonal,” I mean the north-south direction
is oriented exactly 90 degrees relative to the east-west direction.) So in our oscilloscope example the
j-operator is implemented merely by how the connections are made to the scope. The real cosine
signal controls horizontal deflection and the real sine signal controls vertical deflection. The result is
a two-dimensional quadrature signal represented by the instantaneous position of the dot on the
scope’s display. We physically implemented the j-operator in ej2πfot = cos(2πfot) + jsin(2πfot) the
moment we connected the sin(2πfot) signal to the vertical input connector of the oscilloscope. Our
Figure 8-7 example reminds us of an important characteristic of quadrature signals: While real
signals can be transmitted over a single cable, two cables are always necessary to transmit a
quadrature (complex) signal.
Returning to Figure 8-5(b), ask yourself: “What’s the vector sum of those two phasors as they rotate
in opposite directions?” Think about this for a moment. That’s right, the phasors’ real parts will
always add constructively, and their imaginary parts will always cancel. This means the summation of
these ej2πfot and e–j2πfot phasors will always be a purely real number. Implementations of modern-day
digital communications systems are based on this property!
To emphasize the importance of the real sum of these two complex sinusoids we’ll draw yet another
picture. Consider the waveform in the three-dimensional Figure 8-8 generated by the sum of two half-
magnitude complex phasors, ej2πfot/2 and e–j2πfot/2, rotating in opposite directions about, and moving
down along, the time axis.



Figure 8-8 A cosine represented by the sum of two rotating complex phasors.

Thinking about these phasors, it’s clear now why the cosine wave can be equated to the sum of two
complex exponentials by

(8-13)

Eq. (8-13), a well-known and important expression, is also one of Euler’s identities. We could have
derived this identity by solving Eqs. (8-7) and (8-8) for jsin(ø), equating those two expressions, and
solving that final equation for cos(ø). Similarly, we could go through the same algebra exercise and
show a real sinewave as also the sum of two complex exponentials as

(8-14)

Look at Eqs. (8-13) and (8-14) carefully—they are the standard expressions for a cosine wave and a
sinewave, using complex notation, and are seen throughout the literature of quadrature
communications systems. Equation (8-13) tells us that the two complex exponentials are both oriented
toward the positive real axis when time t = 0. The j operators in Eq. (8-14) tell us that the negative-
frequency complex exponential is oriented along the positive imaginary axis, and the positive-
frequency complex exponential is oriented along the negative imaginary axis, when time t = 0.
To keep the reader’s mind from spinning like those complex phasors, please realize that the sole
purpose of Figures 8-5 through 8-8 is to validate the complex expressions of the cosine and sinewave
given in Eqs. (8-13) and (8-14). Those two equations, along with Eqs. (8-7) and (8-8), are the
Rosetta Stone of quadrature signal processing.† We can now easily translate, back and forth, between
real sinusoids and complex exponentials.
† The Rosetta Stone was a basalt slab found in Egypt in 1799. It had the same text written in three languages, two of them being Greek
and Egyptian hieroglyphs. This enabled scholars to, finally, translate the ancient hieroglyphs.

Let’s step back now and remind ourselves what we’re doing. We are learning how real signals that
can be transmitted down a coax cable, or digitized and stored in a computer’s memory, can be
represented in complex number notation. Yes, the constituent parts of a complex number are each real,
but we’re treating those parts in a special way—we’re treating them in quadrature.

8.4 A Few Thoughts on Negative Frequency



It’s important for us to be comfortable with the concept of negative frequency because it’s essential in
understanding the spectral replication effects of periodic sampling, discrete Fourier transforms, and
the various quadrature signal processing techniques discussed in Chapter 9. The convention of
negative frequency serves as both a consistent and powerful mathematical tool in our analysis of
signals. In fact, the use of negative frequency is mandatory when we represent real signals, such as a
sine or cosine wave, in complex notation.
The difficulty in grasping the idea of negative frequency may be, for some, similar to the
consternation felt in the parlors of mathematicians in the Middle Ages when they first encountered
negative numbers. Until the thirteenth century, negative numbers were considered fictitious because
numbers were normally used for counting and measuring. So up to that time, negative numbers just
didn’t make sense. In those days, it was valid to ask, “How can you hold in your hand something that
is less than nothing?” The idea of subtracting six from four must have seemed meaningless. Math
historians suggest that negative numbers were first analyzed in Italy. As the story goes, around the
year 1200 the Italian mathematician Leonardo da Pisa (known as Fibonacci) was working on a
financial problem whose only valid solution involved a negative number. Undaunted, Leo wrote,
“This problem, I have shown to be insoluble unless it is conceded that the first man had a debt.” Thus
negative numbers arrived on the mathematics scene, never again to be disregarded.
Modern men and women can now appreciate that negative numbers have a direction associated with
them. The direction is backward from zero in the context that positive numbers point forward from
zero. For example, negative numbers can represent temperatures measured in degrees below zero,
minutes before the present if the present is considered as zero time, or money we owe the tax
collector when our income is considered positive dollars. So, the notion of negative quantities is
perfectly valid if we just define it properly. As comfortable as we now are with negative numbers,
negative frequency remains a troublesome and controversial concept for many engineers[3,4]. This
author once encountered a paper in a technical journal which stated: “since negative frequencies
cannot exist—.” Well, like negative numbers, negative frequency is a perfectly valid concept as long
as we define it properly relative to what we’re used to thinking of as positive frequency. With this
thought in mind, we’ll call Figure 8-5’s ej2πfot signal a positive-frequency complex exponential
because it rotates around the complex plane’s origin in a circle in a positive-angle direction at a
cyclic frequency of fo cycles per second. Likewise, we’ll refer to the e–j2πfot signal as a negative-
frequency complex exponential because of its negative-angle direction of rotation.
So we’ve defined negative frequency in the frequency domain. If my DSP pals want to claim negative
frequency doesn’t exist in the time domain, I won’t argue. However, our frequency-domain negative
frequency definition is clean, consistent with real signals, very useful, and here to stay.

8.5 Quadrature Signals in the Frequency Domain
Now that we know much about the time-domain nature of quadrature signals, we’re ready to look at
their frequency-domain descriptions. We’ll illustrate the full three-dimensional aspects of the
frequency domain so none of the phase relationships of our quadrature signals will be hidden from
view. Figure 8-9 tells us the rules for representing complex exponentials in the frequency domain.

Figure 8-9 Frequency-domain interpretation of complex exponentials.



We’ll represent a single complex exponential as a narrow impulse located at the frequency specified
in the exponent. In addition, we’ll show the phase relationships between those complex exponentials
along the real and imaginary frequency-domain axes. To illustrate those phase relationships, a
complex frequency domain representation is necessary. With all this said, take a look at Figure 8-10.
Figure 8-10 Complex time- and frequency-domain representations: (a) cosine wave; (b) a sinewave.

See how a real cosine wave and a real sinewave are depicted in our complex frequency-domain
representation on the right side of Figure 8-10. Those bold arrows on the right of Figure 8-10 are not
rotating phasors but are frequency-domain impulse symbols indicating a single spectral line for a
single complex exponential such as ej2πfot. The directions in which the spectral impulses are pointing
merely indicate the relative phases of the spectral components. The amplitude of those spectral
impulses is 1/2. Notice how the spectrum of cos(2πfot) is real-only. That’s because cos(2πfot) is an
even function in time, its value at negative time t is equal to its value at positive time t, or

(8-15)

The sin(2πfot) function, on the other hand, has an imaginary-only spectrum because it’s an odd
function. An odd function’s value at negative time t is equal to the negative of its value at positive
time t, or

(8-16)

Why are we bothering with this three-dimensional frequency-domain representation? Because it’s the
tool we’ll use to understand the generation (modulation) and detection (demodulation) of quadrature
signals in digital (and some analog) communications systems, and that’s one of the goals of this
chapter. Before we go there, however, let’s validate this frequency-domain representation with a little
example.
Figure 8-11 is a straightforward example of how we use the complex frequency domain. There we



begin with a real sinewave, multiply it by j, and then add it to a real cosine wave of the same
frequency. The result is the single complex exponential ej2πfot, illustrating graphically Euler’s identity
that we stated mathematically in Eq. (8-7).

Figure 8-11 Complex frequency-domain view of Euler’s ej2πfot = cos(2πfot) + jsin(2πfot).

On the frequency axis, the notion of negative frequency is seen as those spectral impulses located at –
2πfo radians/second on the frequency axis. This figure shows the big payoff: when we use complex
notation, generic complex exponentials like ej2πft and e–j2πft are the fundamental constituents of the
real sinusoids sin(2πft) or cos(2πft). That’s because both sin(2πft) and cos(2πft) are made up of ej2πft

and e–j2πft components. If you were to take the discrete Fourier transform (DFT) of discrete time-
domain samples of a sin(2πfot) sinewave, a cos(2πfot) cosine wave, or an ej2πfot complex sinusoid
and plot the complex results, you’d get exactly the narrow frequency-domain impulses in Figure 8-11.
If you understand the notation and operations in Figure 8-11, pat yourself on the back, because you
now know a great deal about the nature and mathematics of quadrature signals.

8.6 Bandpass Quadrature Signals in the Frequency Domain
In quadrature processing, by convention, the real part of the spectrum is called the in-phase
component and the imaginary part of the spectrum is called the quadrature component. The signals
whose complex spectra are in Figures 8-12(a), 8-12(b), and 8-12(c) are real, and in the time domain
they can be represented by amplitude values having nonzero real parts and zero-valued imaginary
parts. We’re not forced to use complex notation to represent them in the time domain—the signals are
real-only.
Figure 8-12 Quadrature representation of signals: (a) real sinusoid cos(2πfot + ø); (b) real bandpass

signal containing six sinusoids over bandwidth B; (c) real bandpass signal containing an infinite
number of sinusoids over bandwidth B Hz; (d) complex bandpass signal of bandwidth B Hz.



Real signals always have positive- and negative-frequency-spectral components. For any real signal,
the positive- and negative-frequency components of its in-phase (real) spectrum always have even
symmetry around the zero-frequency point. That is, the in-phase part’s positive- and negative-
frequency components are mirror images of each other. Conversely, the positive- and negative-
frequency components of its quadrature (imaginary) spectrum are always negatives of each other. This
means that the phase angle of any given positive quadrature frequency component is the negative of
the phase angle of the corresponding negative quadrature frequency component as shown by the thin
solid arrows in Figure 8-12(a). This conjugate symmetry is the invariant nature of real signals and is
obvious when their spectra are represented using complex notation.
A complex-valued time signal, whose spectrum can be that in Figure 8-12(d), is not restricted to the
above spectral conjugate symmetry conditions. We’ll call that special complex signal an analytic
signal, signifying that it has no negative-frequency spectral components.
Let’s remind ourselves again: those bold arrows in Figures 8-12(a) and 8-12(b) are not rotating
phasors. They’re frequency-domain impulses indicating a single complex exponential ej2πft. The
directions in which the impulses are pointing show the relative phases of the spectral components.
There’s an important principle to keep in mind before we continue. Multiplying a time signal by the
complex exponential ej2πfot, what we call quadrature mixing (also called complex mixing), shifts a
signal’s spectrum upward in frequency by fo Hz, as shown in Figures 8-13(a) and 8-13(b). Likewise,
multiplying a time signal by e–j2πfot (also called complex down-conversion or mixing to baseband)
shifts a signal’s spectrum down to a center frequency of zero Hz as shown in Figure 8-13(c). The
process of quadrature mixing is used in many DSP applications as well as most modern-day digital
communications systems.

Figure 8-13 Quadrature mixing of a bandpass signal: (a) spectrum of a complex signal x(t); (b)
spectrum of x(t)ej2πfot; (c) spectrum of x(t)e–j2πfot.



Our entire quadrature signals discussion, thus far, has been based on continuous signals, but the
principles described here apply equally well to discrete-time signals. Let’s look at the effect of
complex down-conversion of a discrete signal’s spectrum.

8.7 Complex Down-Conversion
Complex down-conversion (also called quadrature demodulation) of discrete signals is a
straightforward process and is best described by an example. Think of a real-valued discrete
sequence x(n) having an |X(m)| spectral magnitude whose nonzero-valued samples are shown as the
solid dots in Figure 8-14(a). Because of the periodicity of discrete spectral representations we
discussed in Sections 2.1 and 3.17 (as well as the frequency axis of the FFT lying on the unit circle in
the z-plane explained in Section 6.3), we’re justified in also representing the |X(m)| spectrum as the
three-dimensional circular plot given in Figure 8-14(b). There we’ve wrapped the linear frequency
axis of Figure 8-14(a) around a circle whose perimeter length is equal to the sample rate fs such that
the frequencies fs/2 and –fs/2 are the same point on the circular axis.

Figure 8-14 Discrete |X(m)| spectra of a real-valued time sequence: (a) traditional depiction; (b)
circular frequency axis depiction.

With x(n) being an N-point real sequence, |X(m)|’s spectrum is symmetrical about the zero-frequency
point. If we now perform complex down-conversion (by multiplying x(n) by e–j2πfcnts, where ts = 1/fs,
using either equivalent scheme shown in Figure 8-15(a)), the result is the complex sequence



Figure 8-15 Discrete |Xc(m)| spectra of a down-converted time sequence: (a) down-conversion
symbols; (b) traditional frequency axis depiction; (c) circular frequency axis depiction.

(8-17)

whose spectrum is given in Figure 8-15(b).
The minus sign in the exponent of e–j2πfcnts shifts the |X(m)| spectrum fc Hz in the negative-frequency
direction. Of course, because xc(n) is complex, there’s no symmetry about the zero-frequency point in
|Xc(m)|. The circular depiction of |Xc(m)| is provided in Figure 8-15(c).

The purpose of Figures 8-14 and 8-15 is to show how frequency translation by means of complex
down-conversion causes spectral components to wrap around the fs/2 point.

Figure 8-15(a) showed the method of down-converting a real x(n) time sequence. For completeness,
Figure 8-16 shows how translating a complex time sequence xc(n) = i(n) + jq(n) up or down by fc Hz
requires a complex multiplier.

Figure 8-16 Complex multiplier used for up/down-conversion.



This complex multiplier computes
(8-18)

If you use this multiplier, don’t forget the minus sign at the top adder in Figure 8-16. (It’s an easy
mistake to make. Believe me.)

8.8 A Complex Down-Conversion Example
We can use all we’ve learned so far about quadrature signals by exploring the process of quadrature
sampling. Quadrature sampling is the process of digitizing a continuous (analog) bandpass signal and
down-converting its spectrum to be centered at zero Hz. Let’s see how this popular process works by
thinking of a continuous bandpass signal, of bandwidth B, centered about a carrier frequency of fc Hz
as shown in Figure 8-17(a).

Figure 8-17 The “before and after” spectra of a quadrature-sampled signal.

Our goal in quadrature sampling is to obtain a digitized version of the analog bandpass signal, but we
want the digitized signal’s discrete spectrum centered about zero Hz, not fc Hz, as in Figure 8-17(b).
That is, we want to mix a time signal with e–j2πfct to perform complex down-conversion. The
frequency fs is the digitizer’s sampling rate in samples/second. We show replicated spectra in Figure
8-17(b) to remind ourselves of this effect when A/D conversion takes place.
We can solve our sampling problem with the quadrature sampling block diagram (also known as I/Q
demodulation) shown in Figure 8-18(a). That arrangement of two sinusoidal oscillators, with their
relative 90-degree phase, is often called a quadrature oscillator. First we’ll investigate the in-phase
(upper) path of the quadrature sampler. With the input analog xbp(t)’s spectrum shown in Figure 8-
18(b), the spectral output of the top mixer is provided in Figure 8-18(c).



Figure 8-18 Quadrature sampling: (a) block diagram; (b) input spectrum; (c) in-phase mixer output
spectrum; (d) in-phase filter output spectrum.

Those ej2πfct and e–j2πfct terms in Figure 8-18 remind us, from Eq. (8-13), that the constituent complex
exponentials comprise a real cosine duplicate and translate each part of |Xbp(f)|’s spectrum to produce
the |Xi(f)| spectrum. There is a magnitude loss of a factor of two in |Xi(f)|, but we’re not concerned
about that at this point. Figure 8-18(d) shows the output of the lowpass filter (LPF) in the in-phase
path.
Likewise, Figure 8-19 shows how we get the filtered continuous quadrature-phase portion (bottom
path) of our desired complex signal by mixing xbp(t) with –sin(2πfct). From Eq. (8-14) we know that
the complex exponentials comprising the real –sin(2πfct) sinewave are ej2πfct and –e–j2πfct. The minus
sign in the –e–j2πfct term accounts for the down-converted spectra in |Xq(f)| being 180 degrees out of
phase with the up-converted spectra.

Figure 8-19 Spectra within the quadrature phase (lower) signal path of the block diagram.



This depiction of quadrature sampling can be enhanced if we look at the situation from a three-
dimensional standpoint, as in Figure 8-20. There the +j factor rotates the “imaginary-only” Q(f) by 90
degrees, making it “real-only.” This jQ(f) is then added to I(f) to yield the spectrum of a complex
continuous signal x(t) = i(t) + jq(t). Applying this signal to two A/D converters gives our final
desired discrete time samples of xc(n) = i(n) + jq(n) in Figure 8-18(a) having the spectrum shown in
Figure 8-17(b).
Figure 8-20 Three-dimensional view of combining the I(f) and Q(f) spectra to obtain the I(f) +jQ(f)

spectra.



Some advantages of this quadrature sampling scheme are:
• Each A/D converter operates at half the sampling rate of standard real-signal sampling.
• In many hardware implementations, operating at lower clock rates saves power.
• For a given fs sampling rate, we can capture wider-band analog signals.

• Quadrature sequences make FFT processing more efficient due to a wider frequency range
coverage.

• Quadrature sampling also makes it easier to measure the instantaneous magnitude and phase of a
signal during demodulation.

• Knowing the instantaneous phase of signals enables coherent processing.
While the quadrature sampler in Figure 8-18(a) performed complex down-conversion, it’s easy to
implement complex up-conversion by merely conjugating the xc(n) sequence, effectively inverting
xc(n)’s spectrum about zero Hz, as shown in Figure 8-21.

Figure 8-21 Using conjugation to control spectral orientation.

8.9 An Alternate Down-Conversion Method
The quadrature sampling method of complex down-conversion in Figure 8-18(a) works perfectly on
paper, but it’s difficult to maintain the necessary exact 90-degree phase relationships with high-
frequency, or wideband, signals in practice. One- or two-degree phase errors are common in the
laboratory. Ideally, we’d need perfectly phase-matched coax cables, two oscillators exactly 90
degrees out of phase, two ideal mixers with identical behavior and no DC output component, two
analog lowpass filters with identical magnitude and phase characteristics, and two A/D converters
with exactly identical performance. (Sadly, no such electronic components are available to us.)
Fortunately, there’s an easier-to-implement quadrature sampling method[5].
Consider the process shown in Figure 8-22, where the analog xbp(t) signal is initially digitized with
the follow-on mixing and filtering being performed digitally. This quadrature sampling with digital
mixing method mitigates the problems with the Figure 8-18(a) quadrature sampling method and
eliminates one of the A/D converters.

Figure 8-22 Quadrature sampling with digital mixing method.



We use Figure 8-23 to show the spectra of the in-phase path of this quadrature sampling with digital
mixing process. Notice the similarity between the continuous |I(f)| in Figure 8-18(d) and the discrete
|I(m)| in Figure 8-23(d). A sweet feature of this process is that with fc = fs/4, the cosine and sine
oscillator outputs are the repetitive four-element cos(πn/2) = 1,0,–1,0, and –sin(πn/2) = 0,–1,0,1,
sequences, respectively. (See Section 13.1 for details of these special mixing sequences.) No actual
mixers (or multiplies) are needed to down-convert our desired spectra to zero Hz! After lowpass
filtering, the i(n) and q(n) sequences are typically decimated by a factor of two to reduce the data rate
for following processing. (Decimation is a topic covered in Section 10.1.)

Figure 8-23 Spectra of quadrature sampling with digital mixing within the in-phase (upper) signal
path.

With all its advantages, you should have noticed one drawback of this quadrature sampling with
digital mixing process: the fs sampling rate must be four times the signal’s fc center frequency. In
practice, 4fc could be an unpleasantly high value. Happily, we can take advantage of the effects of
bandpass sampling to reduce our sample rate. Here’s an example: Consider a real analog signal
whose center frequency is 50 MHz, as shown in Figure 8-24(a). Rather than sampling this signal at
200 MHz, we perform bandpass sampling and use Eq. (2-13) with modd = 5 to set the fs sampling rate
at 40 MHz. This forces one of the replicated spectra of the sampled |X(m)| to be centered at fs/4, as
shown in Figure 8-24(b), which is what we wanted. The A/D converter x(n) output is now ready for
complex down-conversion by fs/4 (10 MHz) and digital lowpass filtering.
Figure 8-24 Bandpass sampling effects used to reduce the sampling rate of quadrature sampling with

digital mixing: (a) analog input signal spectrum; (b) A/D converter spectrum.

Section 13.1 provides a clever trick for reducing the computational workload of the lowpass filters in



Figure 8-22, when this fs/4 down-conversion method is used with decimation by two.
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Chapter 8 Problems
8.1 Consider the following expressions:

1. x + 6 = 0
2. 2x –7 = 0

3. x2 –2 = 0

4. x2 + 2 = 0
(a) For those expressions, fill in the table below with “Yes” or “No” describing the numerical

nature of x.
Hint: A rational number is a number that can be expressed as a fraction p/q where p and q are
integers, and q ≠ 0.

(b) Write the various values for x in both rectangular and polar (magnitude and phase) notation.
8.2 Because they are so important in understanding quadrature signals and systems, prove the

following:
(a) Multiplying a complex number C by the j-operator rotates that complex number by 90 degrees.
(b) Multiplying a complex number C by the j-operator results in a number whose magnitude is

equal to |C|.
8.3 In quadrature systems, we often need to compute the square of a complex time-domain sample’s

magnitude in order to estimate instantaneous signal power. Prove that the product of a complex
number times its conjugate, CC*, is equal to the complex number’s magnitude squared.
(a) Use the rectangular form of C = Mcos(ϕ) + jMsin(ϕ) for your proof.

(b) Use the polar form of C = Mejϕ for your proof.
(c) Which form of C, rectangular or polar, was easier to use for this proof?



8.4 Consider a complex number C having nonzero real and imaginary parts. If the sum of C plus its
reciprocal (C + 1/C) is real-only, what can we say about the magnitude of C? Justify your answer.

8.5 Assume that we have two complex values:
Ca = Ra + jIa,

Cb = Rb + jIb.

Next, suppose we want to compute a real-valued Q defined as

For computational efficiency reasons, to avoid unnecessary arithmetic using the imaginary parts of
the complex C values, we might decide to compute Q as

Show the validity (the correctness) of using Qefficient to compute our desired Q value.

Hint: Appendix A will help you solve this problem.
8.6 To show the value of using complex numbers in our derivations of real-valued functions, use the

notation

cos(ϕ) = Re{ejϕ}

where Re{ejϕ} means “the real part of ejϕ” to prove the following trigonometric identity:
cos(α + β) = cos(α)cos(β) – sin(α)sin(β).

8.7 Given a continuous single sinusoidal x(t) signal whose three-dimensional spectrum is shown in
Figure P8-7, write the time-domain equation for x(t) in trigonometric form. (Assume the
magnitudes of the spectral components are 0.5.) Justify your answer.

Figure P8-7

8.8 The sum of two general complex exponentials, of the same frequency, is

Aej(ωt+α) + Bej(ωt+β) = Mej(ωt+θ)

where A, B, and M are real-valued constants. Continuous frequency ω is in radians/second, and α,
β, and θ are constant phase shifts measured in radians. Find the expressions for M and θ in terms of
A, B, α, and β.

Hint: Recall one of the laws of exponents: xpxq = xp+q.
8.9 In your future mathematical work you may need to represent a real tangent function in terms of

complex exponentials. Such an expression is



Prove that the above tan(α) equation is correct.
8.10 In the literature of DSP, some authors state that the combined frequency magnitude response of

two cascaded systems is the product of their individual frequency magnitude responses. That is,
|Hcombined(ω)|=|H1(ω)| · |H2(ω)|. Another author might say the combined frequency magnitude
response of two cascaded systems is equal to the magnitude of the product of their individual
frequency responses. That is, |Hcombined(ω)|=|H1(ω)H2(ω)|. Can both statements be correct? We
simplify, and restate, this problem as follows: Given two complex numbers, C1 and C2, prove that
the product of their magnitudes is equal to the magnitude of their product, i.e.,

|C1|·|C2| = |C1C2|.

8.11 To gain further experience in working with complex numbers, show that:

(a) The magnitude of any complex number divided by its conjugate, |C/C*|, is equal to 1 (unity).
Assume C ≠ 0.
(b) The conjugate of the product of two complex numbers is equal to the product of their
conjugates. That is:

(C1 · C2)* = C1
* · C2

*.

8.12 Consider the continuous complex exponential signals c1(t) and c2(t), shown in Figure P8-12 at
the time instant t = 0. Signal c1(t) is orbiting the complex plane’s origin counterclockwise at a
frequency of 5 Hz, and signal c2(t) is orbiting the plane’s origin clockwise at a frequency of 7 Hz.
Write the time-domain equation for the sum of c1(t) and c2(t) where the terms in the equation are in
polar form having exponents measured in radians.

Figure P8-12

8.13 In the mathematics of complex numbers, and quadrature systems, you may encounter De
Moivre’s Theorem. (De Moivre is pronounced duh-‘mwah-vruh.) That theorem,

[cos(ϕ) + jsin(ϕ)]N = cos(Nϕ) + jsin(Nϕ),
is used to compute the result of raising a complex number to some integer (N) power. Prove De
Moivre’s Theorem.



8.14 Consider the complex time-domain sequence q(n) that is in polar form having a magnitude factor
and a phase factor, defined by

q(n) = 0.9nej2πn/8

where n is our time-domain index. Starting at time n = 0:
(a) State, in words, how the magnitude of q(n) changes as time index n increases.
(b) State, in words, how the phase of q(n) changes as n increases.
(c) State, in words, how the real part of q(n) changes as n increases.
(d) State, in words, how the imaginary part of q(n) changes as n increases.
(e) On a complex plane, draw the q(n) sequence for time index 0 ≤n≤7.

8.15 Consider the real-valued sequence defined by
x(n) = cos(2πfonts + π/4)

where fo = –1 kHz. What is the phase, measured in degrees, of the negative-frequency 1 kHz
spectral component of x(n)?

8.16 Consider a complex xC(n) sequence whose XC(ω) spectrum is depicted in Figure P8-16(a). The
frequency axis in that figure is labeled in both our ω digital frequency (radians/sample) and an f
cyclic frequency (Hz). If we take just the real part of xC(n), we have a real-valued xR(n) sequence
whose XR(ω) spectrum is depicted in Figure P8-16(b). If the magnitude of the maximum spectral
component of |XC(ω)| is M, what is the magnitude of the maximum spectral component of |XR(ω)|?
That is, what is P in terms of M? Justify your solution.

Figure P8-16

Note: This problem is not “busy work.” Extracting the real part of a complex time sequence is a
common operation in quadrature processing.

8.17 Assume you are required to multiply a complex x(n) sequence by ejπ/2 to obtain the complex y(n)
sequence as shown in Figure P8-17. Draw the block diagram, showing real-valued sequences only,
that implements the process in Figure P8-17.

Figure P8-17



Hint: Ask yourself, “Factor ejπ/2 is equal to what?”
8.18 Many digital communications systems (your cell phone, for example) are designed using the

following principle regarding sinusoids whose frequencies are f Hz: The product of
sin(2πft)sin(2πft + θ)

results in a sinusoid of frequency 2f Hz superimposed on a constant DC level whose value is
proportional to cos(θ). Prove this principle to be true.
Note: The value of this exercise is that we now know how to determine the phase θ of sin(2πft +
θ) by computing the average of sin(2πft)sin(2πft + θ). Thus if the phase θ of sin(2πft + θ)
represents some sort of information, we can measure (extract) that information.

8.19 Think about programming a DSP chip to generate the complex time-domain sequence, the sum of
two complex exponentials that both oscillate through one cycle every 20 samples, defined by

x(n) = 5ej(2πn/20 + π/4) + 3ej(2πn/20 + π/6).
To optimize your code (reduce its number of computations), you can generate the x(n) sequence
using

x(n) = Aej(Bn + C).
To exercise our skills using both the mathematical notation of complex signals and Euler’s
equations, determine the values for the above real-only variables A, B, and C.

Hint: Recall one of the laws of exponents: αpαq = αp+q.
8.20 Think about the continuous (analog) signal comprising a constant value of one minus a complex

sinusoid whose frequency is one Hz defined by

x(t) = 1 − ej2π[1]t.
Draw rough sketches, over the time interval 0 ≤ t ≤ 1 second, of
(a) The real part of x(t),
(b) The imaginary part of x(t),
(c) The magnitude of x(t).

8.21 In many quadrature processing applications we seek to compute the angle θ of a single complex
time-domain sample by using the arctangent operation in the text’s Eq. (8-6). Given the complex
number C=I+jQ=Mejθ, three simple algorithms for estimating angle θ are the following
polynomials, where X = Q/I:



The magnitudes of the angular error associated with these arctangent algorithms, measured in
degrees, over the true angle θ range of –45°≤θ≤45° are shown in Figure P8-21.

Figure P8-21

(a) Which arctangent algorithm, θ1, θ2, or θ3, has the lowest average error magnitude over the range
–45°≤θ ≤45°?

(b) To compare the computational workload associated with these algorithms, create a table (like
the following) and fill in the number of multiplies, additions, and divisions necessary to compute
an estimated arctangent for each algorithm.

Hint: Do not count redundant multiplies. That is, if X2 has been computed, use that X2 value for
computing higher orders of X.

(c) Assume an arctangent computation needs to be implemented on a programmable DSP chip, and
that chip requires 1, 1, and 30 processor clock cycles to implement a multiply, an addition, and a
division, respectively. Which arctangent algorithm, θ1, θ2, or θ3, would you use to minimize the
computational workload (processor clock cycles) and increase real-time data throughput?

(d) If you know that the true angle θ is always in the range of –22.5°≤θ≤22.5°, which arctangent
algorithm, θ1, θ2, or θ3, would be your first choice? Explain why. (The assumptions in Part (c)
regarding processor clock cycles still apply.)

8.22 An interesting contender in the arctangent race (to calculate reasonably accurate arctangents
with as few computations as possible) for estimating the angle of a complex time-domain sample is
the following algorithm:



or

where θ′ is the approximated angle of the complex sample C=I+jQ. This algorithm is useful when
the true angle of C is in the range of –π/2 to π/2 radians (−45 to 45 degrees).
The error in degrees in using the above θ′ approximation is shown in Figure P8-22. To further
investigate this arctangent algorithm, and exercise your algebraic function analysis skills, at what
angles of the true θ is the algorithm’s error at its peak values of ±0.26 degrees?

Figure P8-22

Hint: To make the algebra a little simpler, replace Q/I with X and replace 0.28125 with A. With
those changes, the error E(X) in this algorithm (in radians) is the true arctangent of X minus the
approximation of the arctangent of X, or

8.23 Consider the process shown in Figure P8-23. The x(n) input sequence, whose fs sample rate is
5000 Hz, is multiplied by a complex exponential m(n) sequence to produce the complex y(n) output
sequence. What is the frequency, measured in Hz, of the complex exponential m(n) sequence?

Figure P8-23

8.24 To gain further understanding of the quadrature sampling (complex down-conversion) in the
text’s Figure 8-18(a), we investigate the quadrature sampler’s behavior when the xbp(t) input is a
continuous (analog) cosine wave whose frequency is fc + 10 Hz. That is:

xbp(t) = cos[2π(fc+10)t].

Given the above xbp(t) input signal:

(a) What is the spectral content of xi(t) in Figure 8-18(a)?

(b) What is the spectral content of xq(t)?

(c) What is the phase shift between the low- and high-frequency components in xq(t)?



(d) What is the spectral content of i(t) in Figure 8-18(a)?
(e) What is the spectral content of q(t)?

8.25 In the text’s Section 8.6 we said that multiplying a continuous (analog) x(t) time-domain signal,
centered at fo Hz, by a complex exponential whose frequency is negative fc Hz, e–j2πfct, results in a
signal whose spectrum is shifted down in frequency by fc Hz. This property is an exceedingly
important concept to understand and remember!
(a) Prove that the above statement is true for discrete x(n) time-domain signals originally centered

at fo Hz. Assume that x(n) = cos(2πfonts), a real-valued sinusoid where fo>fc.

(b) Draw the spectrum of the original x(n) and the spectrum of the down-shifted sequence.
(c) What is the spectral amplitude loss when multiplying a discrete x(n) time-domain signal by

e–j2πfct?
8.26 Here is a problem of great practical importance. In the text we discussed analog signal down-

conversion using the process shown in Figure P8-26(a) where xbp(t) was an analog bandpass
signal centered at a frequency of ωo radians/second. The ideal mixing (frequency translation) signal
is

m(t) = Acos(ωot) –jAsin(ωot) = Ae–jωot,

Figure P8-26

whose spectrum is the single spectral component shown in Figure P8-26(b).
A more realistic situation is shown in Figure P8-26(c) where, due to real-world analog signal
generator imperfections, the quadrature part of m(t) contains a small amplitude error ε and a small
phase error α (in radians). That is, the imperfect m(t) becomes

mimp(t) = Acos(ωot) – jA(1+ε)sin(ωot + α).



When those quadrature errors exist, the spectrum of the imperfect mimp(t) is that shown in Figure
P8-26(d). In practice, we want to keep the b, c, and d spectral components of Mimp(f) as small as
possible. Your problem is: What are the values for ε and α such that the magnitude of the unwanted
ωo frequency component of Mimp(f) is equal to 0.1 percent of (60 dB below) the magnitude of the
desired –ωo frequency component of Mimp(f)?

Hint: Start by converting the mimp(t) expression to polar (exponential) form and determine the
complex-amplitude terms of its positive- and negative-frequency components. At the end of that
exercise, assume that ε and α are much less than one part in a hundred to simplify your equations.

8.27 I once encountered an Internet website that presented a narrowband quadrature (complex)
bandpass filter similar to that shown in Figure P8-27(a). The input sequence is assumed to be
complex, and the filter’s feedback coefficient is complex, A + jB. (Such filters are useful in both
spectrum analysis and quadrature digital filtering applications.) The website stated that the real-
valued coefficient implementation of this complex filter is that shown in Figure P8-27(b).

Figure P8-27

(a) As it turns out, Figure P8-27(b) is not a correct implementation of the quadrature filter. (Don’t
believe everything you read on the Internet!) Draw the correct real-coefficient implementation of
the filter in Figure P8-27(a).

(b) Putting on our filter analysis hat, represent the complex input to the narrowband quadrature
filter in Figure P8-27(a) as x(n), the filter’s complex output as y(n), and the feedback coefficient
as ej2πfr/fs. (Variable fr is the narrowband filter’s resonant frequency in Hz, and fs is the system’s
sample rate in Hz.) What is the time-domain difference equation, in complex notation, describing
the quadrature bandpass filter?

(c) What is the z-domain equation for the filter’s H(z) =Y(z)/X(z) transfer function? (Transfer
functions help us determine both the frequency response and stability of the filter.)

(d) Is this complex filter stable? Justify your answer.



(e) What is the frequency-domain equation for the filter’s H(f) frequency response? (The frequency
response expression allows us to plot the filter’s frequency-domain magnitude and phase
behavior using signal processing software.)

8.28 There are many signal processing applications that require a signal to be translated in frequency
(particularly in digital communications systems). In the text we referred to frequency translation as
complex up-conversion, complex down-conversion, and complex mixing. With this frequency
translation notion in mind:
(a) Assuming we want to frequency translate a real-only time sequence, draw the block diagram of

a discrete complex frequency translation network whose input is a real-only-valued discrete
sequence, and whose output is a complex-valued discrete sequence.

(b) Assuming we only need the real part of a frequency-translated complex time sequence, draw the
block diagram of a discrete complex frequency translation network whose input is a complex-
valued discrete sequence and whose output sequence is real-valued.

8.29 In the literature of quadrature processing, we often encounter a network called a complex digital
resonator whose block diagram is shown in Figure P8-29. The feedback coefficient is a complex
number, where the ωr frequency value is a normalized angle measured in radians in the range of 0
to 2π radians, corresponding to a resonator cyclic frequency range of 0 to fs, where fs is the sample
rate in Hz. Should we want to build a resonator (oscillator) whose cyclic frequency is fs/4, then
we’d merely set ωr equal to π/2 and apply a single unity-valued sample, x(n), to the input of the
resonator to initiate its oscillations.

Figure P8-29

Here’s the homework problem: If you had to build this complex resonator in hardware (because
you needed a complex ejωr quadrature sequence for some follow-on processing), what would be
your resonator’s block diagram where, of course, all of the discrete sequence values and feedback
coefficients are real-only values?

8.30 Assume that, on the job, you encounter the real-coefficient recursive lowpass filter whose z-
domain transfer function is

Hreal(z) = 1 + z–1.

The filter’s frequency magnitude response and z-plane pole/zero plot are given in Figures P8-30(a)
and P8-30(b). Your problem is to design a complex-coefficient Hcmplx(z) bandpass filter whose
frequency magnitude response is shifted up in frequency by fs/4 Hz relative to |Hreal(f)|. That is,
design a complex filter whose magnitude response is that given in Figure P8-30(c), having the
pole/zero plot shown in Figure P8-30(d).



(a) What is the transfer function equation of the complex-coefficient Hcmplx(z) filter?

(b) Draw the block diagram of the Hcmplx(z) filter.

Figure P8-30

8.31 The process of quadrature modulation and demodulation has become very important and popular
in modern communications systems. This means we can transmit two totally independent signals,
I(t) and Q(t), at the same RF carrier frequency (fc) and still receive and demodulate those two
signals separately as shown in Figure P8-31. In addition, we only have to use one transmitting
antenna! To convince ourselves this communications method works, show algebraically what will
be the outputs (in terms of I(t) and Q(t)) of the lowpass filters of the quadrature demodulator in
Figure P8-31. (The I(t) and Q(t) signals are binary and have the values of either +1 or –1. The
“LPF” stages are identical lowpass filters whose cutoff frequencies are ωc/2 radians/second.)
Justify your solution.

Figure P8-31







Chapter Nine. The Discrete Hilbert Transform

The discrete Hilbert transform is a process used to generate complex-valued signals from real-valued
signals. Using complex signals in lieu of the real signals simplifies and improves the performance of
many signal processing operations. If you’ve read about the discrete Hilbert transform in the DSP
literature, you’ve probably plowed through the mathematical descriptions of analytic functions, with
the constraints on their z-transforms in their regions of convergence, and perhaps you’ve encountered
the Cauchy integral theorem used in the definition of the Hilbert transform.† Well, the discrete Hilbert
transform is not as complicated as it first appears; this chapter attempts to support that claim.
† The Hilbert transform is named in honor of the great German mathematician David Hilbert (1862–1943). On his tomb in Göttingen,
Germany, is inscribed, “Wir müssen wissen, wir werden wissen.” (We need to know, we shall know.)

Here we gently introduce the Hilbert transform from a practical standpoint, explain the mathematics
behind its description, and show how it’s used in DSP systems. In addition to providing some of the
algebraic steps missing from some textbooks, we’ll illustrate the time- and frequency-domain
characteristics of the transform, with an emphasis on the physical meaning of the quadrature
(complex) signals associated with Hilbert transform applications. Finally, nonrecursive Hilbert
transformer design examples and techniques for generating complex, so-called analytic signals are
presented. (If you’re not well versed in the notation and behavior of complex signals at this point, a
review of Chapter 8 would be useful.)

9.1 Hilbert Transform Definition
The Hilbert transform (HT) is a mathematical process performed on a real signal xr(t), yielding a new
real signal xht(t), as shown in Figure 9-1.

Figure 9-1 The notation used to define the continuous Hilbert transform.

Our goal here is to ensure that xht(t) is a 90-degree phase-shifted version of xr(t). So, before we carry
on, let’s make sure we understand the notation used in Figure 9-1. The variables are defined as
follows:



We’ll clarify that xht(t) = h(t)*xr(t), where the * symbol means convolution. In addition, we can define
the spectrum of xht(t) as Xht(ω) = H(ω)·Xr(ω). (These relationships sure make the HT look like a
filter, don’t they? We’ll cogitate on this notion again later in this chapter.)
Describing how the new xht(t) signal, the HT of xr(t), differs from the original xr(t) is most succinctly
done by relating their Fourier transforms, Xr(ω) and Xht(ω). In words, we can say that all of xht(t)’s
positive-frequency components are equal to xr(t)’s positive-frequency components shifted in phase by
–90 degrees. Also, all of xht(t)’s negative-frequency components are equal to xr(t)’s negative-
frequency components shifted in phase by +90 degrees. Mathematically, we recall

(9-1)

where H(ω) = –j over the positive-frequency range, and H(ω) = +j over the negative-frequency range.
We show the nonzero imaginary part of H(ω) in Figure 9-2(a).

Figure 9-2 The complex frequency response of H(ω).

To fully depict the complex H(ω), we show it as floating in a three-dimensional space in Figure 9-
2(b). The bold curve is our complex H(ω). On the right side is an upright plane on which we can
project the imaginary part of H(ω). At the bottom of Figure 9-2(b) is a flat plane on which we can
project the real part of H(ω). In rectangular notation, we say that H(ω) = 0 +j1 for negative
frequencies and H(ω) = 0 −j1 for positive frequencies. (We introduce the three-dimensional axes of
Figure 9-2(b) now because we’ll be using them to look at other complex frequency-domain functions
later in this discussion.)
To show a simple example of an HT, and to reinforce our graphical viewpoint, Figure 9-3(a) shows
the three-dimensional time and frequency representations of a real cosine wave cos(ωt). Figure 9-
3(b) shows the HT of cos(ωt) to be the sinewave sin(ωt).

Figure 9-3 The Hilbert transform: (a) cos(ωt); (b) its transform is sin(ωt).



The complex spectrum on the right side of Figure 9-3(b) shows how the HT rotates the cosine wave’s
positive-frequency spectral component by –j, and the cosine wave’s negative-frequency spectral
component by +j. You can see on the right side of Figure 9-3 that our definition of the +j
multiplication operation is a +90-degree rotation of a spectral component counterclockwise about the
frequency axis. (The length of those spectral components is half the peak amplitude of the original
cosine wave.) We’re assuming those sinusoids on the left in Figure 9-3 exist for all time, and this
allows us to show their spectra as infinitely narrow impulses in the frequency domain.
Now that we have this frequency response of the HT defined, it’s reasonable for the beginner to ask:
“Why would anyone want a process whose frequency-domain response is that weird H(ω) in Figure
9-2(b)?”

9.2 Why Care about the Hilbert Transform?
The answer is: We need to understand the HT because it’s useful in so many complex-signal
(quadrature) processing applications. A brief search on the Internet reveals HT-related signal
processing techniques being used in the following applications:

• Quadrature modulation and demodulation (communications)
• Automatic gain control (AGC)
• Analysis of two- and three-dimensional complex signals
• Medical imaging, seismic data and ocean wave analysis
• Instantaneous frequency estimation
• Radar/sonar signal processing, and time-domain signal analysis using wavelets
• Time difference of arrival (TDOA) measurements
• High-definition television (HDTV) receivers
• Loudspeaker, room acoustics, and mechanical vibration analysis
• Audio and color image compression
• Nonlinear and nonstationary system analysis

All of these applications employ the HT either to generate or to measure complex time-domain
signals, and that’s where the HT’s power lies. The HT delivers to us, literally, another dimension of
signal processing capabilities as we move from two-dimensional real signals to three-dimensional



complex signals. Here’s how.
Let’s consider a few mathematical definitions. If we start with a real time-domain signal xr(t), we can
associate with it a complex signal xc(t), defined as

(9-2)

The complex xc(t) signal is known as an analytic signal (because it has no negative-frequency
spectral components), and its real part is equal to the original real input signal xr(t). The key here is
that xc(t)’s imaginary part, xi(t), is the HT of the original xr(t) as shown in Figure 9-4.

Figure 9-4 Functional relationship between the xc(t) and xr(t) signals.

As we’ll see shortly, in many real-world signal processing situations xc(t) is easier, or more
meaningful, to work with than the original xr(t). Before we see why that is true, we’ll explore xc(t)
further to attempt to give it some physical meaning. Consider a real xr(t) = cos(ωot) signal that’s
simply four cycles of a cosine wave and its HT xi(t) sinewave as shown in Figure 9-5. The xc(t)
analytic signal is the bold corkscrew function.

Figure 9-5 The Hilbert transform and the analytic signal of cos(ωot).

We can describe xc(t) as a complex exponential using one of Euler’s equations. That is:
(9-3)



The spectra of those signals in Eq. (9-3) are shown in Figure 9-6. Notice three things in Figure 9-6.
First, following the relationships in Eq. (9-3), if we rotate Xi(ω) by +90 degrees counterclockwise
(+j) and add it to Xr(ω), we get Xc(ω) = Xr(ω)+jXi(ω). Second, note how the magnitude of the
component in Xc(ω) is double the magnitudes in Xr(ω). Third, notice how Xc(ω) is zero over the
negative-frequency range. This property of zero spectral content for negative frequencies is why
Xc(ω) is called an analytic signal. Some people call Xc(ω) a one-sided spectrum.

Figure 9-6 HT spectra: (a) spectrum of cos(ωot); (b) spectrum of the Hilbert transform of cos(ωot),
sin(ωot); (c) spectrum of the analytic signal of cos(ωot), ejωot.

To appreciate the physical meaning of our discussion here, let’s remember that the xc(t) signal is not
just a mathematical abstraction. We can generate xc(t) in our laboratory and route it via cables to the
laboratory down the hall. (This idea is described in Section 8.3.)
To illustrate the utility of this analytic signal xc(t) notion, let’s see how analytic signals are very
useful in measuring instantaneous characteristics of a time-domain signal: measuring the magnitude,
phase, or frequency of a signal at some given instant in time. This idea of instantaneous measurements
doesn’t seem so profound when we think of characterizing, say, a pure sinewave. But if we think of a
more complicated signal, like a modulated sinewave, instantaneous measurements can be very
meaningful. If a real sinewave xr(t) is amplitude modulated so its envelope contains information, from
an analytic version of the signal we can measure the instantaneous envelope E(t) value using

(9-4)

That is, the envelope of the signal is equal to the magnitude of xc(t). We show a simple example of
this AM demodulation idea in Figure 9-7(a), where a sinusoidal signal is amplitude modulated by a
low-frequency sinusoid (dashed curve). To recover the modulating waveform, traditional AM
demodulation would rectify the amplitude-modulated sinewave, xr(t), and pass the result through a
lowpass filter. The filter’s output is represented by the solid curve in Figure 9-7(b) representing the
modulating waveform. Instead, we can compute the HT of xr(t), yielding xi(t), and use xi(t) to generate
the xc(t) = xr(t) + jxi(t) analytic version of xr(t). Finally, we compute the magnitude of xc(t) using Eq.
(9-4) to extract the modulating waveform shown as the bold solid curve in Figure 9-7(c). The |xc(t)|
function is a much more accurate representation of the modulating waveform than the solid curve in
Figure 9-7(b).

Figure 9-7 Envelope detection: (a) input xr(t) signal; (b) traditional lowpass filtering of |xr(t)|; (c)



complex envelope detection result |xc(t)|.

Suppose, on the other hand, some real xr(t) sinewave is phase modulated. We can estimate xc(t)’s
instantaneous phase ø(t), using

(9-5)

Computing ø(t) is equivalent to phase demodulation of xr(t). Likewise (and more often implemented),
should a real sinewave carrier be frequency modulated, we can measure its instantaneous frequency
F(t) by calculating the instantaneous time rate of change of xc(t)’s instantaneous phase using

(9-6)

The process in Eq. (9-6) is a form of digital differentiation, a topic we discuss in some detail in
Chapter 7.
Calculating F(t) is equivalent to frequency demodulation of xr(t). By the way, if ø(t) is measured in
radians, then F(t) in Eq. (9-6) is measured in radians/second. Dividing F(t) by 2π will give it
dimensions of Hz. (Another frequency demodulation method is discussed in Section 13.22.)
For another HT application, consider a real xr(t) signal whose |Xr(ω)| spectral magnitude is centered
at 25 kHz as shown in Figure 9-8(a). Suppose we wanted to translate that spectrum to be centered at
20 kHz. We could multiply xr(t) by the real sinusoid cos(2π5000t) to obtain a real signal whose
spectrum is shown in Figure 9-8(b). The problem with this approach is we’d need an impractically



high-performance filter (the dashed curve) to eliminate those unwanted high-frequency spectral
images.

Figure 9-8 Spectra associated with frequency translation of a real signal xr(t).

On the other hand, if we compute the HT of xr(t) to obtain xi(t), and combine the two signals to form
the analytic signal xc(t) = xr(t)+jxi(t), we’ll have the complex xc(t) whose one-sided spectrum is
given in Figure 9-8(c). Next we multiply the complex xc(t) by the complex e–j2π5000t, yielding a
frequency-translated xout(t) complex signal whose spectrum is shown in Figure 9-8(d). Our final step
is to take the real part of xout(t) to obtain a real signal with the desired spectrum centered about 20
kHz, as shown in Figure 9-8(e).
Now that we’re convinced of the utility of the HT, let’s determine the HT’s time-domain impulse
response and use it to build Hilbert transformers.

9.3 Impulse Response of a Hilbert Transformer
Instead of following tradition and just writing down the impulse response equation for a device that
performs the HT, we’ll show how to arrive at that expression. To determine the HT’s impulse
response expression, we take the inverse Fourier transform of the HT’s frequency response H(ω). The
garden-variety continuous inverse Fourier transform of an arbitrary frequency function X(f) is defined
as

(9-7)

where f is frequency measured in cycles/second (hertz). We’ll make three changes to Eq. (9-7). First,
in terms of our original frequency variable ω = 2πf radians/second, and because df = dω/2π, we



substitute dω/2π for the df term. Second, because we know our discrete frequency response will be
periodic with a repetition interval of the sampling frequency ωs, we’ll evaluate Eq. (9-7) over the
frequency limits of –ωs/2 to +ωs/2. Third, we partition the original integral into two separate
integrals. This algebraic massaging gives us the following:

(9-8)

Whew! OK, we’re going to plot this impulse response shortly, but first we have one hurdle to
overcome. Heartache occurs when we plug t = 0 into Eq. (9-8) because we end up with the
indeterminate ratio 0/0. Hardcore mathematics to the rescue here. We merely pull out the Marquis de
L’Hopital’s Rule, take the time derivatives of the numerator and denominator in Eq. (9-8), and then
set t = 0 to determine h(0). Following through on this:

(9-9)

So now we know that h(0) = 0. Let’s find the discrete version of Eq. (9-8) because that’s the form we
can model in software and actually use in our DSP work. We can go digital by substituting the
discrete-time variable nts for the continuous-time variable t in Eq. (9-8). Using the following
definitions

n = discrete time-domain integer index (...,–3,–2,–1,0,1,2,3,...)
fs = sample rate measured in samples/second

ts = time between samples, measured in seconds (ts = 1/fs)

ωs = 2πfs

we can rewrite Eq. (9-8) in discrete form as
(9-10)

Substituting 2πfs for ωs, and 1/fs for ts, we have
(9-11)



Finally, we plot HT’s h(n) impulse response in Figure 9-9. The fs term in Eq. (9-11) is simply a scale
factor; its value does not affect the shape of h(n). An informed reader might, at this time, say, “Wait a
minute. Equation (9-11) doesn‘t look at all like the equation for the HT’s impulse response that’s in
my other DSP textbook. What gives?” The reader would be correct because one popular expression
in the literature for h(n) is

(9-12)

Figure 9-9 The Hilbert transform’s discrete impulse response when fs = 1.

Here’s the answer: The derivation of Eq. (9-12) is based on the assumption that the fs sampling rate is
normalized to unity. If we set fs = 1 in Eq. (9-11), then that new expression will be equal to Eq. (9-
12). We leave the proof of that equality as a homework problem.
Looking again at Figure 9-9, we can reinforce the validity of our h(n) derivation. Notice that for n > 0
the values of h(n) are nonzero only when n is odd. In addition, the amplitudes of those nonzero values
decrease by factors of 1/1, 1/3, 1/5, 1/7, etc. Of what does that remind you? That’s right, the Fourier
series of a periodic squarewave! This makes sense because our h(n) is the inverse Fourier transform
of the squarewave-like H(ω) in Figure 9-2. Furthermore, our h(n) is antisymmetric, and this is
consistent with a purely imaginary H(ω). (If we were to make h(n) symmetrical by inverting its
values for all n < 0, the new sequence would be proportional to the Fourier series of a periodic real
squarewave.)
Now that we have the expression for the HT’s impulse response h(n), let’s use it to build a discrete
Hilbert transformer.

9.4 Designing a Discrete Hilbert Transformer
Discrete Hilbert transformations can be implemented in either the time or frequency domains. Let’s
look at time-domain Hilbert transformers first.

9.4.1 Time-Domain Hilbert Transformation: FIR Filter Implementation
Looking back at Figure 9-4, and having h(n) available, we want to know how to generate the discrete



xi(n). Recalling the frequency-domain product in Eq. (9-1), we can say xi(n) is the convolution of
xr(n) and h(k). Mathematically, this is

(9-13)

So this means we can implement a Hilbert transformer as a discrete nonrecursive finite impulse
response (FIR) filter structure as shown in Figure 9-10.

Figure 9-10 FIR implementation of a K-tap Hilbert transformer.

Designing a traditional time-domain FIR Hilbert transformer amounts to determining those h(k)
values so the functional block diagram in Figure 9-4 can be implemented. Our first thought is merely
to take the h(n) coefficient values from Eq. (9-11), or Figure 9-9, and use them for the h(k)s in Figure
9-10. That’s almost the right answer. Unfortunately, the Figure 9-9 h(n) sequence is infinite in length,
so we have to truncate the sequence. Figuring out what the truncated h(n) should be is where the true
design activity takes place.
To start with, we have to decide if our truncated h(n) sequence will have an odd or even length. We
make this decision by recalling that FIR implementations having antisymmetric coefficients and an
odd, or even, number of taps are called a Type-III, or a Type-IV, system respectively[1–3]. These two
antisymmetric filter types have the following unavoidable restrictions with respect to their frequency
magnitude responses |H(ω)|:

What this little table tells us is odd-tap Hilbert transformers always have a zero magnitude response
at both zero Hz and at half the sample rate. Even-tap Hilbert transformers always have a zero
magnitude response at zero Hz. Let’s look at some examples.
Figure 9-11 shows the frequency response of a 15-tap (Type-III, odd-tap) FIR Hilbert transformer
whose coefficients are designated as h1(k). These plots have much to teach us.

Figure 9-11 H1(ω) frequency response of h1(k), a 15-tap Hilbert transformer.



1. For example, an odd-tap FIR implementation does indeed have a zero magnitude response at 0
Hz and ±fs/2 Hz. This means odd-tap (Type-III) FIR implementations turn out to be bandpass in
performance.

2. There’s ripple in the H1(ω) passband. We should have expected this because we were unable to
use an infinite number of h1(k) coefficients. Here, just as it does when we’re designing standard
lowpass FIR filters, truncating the length of the time-domain coefficients causes ripples in the
frequency domain. (When we abruptly truncate a function in one domain, Mother Nature pays us
back by invoking the Gibbs phenomenon, resulting in ripples in the other domain.) You guessed it.
We can reduce the ripple in |H1(ω)| by windowing the truncated h1(k) sequence. However,
windowing the coefficients will narrow the bandwidth of H1(ω) somewhat, so using more
coefficients may be necessary after windowing is applied. You’ll find windowing the truncated
h1(k) sequence to be to your advantage.

3. It’s exceedingly difficult to compute the HT of low-frequency signals. We can widen the
passband and reduce the transition region width of H1(ω)’s magnitude response, but that requires
many filter taps.

4. The phase response of H1(ω) is linear, as it should be when the coefficients’ absolute values are
symmetrical. The slope of the phase curve (that is constant in our case) is proportional to the time
delay a signal sequence experiences traversing the FIR filter. More on this in a moment. That
discontinuity in the phase response at 0 Hz corresponds to π radians, as Figure 9-2 tells us it
should. Whew, good thing. That’s what we were after in the first place!

In our relentless pursuit of correct results, we’re forced to compensate for the linear phase shift of
H1(ω)—that constant time value equal to the group delay of the filter—when we generate our analytic
xc(n). We do this by delaying, in time, the original xr(n) by an amount equal to the group delay of the
h1(k) FIR Hilbert transformer. Recall that the group delay, G, of a tapped-delay line FIR filter, having
antisymmetrical coefficients, is G = D/2 samples where D is the number of unit-delay elements in the
delay line. So our block diagram for generating a complex xc(n) signal, using an FIR structure, is



given in Figure 9-12(a). In this example, the 7-tap Hilbert filter has D = 6 delay elements as shown in
Figure 9-12(b). There we delay xr(n) by G = 6/2 = 3 samples, generating the delayed sequence x’r(n).
This delayed sequence now aligns properly in time with xi(n).

Figure 9-12 Generating an xc(n) sequence when h(k) is a 7-tap FIR Hilbert filter: (a) processing
steps; (b) filter structure.

If you’re building your odd-tap FIR Hilbert transform in hardware, an easy way to obtain x’r(n) is to
tap off the original xr(n) sequence at the center tap of the FIR Hilbert transformer structure as in
Figure 9-12(b). If you’re modeling Figure 9-12(a) in software, the x’r(n) sequence can be had by
inserting G = 3 zeros at the beginning of the original xr(n) sequence.
We can, for example, implement an FIR Hilbert transformer using a Type-IV FIR structure, with its
even number of taps. Figure 9-13 shows this notion where the coefficients are, say, h2(k). See how the
frequency magnitude response is nonzero at ±fs/2 Hz. Thus this even-tap filter approximates an ideal
Hilbert transformer somewhat better than an odd-tap implementation.

Figure 9-13 H2(ω) frequency response of h2(k), a 14-tap Hilbert transformer.

One of the problems with this traditional Hilbert transformer is that the passband gain in |H2(ω)| is not
unity for all frequencies, as is the x’r(n) path in Figure 9-12. So to minimize errors, we must use many



h2(k) coefficients (or window the coefficients) to make |H2(ω)|’s passband as flat as possible.

Although not shown here, the negative slope of the phase response of H2(ω) corresponds to a filter
group delay of G = (14–1)/2 = 6.5 samples. This requires us to delay the original xr(n) sequence by a
noninteger (fractional) number of samples in order to achieve time alignment with xi(n). Fractional
time-delay filters are beyond the scope of this material, but reference [4] is a source of further
information on the topic.
Let’s recall that alternate coefficients of a Type-III (odd-tap) FIR are zeros. Thus the odd-tap Hilbert
transformer is more attractive than an even-tap version from a computational workload standpoint.
Almost half of the multiplications in Figure 9-10 can be eliminated for a Type-III FIR Hilbert
transformer. Designers might even be able to further reduce the number of multiplications by a factor
of two by using the folded FIR structure (discussed in Section 13.7) that’s possible with symmetric
coefficients (keeping in mind that half the coefficients are negative).
A brief warning: Here’s a mistake sometimes even the professionals make. When we design standard
linear-phase FIR filters, we calculate the coefficients and then use them in our hardware or software
designs. Sometimes we forget to flip the coefficients before we use them in an FIR filter. This
forgetfulness usually doesn’t hurt us because typical FIR coefficients are symmetrical. Not so with
FIR Hilbert filters, so please don’t forget to reverse the order of your coefficients before you use
them for convolutional filtering. Failing to flip the coefficients will distort the desired HT phase
response.
As an aside, Hilbert transformers can be built with IIR filter structures, and in some cases they’re
more computationally efficient than FIR Hilbert transformers at the expense of a slight degradation in
the 90-degree phase difference between xr(n) and xi(n)[5,6].

9.4.2 Frequency-Domain Hilbert Transformation
Here’s a frequency-domain Hilbert processing scheme deserving mention because the HT of xr(n) and
the analytic xc(n) sequence can be generated simultaneously. We merely take an N-point DFT of a real
even-length-N xr(n) signal sequence, obtaining the discrete Xr(m) spectrum given in Figure 9-14(a).
Next, create a new spectrum Xc(m) = 2Xr(m). Set the negative-frequency Xc(m) samples, that’s
(N/2)+1 ≤ m ≤ N–1, to zero, leaving us with a new one-sided Xc(m) spectrum as in Figure 9-14(b).
Next, divide the Xc(0) (the DC term) and the Xc(N/2) spectral samples by 2. Finally, we perform an
N-point inverse DFT of the new Xc(m), the result being the desired analytic xc(n) time-domain
sequence. The real part of xc(n) is the original xr(n), and the imaginary part of xc(n) is the HT of
xr(n). Done!
Figure 9-14 Spectrum of the original xr(n) sequence, and the one-sided spectrum of the analytic xc(n)

sequence.

There are several issues to keep in mind concerning this straightforward frequency-domain analytic



signal generation scheme:
1. If possible, restrict the xr(n) input sequence length to an integer power of two so the radix-2 FFT

algorithm can be used to efficiently compute the DFT.
2. Make sure the Xc(m) sequence has the same length as the original Xr(m) sequence. Remember,

you zero out the negative-frequency Xc(m) samples; you don’t discard them.

3. The factor of two in the above Xc(m) = 2Xr(m) assignment compensates for the amplitude loss by
a factor of two in losing the negative-frequency spectral energy.

4. If your HT application is block-oriented in the sense that you only have to generate the analytic
sequence from a fixed-length real-time sequence, this technique is sure worth thinking about
because there’s no time delay heartache associated with time-domain FIR implementations to
worry about. With the advent of fast hardware DSP chips and pipelined FFT techniques, the above
analytic signal generation scheme may be viable for a number of applications. One scenario to
consider is using the efficient 2N-Point Real FFT technique, described in Section 13.5.2, to
compute the forward DFT of the real-valued xr(n). Of course, the thoughtful engineer would
conduct a literature search to see what algorithms are available for efficiently performing inverse
FFTs when many of the frequency-domain samples are zeros.

Should you desire a decimated-by-two analytic x’c(n) sequence based on xr(n), it’s easy to do, thanks
to reference [7]. First, compute the N-point Xr(m). Next, create a new spectral sequence X’c(k) =
2Xr(k) for 1 ≤ k ≤ (N/2)-1. Set X’c(0) equal to Xr(0) + Xr(N/2). Finally, compute the (N/2)-point
inverse DFT of X’c(m), yielding the decimated-by-two analytic x’c(n). The x’c(n) sequence has a
sample rate of f’s = fs/2 and the spectrum shown in Figure 9-14(c).

In Section 13.28.2 we discuss a scheme to generate interpolated analytic signals from xr(n).

9.5 Time-Domain Analytic Signal Generation
In digital communications applications, the FIR implementation of the HT (such as that in Figure 9-
12(b)) is used to generate a complex analytic signal xc(n). Some practitioners now use a time-domain
complex filtering technique to achieve analytic signal generation when dealing with real bandpass
signals[8]. This scheme, which does not specifically perform the HT of an input sequence xr(n), uses
a complex filter implemented with two real FIR filters with essentially equal magnitude responses,
but whose phase responses differ by exactly 90 degrees, as shown in Figure 9-15.

Figure 9-15 Generating an xc(n) sequence with a complex filter (two real FIR filters).



Here’s how it’s done. A standard K-tap FIR lowpass filter is designed, using your favorite FIR design
software, to have a two-sided bandwidth slightly wider than the original real bandpass signal of
interest. The real coefficients of the lowpass filter, hLP(k), are then multiplied by the complex
exponential mix(k) sequence specified by

(9-14)

using the following definitions:
k = time index term of the exponential mixing sequence (k = 0, 1, 2, ..., K–1)
D = time delay of the K-tap lowpass filter, D = (K–1)/2
fc = bandpass signal’s center frequency, in Hz

fs = sample rate of the original xr(n) bandpass signal sequence in Hz

The results of the hLP(k) times mix(k) multiplication are complex coefficients whose rectangular-form
representation is

(9-14′)

creating a complex bandpass filter centered at fc Hz. The delay value D in Eq. (9-14) ensures that the
hcos(k) and hsin(k) coefficients are symmetrical (or antisymmetrical) to obtain a linear-phase complex
filter[9].
Next we use the real and imaginary parts of the filter’s hBP(k) coefficients in two separate real-
valued-coefficient FIR filters as shown in Figure 9-15. In DSP parlance, the filter producing the xI(n)
sequence is called the I-channel for in-phase, and the filter generating xQ(n) is called the Q-channel
for quadrature phase. There are several interesting aspects of this mixing analytic signal generation
scheme in Figure 9-15:

1. The mixing of the hLP(k) coefficients by mix(k) induces a loss, by a factor of two, in the frequency
magnitude responses of the two real FIR filters. Doubling the hLP(k) values before mixing will
eliminate the loss.

2. We can window the hLP(k) coefficients before mixing to reduce the passband ripple in, and to



minimize differences between, the magnitude responses of the two real filters. (We’d like to keep
the passband gains as similar as possible.) Of course, windowing will degrade the lowpass
filter’s roll-off somewhat, so using more coefficients may be necessary before windowing is
applied.

3. Odd- or even-tap lowpass filters can be used, with equal ease, in this technique.
4. Because the hcos(k) or hsin(k) coefficients are exactly symmetrical, or exactly antisymmetrical, the

folded FIR structure (see Section 13.7) can be used to reduce the number of multiplies per filter
output sample by roughly a factor of two.

5. If the original bandpass signal and the complex filter are centered at one-fourth the sample rate
(fo = fs/4), count your blessings. In this case we set D = 0 in Eq. (9-14), making nearly half the
coefficients of each real filter zero-valued, maintaining linear phase, and reduce our FIR
computational workload further by a factor of two.

6. A particularly efficient complex bandpass filter is a lowpass half-band FIR filter whose center
frequency has been translated to fc = fs/4. The result is that half the hsin(k) coefficients are zeros,
and all but one of the hcos(k) coefficients are zeros! (Two specialized analytic signal generation
schemes using half-band filters are described in Sections 13.1 and 13.37.)

7. For hardware applications, both of the two real FIR filters in Figure 9-15 must be implemented.
If your analytic signal generation is strictly a high-level software language exercise, such as using
MATLAB, the language being used may allow hBP(k) to be implemented as a single complex
filter.

Keep in mind, now, that the xQ(n) sequence in Figure 9-15 is not the Hilbert transform of the xr(n)
input. That wasn’t our goal here. Our intent was to generate an analytic xc(n) sequence whose xQ(n)
quadrature component is the Hilbert transform of the xI(n) in-phase sequence.

9.6 Comparing Analytic Signal Generation Methods
Time-domain FIR Hilbert transformer design is essentially an exercise in lowpass filter design. As
such, an ideal discrete FIR Hilbert transformer, like an ideal lowpass FIR filter, cannot be achieved
in practice. Fortunately, we can usually ensure that the bandpass of our Figure 9-12 Hilbert
transformer covers the bandwidth of the xr(n) input signal. The Figure 9-12 Hilbert transformer has
magnitude roll-off in the xi(n) channel but not in the x’r(n) channel. Using more filter taps improves
the transformer’s performance by

• minimizing passband ripple in the xi(n) channel,

• minimizing passband gain differences between the two channels, and
• broadening the transformer’s passband width.

The choice of an odd or even number of taps depends on whether the gain at fs/2 should be zero or
not, and whether an integer-sample delay is needed.
For roughly the same passband ripple performance, the complex filter in Figure 9-15 requires a
longer impulse response (more filter taps) than the Figure 9-12 Hilbert transformer. However, the
complex filter has the nice feature that it actually implements bandpass filtering where the Figure 9-



12 Hilbert transformer performs no filtering. A possible drawback of the complex filter method is that
the real part of the generated complex signal is not equal to the original real input signal. (That is,
xi(n) does not equal xr(n).)

For very high-performance analytic signal generation (where the equivalent Hilbert transformer
bandwidth must be very close to the full fs/2 bandwidth, and passband ripple must be very small), the
DFT method should be considered. With the DFT method the real part of xc(n) is equal to the real
input xr(n). Choosing which of the above analytic signal generation methods to use (or perhaps a
complex down-conversion scheme from Chapter 8) in any given application requires modeling with
your target computing hardware, using your expected number format (fixed point versus floating
point), against the typical input signals you intend to process.
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Chapter 9 Problems
9.1 Consider the real-valued continuous xr(t) = cos(ωt) sinusoidal signal applied to the network in

Figure P9-1. The “HT” notation means Hilbert transform. Write the algebraic expressions for the
signals xa(t) and xb(t). Justify your solutions.

Figure P9-1



9.2 Consider the real-valued continuous xr(t) sinusoidal signal defined by

xr(t) = Asin(2πfot)

where A is a scalar constant, and fo is a fixed frequency measured in Hz.

(a) Draw the three-dimensional spectrum of the Hilbert transform of xr(t).

(b) What is the equation for the analytic signal whose real part is xr(t), in terms of sin() and cos()
functions?

(c) What is the equation for the analytic signal whose real part is xr(t), in complex exponential
notation? Show your work.

(d) Is the analytic signal whose real part is xr(t) a positive- or negative-frequency complex
exponential? Justify your answer.

(e) On a complex plane, draw the location of the analytic signal whose real part is xr(t), at time t =
0.

9.3 Consider the effect of repeated Hilbert transformations of a real-valued continuous x(t) =
cos(ωot) sinusoidal signal, expressed as

u(t) = HT[x(t)]
v(t) = HT[u(t)]
w(t) = HT[v(t)]
y(t) = HT[w(t)]

where “HT[x(t)]” means the Hilbert transform of x(t).
(a) Which of u(t), v(t), w(t), or y(t) equals x(t)? Justify your answer.
(b) Which of u(t), v(t), w(t), or y(t) equals –x(t)? Justify your answer.
(c) Which of u(t), v(t), w(t), or y(t) equals the inverse Hilbert transform of x(t)?
(d) Draw a block diagram of the system that implements the inverse Hilbert transform using just

one forward Hilbert transform operation. Use a simple block, as shown in Figure P9-3, to
represent a forward Hilbert transform.

Figure P9-3



9.4 Looking at the odd- and even-length Hilbert transformers’ time-domain impulse responses in the
text’s Figures 9-11 and 9-13:
(a) Why should we expect that their frequency magnitude responses are zero (a magnitude null) at

zero Hz?
(b) Write the z-domain transfer function for a 6-tap tapped-delay line Hilbert transform filter

having coefficients h(0), h(1), h(2), ..., h(5). Evaluate that function to determine the filter’s
frequency response at zero Hz.

9.5 Draw the block diagram (the structure) of a real-coefficient 11-tap FIR Hilbert transformer that
will compute an xa(n) = x’r(n) + jxi(n) analytic signal associated with a real xr(n) input signal.

9.6 Think about the tapped-delay line FIR Hilbert transformer whose coefficients are shown in Figure
P9-6. The coefficients are h(0), h(1), h(2), ..., h(10).

Figure P9-6

(a) Write the z-domain transfer function polynomial, H(z), for this 11-coefficient Hilbert
transformer in terms of the h(k) coefficients and z.

(b) We often describe a Hilbert transformer by the order of the transformer’s z-domain transfer
function polynomial. What is the order of the transformer whose coefficients are shown in Figure
P9-6?

(c) How many unit-delay elements are needed in the tapped-delay line to implement the Hilbert
transformer whose coefficients are shown in Figure P9-6?

(d) How many multipliers are needed in the standard tapped-delay line implementation of this
Hilbert transformer?

9.7 The text’s Eq. (9-11) provided the expression for the impulse response of a discrete Hilbert
transformer. That expression is repeated here as

The text also presented an alternate expression for the impulse response of a discrete Hilbert
transformer, Eq. (9-12), under the assumption that fs is normalized to unity. That alternate
expression is repeated here as



Show that the expressions for h(n) and h’(n) are equal.
9.8 Assume that we’ve performed the discrete Fourier transform (DFT) of an N-sample x(n) time-

domain sequence to obtain a frequency-domain X(m) sequence. X(m)’s integer frequency index is 0
≤ m ≤ N–1. If N is even and X(0) = X(N/2) = 0, describe what operations must be performed on
X(m) to create a new frequency-domain Xnew(m) sequence whose inverse DFT is the Hilbert
transform of x(n). (Stated in different words: How do we perform the Hilbert transform in the
frequency domain?)

9.9 In the literature of DSP you may learn that we can design an N-tap Hilbert transformer by first
designing an N-tap half-band nonrecursive FIR filter (where N+1 is an integer multiple of four),
yielding coefficients h(n). Next, we multiply the half-band filter’s h(n) coefficients by 2sin(πn/2)
to obtain the desired hhilb(n) Hilbert transformer coefficients. That is,

hhilb(n) = 2sin(πn/2)h(n).

Not emphasized in the literature, however, is the fact that the above hhilb(n) expression is only valid
when the h(n) coefficients’ n index is in the range

where h(0) is the middle coefficient of h(n) as shown for an 11-tap half-band FIR filter in Figure
P9-9(a). In this textbook we typically use the more traditional FIR filter coefficient indexing
notation of k = 0, 1, 2, ..., N–1 as shown in Figure P9-9(b). What is the correct equation for the
hhilb(k) coefficients when the half-band filter’s coefficients are h(k) with index k defined using our
standard notation of k = 0, 1, 2, ..., N–1 as shown in Figure P9-9(b)?

Figure P9-9

9.10 In Section 9.4 we presented a 7-tap (6th-order) FIR Hilbert transformer filter, used to compute
the complex sequence xc(n) = x’r(n) + xi(n) based on the real input sequence xr(n), as shown in
Figure P9-10.

Figure P9-10



Clever DSP engineers always seek to reduce the number of multipliers in their systems. Redesign
the Hilbert transformer in Figure P9-10 to a form that reduces the number of necessary
multiplications per output sample. Draw the block diagram of your new design.
Hint: Write the difference equation for the xi(n) output sequence, and recall the symmetry
relationships between the Hilbert transformer filter’s coefficients.

9.11 Similar to the structure in the text’s Figure 9-12:
(a) Draw the block diagram of a tapped-delay line FIR Hilbert transformer filter, having 6 taps,

that will generate both x’r(n) and xi(n).

(b) Comment on the practicality of this even-tap implementation relative to building a Hilbert
transformer having an odd number of taps. (That is, is an even-tap or an odd-tap Hilbert
transformer easier to implement?) Someday, if you’re designing a Hilbert transformer for a real-
world project, the answer to this question may be very important!

9.12 In this chapter we discussed the notion of building a tapped-delay line FIR filter whose
coefficients are complex-valued. Explain why, or why not, such a filter’s frequency magnitude
response is periodic.

9.13 Because an FIR Hilbert transformer is a linear time-invariant (LTI) system, there are two ways
to determine its frequency response. The first way is to derive an equation for the transformer’s
frequency response as a function of a continuous frequency variable, just as we did for IIR filters in
Section 6.4. Given that, we could plot that equation’s magnitude and phase, using software, on our
computer screen. The second method to determine a Hilbert transformer’s frequency response is to
perform the discrete Fourier transform (DFT) of the Hilbert transformer’s unit impulse response,
and plot the magnitude and phase of the DFT results.
(a) Derive the expression for the frequency response of a (K–1)th-order (K taps) Hilbert

transformer as a function of a continuous frequency variable ω in the range of –π to +π
radians/sample.

(b) If you were to model your equation from Part (a) using software, over what range would you
define your continuous frequency variable?

(c) The above Parts (a) and (b) were related to the algebraic method for finding a Hilbert
transformer’s frequency response in the form of an equation that is a function of a continuous
frequency variable. We can also use the discrete Fourier transform (DFT) to estimate a Hilbert



transformer’s frequency response. Provide the equation for the K-point DFT of a (K–1)th-order
Hilbert transformer’s unit impulse response.

(d) For a 43rd-order Hilbert transformer, how many frequency-domain samples would result from
your Part (c) DFT equation? How can you increase the number of DFT frequency-domain
samples to see finer detail (improved granularity) of the Hilbert transformer’s frequency
response?

9.14 Determine the closed-form equation, as a function of the number of coefficients K, of the number
of multipliers needed by a tapped-delay line FIR Hilbert transformer when K is an odd number.
That is, write the expression for Nmults = some function of K. Do not consider the case of a folded
delay line structure alluded to in the text.
Hint: Due to the unusual situation when K − 1 is an integer multiple of four, you’ll have to use the
mathematical notation of  which means the “integer part of number X.”

9.15 Suppose we wish to implement the quadrature processing system in Figure P9-15 where xr(n) is
a real-valued sequence whose discrete-time Fourier transform is Xr(ω), and ω is our digital
frequency ranging from –π to π radians/sample. The sequences xr(n) and xi(n) are interpreted as the
real and imaginary parts of a complex sequence xc(n) = xr(n) + jxi(n). Under the restriction that we
want the discrete-time Fourier transform of xc(n) to be defined by

Figure P9-15

fill in the following blank lines defining the H(ω) network’s frequency response:

That is, what is H(ω) so that Xc(ω) is equal to Xr(ω) for negative frequencies, and equal to zero for
positive frequencies. Show your work.
Hint: Begin by writing an expression for Xc(ω) in terms of Xr(ω) and H(ω).

9.16 Consider the network given in Figure P9-16(a) whose input is the complex x(t) = xr(t) + jxi(t)
signal, and whose output is the complex y(t) = yr(t) + jyi(t) signal. The block labeled “H”
represents a Hilbert transform. The x(t) input has the spectrum shown by the bold arrows in Figure
P9-16(b). Using a format similar to Figure P9-16(b), draw the three-dimensional spectrum of the
y(t) output.

Figure P9-16



9.17 Consider the real-valued continuous xr(t) cosine signal shown in Figure P9-17(a). That cosine
wave’s peak amplitude fluctuates as follows:

Figure P9-17

If we generate the analytic xa(t) signal, using a Hilbert transformer as shown in Figure P9-17(b),
draw the time-domain magnitude of xa(t).





Chapter Ten. Sample Rate Conversion

The useful, and fascinating, process of sample rate conversion is a scheme for changing the effective
sampling rate of a discrete time-domain signal sequence. We’ll fully explain that puzzling notion in a
moment. But first, know that sample rate conversion has many applications; it’s primarily used to
minimize computations by reducing signal data rates when a signal of interest’s bandwidth has been
narrowed by lowpass filtering. Sample rate conversion is mandatory in real-time processing when
two separate hardware processors operating at two different sample rates must exchange digital
signal data. In satellite and medical image processing, sample rate conversion is necessary for image
enhancement, scale change, and image rotation. Sample rate conversion is also used to reduce the
computational complexity of certain narrowband digital filters.
In this chapter we’ll explore sample rate conversion by first looking at the process by way of a few
examples. Then we introduce what are known as polyphase filters. With some knowledge under our
belts, next we’ll review the standard mathematical notation used to describe sample rate conversion.
Finally, we’ll examine the behavior of specialized digital filters that have found wide use in sample
rate conversion applications.
We can define sample rate conversion as follows: Consider the process where a continuous signal
x(t) has been sampled at a rate of fs,old = 1/Told, and the discrete samples are xold(n) = x(nTold). Sample
rate conversion is necessary when we need xnew(n) = x(nTnew), and direct sampling of the continuous
x(t) at the rate of fs,new = 1/Tnew is not possible. For example, imagine we have an analog-to-digital
(A/D) conversion system supplying a sample value every Told seconds. But our processor can only
accept data at a rate of one sample every Tnew seconds. How do we obtain xnew(n) directly from
xold(n)? One possibility is to digital-to-analog (D/A) convert the xold(n) sequence to regenerate the
continuous x(t) and then A/D convert x(t) at a sampling rate of fs,new to obtain xnew(n). Due to the
spectral distortions induced by D/A followed by A/D conversion, this technique limits our effective
dynamic range and is typically avoided in practice. Fortunately, accurate all-digital sample rate
conversion schemes have been developed, as we shall see.
Sampling rate changes come in two flavors: rate decreases and rate increases. Decreasing the
sampling rate is typically called decimation. When the sampling rate is being increased, the process
is known as interpolation, i.e., computing intermediate sample values. Because decimation is the
simpler of the two sample rate change operations, let’s examine it first.

10.1 Decimation
Decimation is the two-step process of lowpass filtering followed by an operation known as
downsampling. Let’s first consider the notion of downsampling. We can downsample a sequence of
sampled signal values by a factor of M by retaining every Mth sample and discarding all the



remaining samples. Relative to the original sample rate, fs,old, the sample rate of the downsampled
sequence is

(10-1)

For example, assume that an analog sinewave x(t) has been sampled to produce the xold(n) sequence
shown in Figure 10-1(a). To downsample xold(n) by a factor of M = 3, we retain xold(0) and discard
xold(1) and xold(2), retain xold(3) and discard xold(4) and xold(5), retain xold(6), and so on as shown in
Figure 10-1(b). Mathematically, we describe the downsampled sequence as

(10-1′)

Figure 10-1 Sample rate conversion: (a) original sequence; (b) downsampled by M = 3 sequence.

where M = 3, and m = 0, 1, 2, 3, etc.
Notice in Eq. (10-1′) that we’re using an alternate time index variable m, rather than n, in xnew(m) to
remind us that the time period between the xnew(m) samples is different from the time period between
the xold(n) samples. That is, the absolute time instant corresponding to m = 3 is not equal to the
absolute time instant corresponding to n = 3.
The spectral implications of downsampling are what we should expect as shown in Figure 10-2,
where the spectrum of an original band-limited sampled xold(n) signal is indicated by the solid lines,
and the spectral replications are indicated by the dashed lines. With xnew(m) = xold(3n), xnew(m)’s
spectrum, Xnew(f), is shown in Figure 10-2(b). Two important features are illustrated in Figure 10-2.
First, Xnew(f) could have been obtained directly by sampling the original continuous x(t) signal at a
rate of fs,new, as opposed to downsampling xold(n) by a factor of three. Second, there is a limit to the
amount of downsampling that can be performed relative to the bandwidth B of the original signal. We
must ensure that fs,new > 2B to prevent overlapped spectral replications (aliasing errors) after
downsampling.
Figure 10-2 Decimation by a factor of three: (a) spectrum of original xold(n) signal; (b) spectrum after



downsampling by three; (c) bandwidth B′ is to be retained; (d) lowpass filter’s frequency response
relative to bandwidth B′.

If a decimation application requires fs,new to be less than 2B, then xold(n) must be lowpass filtered
before the downsampling process is performed, as shown in Figure 10-2(c). (To clarify our
terminology, we refer to decimation as the two-step process of lowpass filtering followed by
downsampling.) If the original signal has a bandwidth B, and we’re interested in retaining only the
band Bv, the signal spectrum above B′ must be lowpass filtered, with full attenuation in the stopband
beginning at fstop, before the downsample-by-M process is performed. Figure 10-2(d) shows this in
more detail where the frequency response of the lowpass filter, the bold lines, must attenuate the
signal spectral components whose frequencies are greater than B′. Review the busy Figure 10-2(d)
carefully and notice how the lowpass filter’s fstop frequency can be as high as fstop = fs,new–B′ and no
spectral aliasing will occur in the B′ band of interest.
In practice, the nonrecursive tapped-delay line FIR filter structure in Figure 5-13 is the prevailing
choice for decimation filters due to its linear phase response[1]. However, we need not apply xold(n)
samples, one at a time, to an FIR lowpass filter and discard M–1 out of every M filter output samples.
Instead, we could apply one xold(n) sample to the filter and compute an output sample, apply the next
M consecutive xold(n) samples to the filter’s delay line and compute the next output, and continue
applying M consecutive xold(n) samples for each new filter output sample. That way we do not
compute filter output samples that are discarded. In Section 10.7 we’ll learn how to minimize the
number of filter multiplications needed.

10.2 Two-Stage Decimation



When the desired decimation factor M is large, say M > 20, there is an important feature of the
filter/decimation process to keep in mind. Significant lowpass filter (LPF) computational savings may
be had by implementing the single-stage decimation, shown in Figure 10-3(a), in two stages as shown
in Figure 10-3(b). There we decimate sequence xold(n) by integer factor M1 to produce the
intermediate xint(n‘) sequence, which is then decimated by integer factor M2. The downsampling,
sample rate decrease operation “↓M1” in Figure 10-3(b) means discard all but every M1th sample.
The product of M1 and M2 is our desired decimation factor; that is, M = M1M2.

Figure 10-3 Decimation: (a) single-stage; (b) two-stage.

As a brief aside, the systems in Figure 10-3 are called multirate systems because there are two or
more different data sample rates within a single system.

10.2.1 Two-Stage Decimation Concepts
Considering Figure 10-3(b), an important question is “Given a desired total downsampling factor M,
what should be the values of M1 and M2 to minimize the number of taps in lowpass filters LPF1 and
LPF2?” If, for example, M = 100, should M1M2 be 5 · 20, 20 · 5, 25 · 4, or maybe 10 · 10?
Thankfully, thoughtful DSP pioneers answered this question for us[1]. For two-stage decimation, the
optimum value for M1 is

(10-2)

where F is the ratio of Figure 10-3(a)’s single-stage lowpass filter’s transition region width to that
filter’s stopband frequency. That is,

(10-2′)

After using Eq. (10-2) to determine the optimum M1,opt factor, and setting M1 equal to the integer
submultiple of M that is closest to M1,opt, the second downsampling factor is

(10-2″)



10.2.2 Two-Stage Decimation Example
By way of example, let’s assume we have an xold(n) input signal arriving at a sample rate of 400 kHz,
and we must decimate that signal by a factor of M = 100 to obtain a final sample rate of 4 kHz. Also,
let’s assume the baseband frequency range of interest is from 0 to B′ = 1.8 kHz, and we want 60 dB of
filter stopband attenuation. As such, a single-stage-decimation lowpass filter’s frequency magnitude
response is shown in Figure 10-4(a).

Figure 10-4 Two-stage decimation: (a) single-stage filter response; (b) decimation by 100; (c)
spectrum of original signal; (d) output spectrum of the M = 25 downsampler; (e) output spectrum of

the M = 4 downsampler.

So, with fs,new = 4 kHz, we must filter out all xold(n)’s signal energy above fstop by having our filter
transition region extend from 1.8 kHz to fstop = 4–1.8 = 2.2 kHz. Now let’s estimate the number of
taps, N, required of a single-stage decimation-by-100 process. Using Chapter 5’s Eq. (5-49), and the
notation fpass = B′ = 1.8 kHz, we estimate the filter tap length to be

(10-3)

taps. That’s a painfully large number! (Resist all temptation to propose using a 2727-tap FIR filter in
any system design review meeting at your company, or else you may be forced to update your
résumé.)
Happily, to reduce the number of necessary filter taps we can partition our decimation problem into



two stages. With M = 100 and F = (2200–1800)/2200 = 4/22, Eq. (10-2) yields an optimum M1,opt
downsample factor of 26.4. The integer submultiple of 100 closest to 26.4 is 25, so we set M1 = 25.
Next, from Eq. (10-2″), M2 = 4 as shown in Figure 10-4(b).

In this two-stage decimation example we’ll assume the original Xold(f) input signal spectrum extends
from zero Hz to something greater than 100 kHz as shown in Figure 10-4(c). If the first lowpass filter
LPF1 has a passband cutoff frequency of 1.8 kHz and its fstop is defined as fs,int–B′ = 16–1.8 = 14.2
kHz, the output of the M1 = 25 decimator will have the spectrum shown in Figure 10-4(d). When filter
LPF2 has a passband cutoff frequency of 1.8 kHz and its fstop is set equal to 4–1.8 = 2.2 kHz, the
output of the M2 = 4 decimator will have our desired spectrum shown in Figure 10-4(e). The point is,
the total number of taps in the two lowpass filters, Ntotal, is greatly reduced from the 2727 taps needed
by a single filter stage. From the expression in Eq. (10-3) for the combined LPF1 and LPF2 filters, the
total number of two-stage filter taps is roughly

(10-3‘)

This is an impressive computational savings, and it shows the kind of processing efficiency afforded
by two-stage decimation[1,2]. Had we used M1 = 50 and M2 = 2 (or M1 = 10 and M2 = 10) in our
decimation-by-100 example, the total number of two-stage filter taps would have been greater than
250. Thus M1 = 25 and M2 = 4 is the better choice.

10.2.3 Two-Stage Decimation Considerations
The multistage decimation design curves in reference [1] tell us that, for computational efficiency
reasons, it’s always to our benefit to decimate in order from the largest to the smallest factor. That is,
we make sure that M1 is greater than M2.

In two-stage decimation applications it is advantageous to consider setting the M1 and M2 decimation
factors equal to integer powers of two because we can use computationally efficient half-band filters
for the lowpass filters in Figure 10-4(b). We discuss the use of multirate half-band filtering later in
Section 10.11.
There are two practical issues to consider for two-stage decimation. First, as we discussed regarding
cascaded filters in Section 6.8.1, if the dual-filter system in Figure 10-4(b) is required to have a
passband peak-peak ripple of R dB (R decibels), then both filters must be designed to have a
passband peak-peak ripple of no greater than R/2 dB. Second, the number of multiplications needed
to compute each xnew(m) output sample in Figure 10-4(b) is much larger than Ntotal because we must
compute so many LPF1 and LPF2 output samples destined to be discarded. Later we’ll introduce an
efficient decimation filter implementation scheme called polyphase decomposition that only requires
Ntotal multiplications per xnew(m) output sample.
The advantages of two-stage decimation, over single-stage decimation, are



• an overall reduction in computational workload,
• reduced signal and filter coefficient data storage,
• simpler filter designs, and
• a decrease in the ill effects of finite binary-word-length filter coefficients.

These advantages become more pronounced as the overall desired decimation factor M becomes
larger. To conclude our two-stage decimation discussion, be aware that reference [3] discusses
aspects of multistage decimation where the number of stages is greater than two.

10.3 Properties of Downsampling
Let us now quickly review several interesting aspects of downsampling a discrete sequence
(retaining every Mth sample and discarding all the remaining samples).

10.3.1 Time and Frequency Properties of Downsampling
First, we realize that downsampling is one of those rare processes that is not time invariant. From the
very nature of its operation, we know if we delay the input sequence by one sample, a downsampler
will generate an entirely different output sequence. For example, if we apply an input sequence x(n) =
x(0), x(1), x(2), x(3), x(4), etc., to a downsampler and M = 3, the output y(m) will be the sequence
x(0), x(3), x(6), etc. Should we delay the input sequence by one sample, our delayed xd(n) input
would be x(1), x(2), x(3), x(4), x(5), etc. In this case the downsampled output sequence yd(m) would
be x(1), x(4), x(7), etc., which is not a delayed version of y(m). Thus a downsampler is not time
invariant. What this means is that if a downsampling operation is in cascade with other operations,
we are not permitted to swap the order of any of those operations and the downsampling process
without modifying those operations in some way. We first discussed this notion of time invariance in
Section 1.7, and we’ll see an example of it in Section 10.13.
Second, downsampling does not cause time-domain signal amplitude loss. A sinusoid with a peak-
peak amplitude of 10 retains this peak-peak amplitude after downsampling. However, downsampling
by M does induce a magnitude loss by a factor of M in the frequency domain. That’s because, as we
learned in Chapter 3, DFT magnitudes are proportional to the number of time-domain samples used in
the transformation.

10.3.2 Drawing Downsampled Spectra
To illustrate the frequency properties of downsampling, let’s review an algorithm (a recipe) that tells
us how to draw the spectrum of a downsampled signal. Drawing the spectrum of a downsampled
lowpass signal is easy; we saw that in Figures 10-2(a) and 10-2(b). However, drawing the spectra of
bandpass and highpass signals that have been downsampled can be a bit tricky. Here’s the process I
use to draw the spectra of any type of downsampled signal.
We begin by looking at the spectral magnitude, |X(ω)| in Figure 10-5(a), of an x(n) time signal
containing spectral energy at both low and high frequencies. To help clarify our discussion by making
the associated spectra (we hope) easier to interpret, we use a complex-valued lowpass x(n) for this
example. Regarding Figure 10-5(a), notice the following:

• The baseband spectral envelope of |X(ω)| is centered at zero Hz covering the frequency range of –
π ≤ ωold ≤ π radians/sample (−fs,old/2 to fs,old/2 Hz), shown by the bold solid curve. Frequency fs,old



is the original sample rate of x(n), measured in Hz.
• For clarity, and reference, we label the frequency axis in both radians/sample and Hz.
• The spectral replications in |X(ω)| are shown by the short-dashed curves, spaced at integer
multiples of 2π radians/sample (fs,old Hz).

• |X(ω)| has a peak magnitude of P.
Figure 10-5 Spectra associated with downsampling by M = 3.

Assuming we want to downsample x(n) by a factor of M = 3 to create a y(m) sequence, the following
steps show how to determine the |Y(ω)| spectrum based on the known |X(ω)|:

1. Draw the |X(ω)| spectrum of sequence x(n) showing at least one spectral replication in both the
positive- and negative-frequency directions. We did that in Figure 10-5(a).

2. Insert M–1 equally spaced copies of the primary spectral envelope between the primary spectral
envelope and the spectral replications centered at ωold = ±2π. The spectral spacing of the M–1
inserted copies should be multiples of 2π/M radians/sample as shown by the long-dashed curves
in Figure 10-5(b).

3. Scale upward the frequency axis values of |Y(ω)| by a factor of M, yielding the new ωnew
frequency axis variable as shown in Figure 10-5(c).

4. Finally, scale downward the vertical axis of |Y(ω)| by a factor of 1/M. This produces a peak
magnitude for |Y(ω)| of P/M as shown in Figure 10-5(c).

We zoom in on the |Y(ω)| spectrum in Figure 10-5(d) to show enhanced detail.



10.4 Interpolation
As we said before, downsampling is only part of the sample rate conversion story—let’s now
consider interpolation. Sample rate increase by interpolation is a bit more involved than decimation
because with interpolation new sample values need to be calculated. Conceptually, interpolation
comprises the generation of a continuous x(t) curve passing through our xold(n) sampled values, as
shown in Figure 10-6(a), followed by sampling that curve at the new sample rate fs,new to obtain the
interpolated sequence xnew(m) in Figure 10-6(b). Of course, continuous curves cannot exist inside a
digital machine, so we’re forced to obtain xnew(m) directly from xold(n). To increase a given fs,old
sample rate by an integer factor of L we must insert L–1 zero-valued samples between each sample in
xold(n), creating a longer-length sequence. To the end of that longer sequence we append L–1 zero-
valued samples. Those two steps are what we call upsampling, indicated by the “↑L” operation in
Figure 10-6(c). Next, we apply the upsampled sequence to a lowpass filter whose output is the
interpolated sequence in Figure 10-6(b).

Figure 10-6 Interpolation: (a) original time sequence; (b) interpolated by L = 3 sequence; (c)
interpolation functional notation.

We formally refer to interpolation as the two-step process of upsampling followed by lowpass
filtering. The process of interpolation is beautifully straightforward and best understood by way of an
example.
Let’s assume we have the sequence xold(n), part of which is shown in Figure 10-7(a), and we want to
increase its sample rate by a factor of L = 4. The xold(n) sequence’s spectrum is provided in Figure
10-7(a) where the signal spectrum between zero Hz and 4fs,old is shown. Please notice that the dashed
curves in Xold(f) are spectral replications. To upsample xold(n) by a factor of four, we insert three
zeros between each sample of xold(n) and append the last three zeros, as shown in Figure 10-7(b), to
create the new intermediate sequence xint(m). Notice that the old sequence is embedded in the new



sequence. The insertion of the zeros (a process often called zero stuffing) establishes the sample
index for the intermediate sequence xint(m) where the interpolated values will be assigned.
Figure 10-7 Interpolation by four: (a) original sampled sequence and its spectrum; (b) zeros inserted

in original sequence and resulting spectrum; (c) output sequence of interpolation filter and final
spectrum.

The spectrum of xint(m), Xint(f), is shown in Figure 10-7(b) where fs,new = 4fs,old. The solid curves in
Xint(f), centered at multiples of fs,old, are called images. What we’ve done by adding the zeros is
merely increase the effective sample frequency to fs = fs,new in Figure 10-7(b). The final step in
interpolation is to filter the xint(m) sequence with the lowpass filter shown in Figure 10-6(c). That
filter’s frequency magnitude response is crudely shown as the dashed lines centered at zero Hz, and
fs,new Hz, in Figure 10-7(b). The lowpass filter’s job is to attenuate the spectral images shown in
Figure 10-7(b). This lowpass filter is called an interpolation filter, and its output sequence is the
desired xnew(m) sequence in Figure 10-7(c) having the spectrum Xnew(f) containing residual spectral
images. We’ll discuss those residual images in a moment.

10.5 Properties of Interpolation
Here we discuss several important aspects of the interpolation (upsampling followed by lowpass
filtering) process depicted in Figure 10-7.

10.5.1 Time and Frequency Properties of Interpolation
Because we cannot implement an ideal lowpass interpolation filter, xnew(m) will not be an exact
interpolation of xold(n). The error manifests itself as the residual spectral images in Xnew(f) as
indicated in Figure 10-7(c). With an ideal filter, these images would not exist, but we can only
approximate an ideal lowpass interpolation filter. The issue to remember is that the accuracy of our
entire interpolation process depends on the stopband attenuation of our lowpass filter. The greater the
stopband attenuation, the more accurate the interpolation. As with decimation, interpolation can be
thought of as an exercise in lowpass filter design.
Note that our interpolation process, because of the zero-valued samples, has an inherent amplitude



loss factor of L when a unity-gain lowpass filter is used. That is, the peak sample value of xnew(m) is
equal to the peak sample value of xold(n) divided by L. Thus, to achieve unity gain between sequences
xold(n) and xnew(m), the lowpass interpolation filter must have a gain of L at zero Hz.

Although there is a time-domain gain (amplitude) loss of L by upsampling and filtering, that loss is
canceled in the discrete frequency domain by the L-fold gain in the magnitudes of the discrete Fourier
transform (DFT) of an xnew(m) sequence that is L times longer in duration than the original xold(n)
time sequence. (We’re repeating a fact we learned in Chapter 3—DFT magnitudes are proportional to
the length of the time sequence being transformed.)
Rather than perform the upsampling in Figure 10-7(b), we might be inclined to merely repeat each
xold(n) sample three times to generate the new upsampled xint(m) sequence. Such a maneuver would
indeed help attenuate the unwanted spectral images, but sadly the resulting low-frequency Xint(m)
spectral magnitude shape will be the original desired Xold(m) spectrum multiplied by a sin(x)/x
function. If this happens, then the follow-on lowpass filter must compensate for that spectral
magnitude roll-off distortion. Such non-flat passband sin(x)/x-compensation filters require so many
additional taps that the “repeat each xold(n) sample” scheme is unwise. In fact, later we’ll discuss an
efficient interpolation filtering scheme called polyphase filtering wherein we don’t bother to create
the upsampled xint(m) sequence at all.

There’s one further issue regarding interpolation. You might tend to think that interpolation was born
of our modern-day signal processing applications such as cell phones and compact disc players.
Please don’t. Ancient astronomical cuneiform tablets, originating from Uruk and Babylon (200 years
before the birth of Jesus), indicate that linear interpolation was used to fill in the missing tabulated
positions of celestial bodies for those times when atmospheric conditions prevented direct
observation[4]. Interpolation has been used ever since, for filling in missing data.

10.5.2 Drawing Upsampled Spectra
To illustrate the frequency properties of upsampling (insertion of zero-valued samples), and to
demonstrate the method for drawing the spectra of upsampled signals, consider the spectral
magnitude, |X(ω)| in Figure 10-8(a), of a lowpass x(n) time signal. Regarding Figure 10-8(a), notice
the following:

• The baseband spectral envelope of |X(ω)| is centered at zero Hz covering the frequency range of
roughly –π ≤ ωold ≤ π radians/sample (−fs,old/2 to fs,old/2 Hz), shown by the solid lines. Frequency
fs,old is the original sample rate of x(n), measured in Hz.

• For clarity, and reference, we label the frequency axis in both radians/sample and Hz.
• The spectral replications in |X(ω)| are shown by the dashed-line spectral envelopes spaced at
integer multiples of 2π radians/sample (fs,old Hz).

• |X(ω)| has a peak magnitude of P.
Figure 10-8 Spectra associated with upsampling by L = 3.



Assuming we want to upsample x(n) by a factor of L = 3, for example, to create a y(m) sequence, the
following steps show how to determine the |Y(ω)| spectrum of y(m):

1. Draw the |X(ω)| spectrum of sequence x(n) showing at least L = 3 spectral replications in both the
positive- and negative-frequency directions. We did that in Figure 10-8(a).

2. Scale downward the frequency axis values of X(ω) by a factor of L, yielding the new ωnew
frequency variable as shown in Figure 10-8(b).

3. Finally, indicate the spectral images (destined to be attenuated by subsequent lowpass filtering)
by using solid lines to represent their spectral envelopes, as we did in Figure 10-8(b).

10.6 Combining Decimation and Interpolation
Although changing sampling rates, through decimation or interpolation, by integer factors is quite
common in practice, what can we do if we need a sample rate change that is not an integer? The good
news is that we can implement sample rate conversion by any rational fraction L/M with interpolation
by an integer factor L followed by decimation by an integer factor M. Because the ratio L/M can be
obtained as accurately as we want, with the correct choice of integers L and M, we can change
sample rates by almost any factor in practice. For example, a sample rate increase by a factor of
7.125 can be performed by an interpolation by L = 57 followed by a decimation by M = 8, because
7.125 = 57/8.
This L/M sample rate change is illustrated as the processes shown in Figure 10-9(a). The neat part
here is that the computational burden of changing the sample rate by the ratio of L/M is less than the
sum of an individual interpolation followed by an individual decimation. That’s because we can
combine the interpolation filter LPFL and the decimation filter LPFM into a single filter shown as
LPFL/M in Figure 10-9(b). The process in Figure 10-9(b) is normally called a sample rate converter
because if L > M we have interpolation, and when M > L we have decimation. (The filter LPFL/M is
often called a multirate filter.)

Figure 10-9 Sample rate conversion by a rational factor: (a) combination interpolation/decimation;
(b) single lowpass filter method.



Filter LPFL/M must sufficiently attenuate the interpolation spectral images so they don’t contaminate
our desired signal beyond acceptable limits after decimation. To accomplish this task, lowpass filter
LPFL/M must attenuate all spectral components whose frequencies are above fs,old/2 or (fs,old/2) ·
(L/M), whichever is smaller, where fs,old is xold(n)’s sample rate in Hz. The stopband attenuation of
LPFL/M must be great enough that the attenuated upsampled images do not induce intolerable levels of
noise when they’re aliased by downsampling by M into the final band of 0 to fs,new/2 Hz, where fs,new
is the filter’s data rate, in Hz.
Again, our interpolator/decimator designs are exercises in lowpass filter design, and all the
knowledge and tools we have to design lowpass filters can be applied to this task. In software
interpolator/decimator design, we want our lowpass filter algorithm to prevent aliasing images and
be fast in execution time. For hardware interpolator/decimators, we strive to implement designs
optimizing the conflicting goals of high performance (minimum spectral aliasing), simple architecture,
high data throughput speed, and low power consumption.
The filtering computational workload in rational-factor sample rate conversion, as we’ve presented it
here, is sadly inefficient. Think about interpolating a signal sequence by a factor of 4/3; we’d insert
the zero-valued samples into the original time sequence and apply it to a lowpass filter. Three-fourths
of the filter multiplication products would necessarily be zero. Next, we’d discard two-thirds of our
computed filter output values. Very inefficient! Fortunately, we are now prepared to introduce special
sample rate conversion filters, called digital polyphase filters, that avoid these computational
inefficiencies.

10.7 Polyphase Filters
In this section we introduce the fascinating, and exceedingly useful, subject of digital polyphase FIR
filters. These filters have the ability to eliminate all multiply by zero operations in interpolation, as
well as avoid the wasteful computation of filter output samples that are subsequently discarded in
decimation applications.
Let’s assume that a linear-phase FIR interpolation filter design requires an N = 12-tap filter; our
initial plan is to pass the upsampled by L = 4 xint(m) sequence in Figure 10-10(a) through the 12-tap
FIR filter coefficients shown in Figure 10-10(b) to obtain the desired xnew(m) sequence. (This filter,
whose coefficients are the h(k) sequence, is often called the prototype FIR filter. That’s because later
we’re going to modify it.) Notice that with time advancing to the right in Figure 10-10(a), the filter
coefficients are in reversed order as shown in Figure 10-10(b). This filtering requires 12
multiplications for each xnew(m) output sample, with 9 of the products always being zero. As it turns
out, we need not perform all 12 multiplications.



Figure 10-10 Interpolation by four with a 12-tap lowpass FIR filter: (a) filter input samples; (b) filter
coefficients, s, used to compute xnew(m).

To show this by way of an example, Figure 10-11(a) shows the xint(m) samples just filling the filter’s
delay line so that we can compute the xnew(m=11) output sample. The 12 filter coefficients are
indicated by the  symbols.

Figure 10-11 Filter coefficients used to calculate various xnew(m) samples.

With the dots in Figure 10-11(a) representing the xint(m) sequence, we see that although there are nine 
s and three , only the three  generate nonzero products contributing to the convolution sum

xnew(11). Those three  represent FIR filter coefficients h(3), h(7), and h(11). The issue here is that
we need not perform the multiplications associated with the zero-valued samples in xint(m). We only
need to perform three multiplications to obtain xnew(11). To see the polyphase concept, remember that
we use the prototype filter coefficients indicated by the  to compute xnew(12). When we slide the
filter’s impulse response to the right one sample, we use the coefficients indicated by the circles, in
Figure 10-11(b), to calculate xnew(12) because the nonzero values of xint(m) will line up under the
circled coefficients. Those circles represent filter coefficients h(0), h(4), and h(8).
Likewise, when we slide the impulse response to the right one more sample to compute xnew(13), we
use the coefficients indicated by the diamonds in Figure 10-11(c). Finally, we slide the impulse
response to the right once more and use the coefficients indicated by the triangles in Figure 10-11(d)



to compute xnew(14). Sliding the filter’s impulse response once more to the right, we would return to
using the coefficients indicated by the  to calculate xnew(15). You can see the pattern here—there
are L = 4 different sets of coefficients used to compute xnew(m) from the xold(n) samples. Each time a
new xnew(m) sample value is to be computed, we rotate one step through the four sets of coefficients
and calculate as

and so on. The beautiful parts here are that we don’t actually have to create the xint(m) sequence at all,
and we perform no multiply by zero computations. That is polyphase filtering.
The above list of calculations not only shows us what filtering to do, it shows us how to do it. We can
implement our polyphase interpolation filtering technique with a bank of four subfilters as shown in
Figure 10-12. This depiction is called the commutator model for polyphase interpolation filters. We
have a commutator switch rotating one complete cycle after the arrival of each new xold(n) sample.
This way, four xnew(m) samples are computed for each xold(n) input sample.

Figure 10-12 Polyphase interpolation by L = 4 filter structure as a bank of FIR subfilters.

In the typical case, if our polyphase filter is interpolating by a factor of L, then we’ll have L
subfilters. As such, for convenience the number of taps in (the impulse response length of) the original
prototype lowpass FIR filter, N, is chosen to be an integer multiple of L. Again, the passband width of



the prototype lowpass FIR filter must not be greater than fs,old/2 where fs,old is xold(n)’s sample rate in
Hz.
A minimum data storage structure for the polyphase interpolation filter is shown in Figure 10-13,
where three commutators rotate (in unison) counterclockwise through four sets of filter coefficients
upon the arrival of each new xold(n) sample. Again, four xnew(m) samples are computed for each
xold(n) sample.

Figure 10-13 Minimum-storage polyphase interpolation filter structure using commutated
coefficients.

This commutated-coefficients scheme has the advantage of reducing the number of storage registers
for the xold(n) input samples. If our polyphase filter is interpolating by a factor of L, then we have L
sets of coefficients.
We can validate our polyphase FIR filter block diagrams with z-transform equations. We start by
describing our Figure 10-12 polyphase FIR filter with

(10-4)

where zin
–1 is a unit delay at the input sample rate, and zout

–1 is a unit delay at the output sample rate
implemented with the commutator. Because zin

–1 = zout
–4, and zin

–2 = zout
–8, we can write

(10-4′)

which is the classic z-domain transfer function for a 12-tap FIR filter. Equation (10-4) is called a
polyphase decomposition of Eq. (10-4′).



Concerning our Figure 10-11 example, there are several issues to keep in mind:
• For an interpolation factor of L, most people make sure the prototype FIR has an integer multiple
of L number of stages for ease of implementation.

• As with the zeros-insertion and filtering method of interpolation, the polyphase method has a gain
loss equal to the interpolation factor L. To compensate for this amplitude loss we can increase the
filter’s coefficients by a factor of L, or perhaps multiply the xnew(m) output sequence by L.

• Our Figure 10-11 example used a prototype filter with an even number of taps, but an odd-tap
prototype FIR interpolation filter can also be used[5]. For example, you could have a 15-tap
prototype FIR and interpolate by 5.

• Because the subfilter coefficient sets in Figure 10-13 are not necessarily symmetrical, we can’t
reduce the number of multiplications by means of the folded FIR structure discussed in Section
13.7.

With the commutating switch structure of Figure 10-12 in mind, we can build a decimation-by-four
polyphase filter using a commutating switch as shown in Figure 10-14. The switch rotates through its
four positions (M = 4), applying four xold(n) input samples to the subfilters, then the four subfilters’
outputs are accumulated to provide a single xnew(m) output sample. In this filter the commutating
switch rotates in the counterclockwise direction.

Figure 10-14 Polyphase decimation by M = 4 filter structure as a bank of FIR subfilters.

Notice that the subfilters in Figure 10-14 are unchanged from the interpolation filter in Figure 10-12.
Again, the benefit of polyphase decimation filtering means no unnecessary computations are
performed. We’re decimating before filtering, so no filter computational results are discarded.
In the typical case, if our polyphase filter is decimating by a factor of M, then we’ll have M



subfilters. As such, for convenience the number of taps in (the impulse response length of) the original
prototype lowpass FIR filter, N, is chosen to be an integer multiple of M. The passband width of the
prototype lowpass filter must not be greater than (fs,old/2) · (L/M) where fs,old is xold(n)’s sample rate
in Hz.
Again, in practice, large changes in sampling rate are accomplished with multiple stages (where
Figure 10-14, for example, is a single decimation stage) of cascaded smaller rate change operations
of decimation and interpolation as discussed in Sections 10.2 and 10.8. With that thought in mind,
now is the appropriate time to discuss two-stage interpolation.
This concludes our brief introduction to the important topic of discrete polyphase filters. (For my
money, the development of polyphase filters arguably resides in the stratosphere of brilliant DSP
innovations, along with the radix-2 FFT algorithm and the Parks-McClellan FIR filter design
algorithm.) More detailed information on polyphase filters can be found in references [6–8] and my
favorite, reference [9].

10.8 Two-Stage Interpolation
Because we’re now familiar with the notion of polyphase filtering, we’re ready to consider the
process of two-stage interpolation. When a desired interpolation factor L is large, say L > 20,
significant interpolation filter computational savings may be had by implementing the interpolation in
Figure 10-15(a) in two stages as shown in Figure 10-15(c). In the later figure we interpolate input
sequence xold(n) by integer factor L1 followed by interpolation by integer factor L2, where L = L1L2.

Figure 10-15 Interpolation: (a) single-stage; (b) lowpass filter (LPF) magnitude response and
upsampled xint(m) spectrum; (c) two-stage interpolation; (d) two-stage polyphase interpolation.

10.8.1 Two-Stage Interpolation Concepts



Let’s assume we want to interpolate Figure 10-15(a)’s input xold(n) sequence by L, so we insert the
L–1 zero-valued samples appropriately in xold(n) to create the xint(m) sequence whose spectral
magnitude is shown as the dashed lines in Figure 10-15(b). The lowpass filter (LPF) in Figure 10-
15(a) must have a frequency magnitude response, shown as the solid lines in Figure 10-15(b), that
eliminates the spectral images in the xint(m) sequence’s Xint(f) spectrum. As such, the filter LPF’s
transition region extends from B Hz to fstop = fs,old–B = fs,new/L–B Hz. (Frequency fstop is the beginning
of the lowpass filter’s stopband.) Given that frequency response requirement, we could now begin to
design the lowpass filter LPF.
However, using Figure 10-15(c)’s two-stage interpolation, we can accomplish our overall
interpolation by L where the combined number of computations in filters LPF1 and LPF2 is much
smaller than the computations needed in the single Figure 10-15(a) LPF filter. This computational
workload reduction can be achieved by determining the optimum L1 and L2 factors for our two-stage
interpolation in Figure 10-15(c), just as we did in finding the optimum downsampling factors in two-
stage decimation.
Given the desired upsampling factor L in Figure 10-15(a), we can determine the L1 and L2
upsampling factors that minimize the number of overall two-stage filtering multiplications per input
sample using

(10-5)

where F is the ratio of the LPF filter’s transition region width over the filter’s stopband frequency, as
shown in Figure 10-15(b). That is,

(10-5′)

Upon using Eq. (10-5) to compute L2,opt, and setting L2 equal to the integer submultiple of L that is
closest to L2,opt, the first interpolation factor L1 is found using

(10-5″)

So, once we know the optimum values for L1 and L2, we proceed by designing the LPF1 and LPF2
lowpass filters in Figure 10-15(c). Finally, we implement the two-stage interpolation using two
polyphase interpolation filters, PLPF1 and PLPF2, as shown in Figure 10-15(d). Let’s illustrate this
two-stage interpolation concept with an example.

10.8.2 Two-Stage Interpolation Example
Assume we must convert a compact disc (CD) audio signal, having a signal bandwidth of 15 kHz and
a sample rate of 44.1 kHz, to the sample rate of 96 kHz used by a high-performance audio system. In
addition, let’s assume that our interpolation filtering requires a stopband attenuation of 60 dB. We can



accomplish this sample rate conversion by interpolating the CD signal by a factor of L = 320, and
then decimate the interpolated signal by M = 147. So this two-stage interpolation example will show
how to efficiently interpolate an input signal sequence by L = 320, yielding an interpolated sequence
having a sample rate of fs,new = L · fs,old = 320 · 44.1 = 14112 kHz.

The bold lines in Figure 10-16(a) show the frequency requirements of the lowpass filter that we need
for a single-stage L = 320 interpolation process. It is that magnitude response that we will implement
using two cascaded polyphase interpolation filter stages. The sample rate in Figure 10-16(a) is fs,new
= 14112 kHz.

Figure 10-16 Two-stage interpolation: (a) single-stage filter frequency parameters; (b) LPF1 filter
parameters; (c) LPF2 filter parameters; (d) polyphase implementation.

First we determine the optimum L1 and L2 interpolation factors. With fstop = 29.1 kHz and B = 15 kHz,
we use Eq. (10-5′) to compute ratio F as

(10-6)

Next, we compute L2,opt using Eq. (10-5) as



(10-6′)

The integer submultiple of L = 320 that’s closest to L2,opt = 37.98 is 40. So we set L2 = 40, and using
Eq. (10-5″), we compute L1 = 320/40 = 8.

So the first polyphase lowpass filter, LPF1, must have the frequency magnitude response shown in
Figure 10-16(b) when its operating sample rate is L1 · fs,old = 8 · 44.1 = 352.8 kHz. (That 352.8 kHz
sample rate would have been the LPF1 filter’s input rate had we inserted the L1–1 zero-valued
samples between each of the original CD samples. Recall that with polyphase filtering we don’t
actually insert any zero-valued samples, but we must design a polyphase filter assuming the
upsampled 352.8 kHz sample rate.)
Using Eq. (10-3) to estimate the number of taps in LPF1, NLPF1, with Atten = 60, we compute

(10-7)

Because we must partition the LPF1 coefficients into a polyphase bank of L1 = 8 subfilters, NLPF1
must be an integer multiple of 8. So we’ll set NLPF1 = 72 taps, and the polyphase LPF1 filter will have
8 subfilters.
The second polyphase lowpass filter, LPF2, must have the frequency magnitude response shown in
Figure 10-16(c) when its operating sample rate is L1 · L2 · fs,old = 14112 kHz. Using Eq. (10-3) to
estimate the number of taps in LPF2, NLPF2, with Atten = 60, we compute

(10-8)

Because we must partition the LPF2 coefficients into a polyphase bank of L2 = 40 subfilters, NLPF2
must be an integer multiple of 40. So we’ll set NLPF2 = 120 taps, and the polyphase LPF2 filter will
have 40 subfilters. We implement our two-stage interpolation as shown in Figure 10-16(d), and that
completes our two-stage interpolation example.
The number of multiplies in our two-stage polyphase interpolation process is NLPF1 + L1 · NLPF2 =
1032 multiplies per xold(n) input sample. If we had implemented our interpolation by L = 320 using a
single polyphase filter having 320 subfilters, we would have had to perform 2880 multiplies per
xold(n) input sample. So, happily, our two-stage interpolation process reduced the number of



necessary filter multiplies by almost a factor of three relative to a single-stage interpolation.

10.8.3 Two-Stage Interpolation Considerations
Due to the duality between decimation and interpolation, for computational efficiency reasons as
presented in reference [3], it’s beneficial to interpolate in order from the smallest to the largest factor.
That is, we make sure that L1 is smaller than L2.

Also, it is advantageous to consider setting the L1 and L2 interpolation factors equal to integer powers
of two because we can use computationally efficient half-band filters for the lowpass filters in Figure
10-15(c). We discuss the use of multirate half-band filtering later in Section 10.11.
As with dual-stage decimation, if the single-filter system in Figure 10-15(a) is required to have a
passband peak-peak ripple of R dB (R decibels), then each filter in Figure 10-15(c) must be designed
to have passband peak-peak ripple of no greater than R/2 dB. We have previously mentioned that
interpolation has an inherent amplitude loss. Thus, to achieve unity gain between sequences xold(n)
and xnew(m) in Figure 10-15(c), the product of the DC (zero Hz) gains of the LPF1 and LPF2 filters
must be equal to L.
The advantages of two-stage interpolation, over single-stage interpolation, are identical to the
advantages of two-stage decimation listed at the end of Section 10.2. Be aware that references [1]
and [3] discuss aspects of multistage interpolation where the number of stages is greater than two.
In concluding this section, we mention that Chapter 13 contains three DSP tricks regarding
interpolation of time-domain signals. Now that we have some familiarity with sample rate
conversion, for completeness let’s review the standard mathematical notation used to describe these
operations using polyphase filters. Learning that notation will aid readers as they encounter other
descriptions of sample rate conversion in the literature of DSP.

10.9 z-Transform Analysis of Multirate Systems
In preparation for the multirate filter material in the following sections, here we formalize both our
terminology and notation of sample rate conversion operations.
First, there is a fair amount of variety (some would call it “ambiguity”) in the literature of DSP
regarding the language of sample rate conversion. If you’ve been reading the literature, you may have
noticed that the terminology used has been, unfortunately, very inconsistent—sometimes downright
confusing. A wide variety of terms are used in the literature as shown in Figure 10-17 where “LPF”
means lowpass filter. In the spirit of consistency, from here on we’ll use the terminology indicated by
the bold underlined font in Figure 10-17.

Figure 10-17 Sample rate conversion terminology: (a) sample rate increase; (b) sample rate
reduction.



10.9.1 Signal Mathematical Notation
Compared to the written language of sample rate conversion, the mathematical notation of sample rate
conversion is quite consistent if we use z-transform representations. For example, if a time-domain
sequence x(n), having a z-transform of

(10-9)

is upsampled by two (L = 2, a single zero-valued sample is inserted between each x(n) sample),
producing a w(m) sequence as shown in Figure 10-17(a), then we can describe w(m) as

(10-10)

Equation (10-10) indicates that every other w(m) sample is zero. Considering only the nonzero values
of w(m), the z-transform of w(m) is expressed as

(10-11)

where m represents even-valued integers and k represents all integers. If the w(m) sequence is an
upsampled-by-integer-L version of x(n) (inserting L–1 zero-valued samples between each x(n)
sample), then w(m)’s z-transform is expressed as

(10-12)

In a similar manner, some authors express the z-transform of sequence x(n) as
(10-13)



So here is the point: When we see expressions like Eqs. (10-11), (10-12), or (10-13), they merely
mean that sequence w(m) is an upsampled-by-L version of sequence x(n), and sequence x(n) is a
decimated-by-L version of sequence w(m).

10.9.2 Filter Mathematical Notation
With the above multirate notation fresh in our minds, let’s consider how we can use that notation to
describe digital polyphase filters. If we have a tapped-delay line FIR filter, having N taps, whose
impulse response is h(k), then we can represent the filter’s z-domain transfer function as

(10-14)

For an N = 9-tap FIR filter, for example, from Eq. (10-14) its z-domain transfer function is
(10-15)

In both up- and downsample-by-integer-factor-Q filtering applications, for computational efficiency
reasons, we partition H(z) into Q separate subfilters using the polyphase decomposition process. For
example, if Q = 3, we can write H(z) as

(10-16)

(Read no further until you convince yourself that Eqs. (10-15) and (10-16) are equivalent.) Due to the
exponents of z in Eq. (10-16) we can write

(10-17)

where
(10-17′)

The notation in the last line of Eq. (10-17) seems, at first, like a needless complication in describing
the 9-tap h(k) filter, but shortly we will see why such notation is very useful.

10.10 Polyphase Filter Implementations
Let’s now use the above z-domain transfer functions to help us understand the most popular forms of



polyphase filtering in multirate systems. Equation (10-17), when followed by downsampling by M =
3, is depicted graphically in Figure 10-18, showing the three subfilters. We interpret the notation of
the top subfilter, H0(z3) in Figure 10-18, as a tapped-delay line wherein there are M = 3 delay
elements between each tap. To pause for a moment, what we’re doing here is showing the algebraic
and graphical notation used to describe the polyphase decomposition of a 9-tap prototype FIR filter
used in a decimation-by-three application.

Figure 10-18 Polyphase decomposition of H(z) prior to downsampling by M = 3.

The detailed structure of the FIR filter in Figure 10-18 is shown in Figure 10-19, where we see the
polyphase decomposition of h(k) into three subfilters, creating a polyphase filter.

Figure 10-19 Details of the polyphase decomposition of H(z) for decimation M = 3.

When the multirate concepts described above were first applied to the impulse responses of digital
filters, DSP pioneers quickly arrived at the impressive-sounding “noble identities” graphically
depicted in Figure 10-20. Those complementary identities, showing the equivalency of swapping the
order of filters and up/downsamplers, are exceedingly useful in the analysis and implementation of
multirate systems as we shall see in the next section. In Figure 10-20 the H(z) term is the z-transform
of a filter’s h(n) impulse response, and the H(zQ) term is the z-transform of h(n) upsampled by integer
Q, similar in form to Eqs. (10-17) and (10-17′).

Figure 10-20 Noble identities of multirate systems: (a) sample rate increase; (b) sample rate
reduction.



Using the noble identities, we can move the downsampling by M = 3 operation in front of the
subfilters in Figure 10-18 as shown in Figure 10-21(a). A detailed depiction of the polyphase filter is
provided in Figure 10-21(b), where we also rearranged the initial delay elements at the input of the
filter.

Figure 10-21 Polyphase decomposition of h(k), for decimation by M = 3: (a) simplified depiction;
(b) detailed depiction.

In that figure we see that the delay lines between the filter coefficients now contain only a single
delay element and the subfilters can be described by

(10-18)

The upper subfilters in Figures 10-19 and 10-21(b) make obvious the meaning of our notation
regarding H0(z3) and H0(z), for example. That is, H0(z3) is merely an upsampled-by-three version of



H0(z).

One final simplification available for polyphase decimation filters is shown in Figure 10-22, where
the two initial delay elements and the downsampling by M = 3 operations in Figure 10-21(b) are
replaced by a three-position commutating (multiplexing) switch. One y(m) output sample is produced
each time the switch completes a single full (three-step) rotation.

Figure 10-22 Simplified polyphase decomposition of h(k), for decimation by M = 3.

In an identical manner, interpolation by L = 3 (upsampling by three followed by lowpass filtering) by
way of polyphase decomposition is depicted in Figure 10-23(a). The subfilters in that figure are
identical to the subfilters from Eq. (10-17) and Figure 10-19. Looking at Figure 10-23(b), we see that
the upsamplers insert two zero-valued samples between each output sample of the three subfilters.
The delay elements delay those upsampled sequences by various delay times such that at each output
time instant only one of the inputs to the final summation is nonzero. So instead of performing a
summation of mostly zero-valued samples, we can select only the path to the summer that contains a
nonzero sample.
Figure 10-23 Polyphase decomposition of h(k), for interpolation by L = 3: (a) simple depiction; (b)

reduced-length subfilters; (c) final structure.



Thinking about this path selection process (multiplexing), happily we can use the three-path
commutating switch in Figure 10-23(c) for multipath selection and eliminate the delay elements, the
upsamplers, and the final summation. As each new x(n) input sample is available, the switch
completes a single full (three-step) rotation, producing three y(m) output samples.
Again, the purpose of the material in this section is to show the algebraic and graphical notation
typically used to describe FIR polyphase filters used in sample rate conversion applications.
The major benefits of using polyphase filters for sample rate conversion are:

• Signal data storage requirements are minimized.
• No multiply by zero computations are performed (for interpolation).
• No computational results are discarded (for decimation).
• A key benefit is that the computations are performed at the lower sample rate. For an N-tap FIR
filter, polyphase decimation implementations reduce the number of multiplications per unit time to
1/M times the number of multiplications per unit time with no polyphase decomposition. This
advantage may be critical in high-data-rate applications and leads to lower power consumption in



battery-powered devices.
In the following sections we introduce several specialized digital filters developed specifically to
minimize the computational workload encountered in sample rate conversion applications. As such,
let’s have a look at rational-factor sample rate change filters first.

10.11 Sample Rate Conversion by Rational Factors
In the event that we wish to resample a signal by a rational factor L/M (as in Figure 10-9(b)), we can
interpolate by integer factor L followed by downsampling by integer factor M. Our single lowpass
filter comprises the L polyphase subfilters shown in Figure 10-24(a), where the input and output
sample rates are related by

(10-19)

Figure 10-24 Resampling by rational-factor L/M: (a) fundamental process; (b) no downsampling; (c)
addressed-ROM scheme.

However, this naive approach would not be sensible because we’d be computing some w(p) samples
that are destined to be discarded by the downsample-by-M process.
Attempting to avoid that computational inefficiency, we can omit the downsampling process



altogether and merely control the position of the interpolator’s output commutating switch position as
depicted in Figure 10-24(b). For example, if we rotate the switch but skip alternate switch output
ports, we achieve resampling by a factor of L/2. If we advance the switch to every third output
position, for each y(m) output sample, we’ll have resampling by a factor of L/3, and so on. This
commutating switch control mechanism idea means that we need only compute the output of a single
subfilter for each y(m) output sample. In resampling by a rational factor L/M, the switch output port
(index of a single subfilter) used to compute a y(m) output sample is found using

(10-20)

where <mM>L means compute the product mM modulo-L. So the switch output port counter in Figure
10-24(b) is a binary modulo-L counter. As the resampler operates, the index n, of the most recent
input x(n) applied to the subfilters, is given by

(10-20′)

where  means the integer part of mM/L. The actual resampler difference equation is
(10-20″)

where N is the number of taps in the prototype FIR filter from which the polyphase Hk(z) subfilters in
Figure 10-24(b) were obtained.
For a numerical example, the left side of Table 10-1 shows the commutating switch output port index
k (index of a single subfilter), and the input x(n) index n, as a function of a resampler’s mth y(m)
output sample index for resampling by a factor of L/M = 4/3. In this case, the switch counter counts as
k = 0,3,2,1,0,3,2,1, and so on. The right side of Table 10-1 shows the switch indexing for resampling
by 3/4. In that scenario, the switch counter counts as k = 0,1,2,0,1,2, and so on.

Table 10-1 Indexing for Resampling by 4/3 and 3/4



In our daily lives we hear the phrase “Timing is everything.” Well, that’s certainly true in our
resampling schemes. In Figure 10-24(b) we must remember that when the commutating switch resides
at position k = 0, and when during its cycling it crosses the k = 0 position, we must input a new x(n)
sample before we compute a y(m) output sample. The times when a new x(n) input sample is applied
to the subfilters, before a y(m) sample is computed, are indicated by the left-pointing arrows in Table
10-1.
Be aware that it’s possible that more than one x(n) input sample must be applied to the resampler
prior to an output y(m) computation for decimation applications. For example, on the right side of
Table 10-1, when m = 3, we are forced to apply both the x(3) and x(4) input samples to the resampler
before computing y(3).
OK, let’s stop and catch our breath here. If we were to substitute the expressions for k and n, from
Eqs. (10-20) and (10-20′), into Eq. (10-20″), we would produce a rather complicated algebraic
expression for y(m). However, we will not let such an equation for y(m) intimidate us because the
h(pL + k) term in Eq. (10-20″) merely specifies the coefficients of the kth subfilter, and the x(n – p)
term simply defines the x(n) input samples residing in that kth subfilter. As such, we see that Eq. (10-
20″) is no more than a convolution equation where the summation index p accounts for each of the
N/L coefficients in a subfilter. (N/L is an integer.)
Notice that the tapped-delay lines of each subfilter in Figure 10-24(b) contain the same x(n) time
samples. To reduce input signal data storage requirements, we can use a single tapped-delay line as
we described for Figure 10-13. So in our rational-factor resampling implementation, shown in Figure
10-24(c), the modulo-L counter output index k now becomes a pointer pointing to a bank of read-only
memory (ROM) locations that contain the N/L coefficients of the kth subfilter. For each updated value
of k in Table 10-1 we use the kth set of subfilter coefficients to compute y(m). The control of applying
a new x(n) input sample, or samples, to the resampler before computing a y(m) output sample is
indicated by the dashed line to the Input Switch in Figure 10-24(c). As such, each time the modulo-L
ROM address counter overflows, we apply new x(n) input samples to the resampler.
To conclude this rational-factor resampling discussion, there are three practical issues we must keep
in mind. First, if we want the DC (zero Hz) gain of our resampling process to be unity, then the
original prototype lowpass FIR filter must have a DC gain of L to compensate for the amplitude loss
by a factor of L caused by interpolation. (The downsampling by M causes no amplitude change.) To
achieve a DC gain of L, the sum of the prototype filter’s h(k) coefficients must equal L.
Second, to avoid aliasing errors after downsampling, in designing the original prototype lowpass FIR
filter, the filter’s passband width must not be greater than fs,in/2 or (fs,in/2) · (L/M), whichever is
smaller, where fs,in is x(n)’s sample rate, and fs,out is the filter’s data rate, in Hz. The stopband
attenuation of the prototype filter must be such that the attenuated upsampled images do not induce
intolerable levels of noise when they’re aliased by downsampling by M into the final band of 0 to
fs,out/2 Hz.

Third, from a computational efficiency standpoint, the rational-factor resampling scheme described in
this section has the power of George Foreman’s right hand.

10.12 Sample Rate Conversion with Half-band Filters
Recall that the half-band filters we introduced in Section 5.7 have a frequency magnitude response



with transition regions centered at ±fs/4 as shown in Figure 10-25(a). Those filters are linear-phase
lowpass tapped-delay line FIR filters in which every other filter coefficient is zero, except the center
coefficient. We discuss half-band filters here because their sparse nonzero coefficient sets make them
ideal for use in sample rate conversion applications where the resampling factor is an integer power
of two (2, 4, 8, etc.).
Figure 10-25 Half-band filters: (a) filter frequency magnitude response; (b) decimation by eight; (c)

spectral overlap after decimation by two.

10.12.1 Half-band Filtering Fundamentals
An example of sample rate change by an integer power of two is shown in Figure 10-25(b) where the
same h(k) half-band filter is used three times to achieve decimation by eight. If the sample rate at the
input of the three-stage decimation is fs,in, the sample rate at the output is fs,in/8.

We remind the reader that due to the nature of half-band filters there will be some amount of spectral
overlap, and thus some aliasing, after each downsample-by-two operation. This is shown in Figure
10-25(c) for the first decimation-by-two stage, where the spectral replications are shown as dotted
lines centered at integer multiples of the sample rate fs,in/2. The amount of spectral overlap is
proportional to the transition region width of the filters (inversely proportional to the number of h(k)
half-band filter taps).
It’s normal to use the same half-band filter in multistage decimation by two as was done in Figure 10-
25(b). However, in multistage interpolation by factors of two it would be computationally inefficient
to use the same half-band filter in each stage. Figure 10-26 helps explain why this is true. Consider
the x(n) signal in Figure 10-26(a) that we wish to interpolate by a factor of eight. The x(n) signal’s
spectrum is that shown in Figure 10-26(b) where the spectral replications are shown as dotted lines
centered at integer multiples of the input sample rate fs,in. The signal at node A, after x(n) has been
upsampled by two via zeros insertion, has the |A(f)| spectrum shown in Figure 10-26(c) where the
new sample rate is 2fs,in.

Figure 10-26 Multistage interpolation using half-band filters.



The job of the h1(k) filter in Figure 10-26(a) is to eliminate the spectral images in |A(f)| centered at
±fs,in (half the sample rate at node A). We show h1(k)’s magnitude response as the dashed |H1(f)| lines
in Figure 10-26(c). The output of the h1(k) half-band filter, node B, has the |B(f)| spectrum shown in
Figure 10-26(d). After the signal at node B is upsampled by two, the h2(k) half-band filter must have
the frequency magnitude response shown as |H2(f)| in Figure 10-26(d). Because the transition region
width of |H2(f)| is so much wider than the transition region width of |H1(f)|, the h2(k) filter will require
fewer coefficients than did the h1(k) filter. For similar reasons the h3(k) filter will require fewer
coefficients than the h2(k) filter.
What we’re saying is this: Unlike multistage decimation by powers of two, in our relentless pursuit of
computational efficiency, multistage interpolation by powers of two should not use the same half-band
filter in each stage. In multistage interpolation each follow-on half-band filter requires fewer taps
than the preceding filter. Because we like to minimize the number of necessary multiplications per
second in real-time applications, we take comfort in the fact that the half-band interpolation filter
requiring the most computations per output sample, h1(k), operates at the lowest sample rate.

From a practical standpoint, we remind the reader that if we use an FIR filter design software
package to design half-band filters, unavoidable numerical computation errors will yield alternating
filter coefficients that are indeed very small but not exactly zero-valued. So in our filter modeling
efforts, we must force those very small coefficient values to zero before we proceed to analyze half-
band filter frequency responses.

10.12.2 Half-band Filter Implementations
Here we discuss several important aspects of implementing half-band FIR filters for sample rate



conversion and show why these filters are computationally efficient. We illustrate half-band filter
implementations in sample rate conversion applications with a decimation-by-two example showing
the details of a polyphase decomposition process.
Suppose we need an N = 11-tap half-band FIR filter in a decimation-by-two application. We could
use a standard 11-tap tapped-delay line half-band filter, as discussed in Chapter 5, followed by a
downsample-by-two operation. Instead we choose to use polyphase decomposition as shown in
Figure 10-27(a).

Figure 10-27 An 11-tap polyphase half-band decimation filter: (a) polyphase form; (b) polyphase
with downsampling prior to filtering.

Recall that a prototype FIR filter, which we want to decompose into Q polyphase subfilters for a
resample by Q application, must have an integer multiple of Q taps. So we can think of our 11-tap FIR
filter as being a 12-tap filter with the h(11) twelfth coefficient being zero-valued.
Read no further until you convince yourself that the two subfilters in Figure 10-27(a), whose outputs
are summed, is equivalent to a standard 11-tap tapped-delay line half-band filter, where both
implementations have a z-domain transfer function of

(10-21)

Next, we place the downsample-by-two operation in Figure 10-27(a) ahead of the tapped-delay lines



as shown in Figure 10-27(b). That modification, because of our noble identities, reduces each dual
delay element in Figure 10-27(a) to a single delay element as shown in Figure 10-27(b).

Figure 10-27 Half-band filter implementations: (c) decimation by two; (d) interpolation by two.

Applying the input commutating switch implementation introduced in Figure 10-24, our Figure 10-
27(b) decimation-by-two polyphase half-band filter becomes what is shown in Figure 10-27(c).
Because only one of the odd-indexed filter coefficients is nonzero, namely h(5) ≠ 0, we have only one
multiply operation in the bottom path of our final polyphase half-band filter. Again, by using this
polyphase implementation, we compute no filter output samples destined to be discarded by the
downsample-by-two operation, and happily all filter computations take place at the decimated
(lower) sample rate.
Figure 10-27(d) presents the structure of a polyphase version of a half-band filter that eliminates any
multiply by zero computations in an interpolation-by-two application.
If the number of taps in a half-band filter is N, where N+1 is an integer multiple of four, then the
number of unit-delay elements in the filters’ bottom paths in Figures 10-27(c) and 10-27(d) is (N–
3)/4.
Because the half-band filter coefficients in the top path are symmetrical, thankfully, we can use the
folded FIR filter scheme described in Section 13.7 to reduce the number of multipliers in the top path
by a factor of two. This means we can achieve the filtering performance of an N-tap half-band FIR
filter while performing only, roughly, N/4 multiplies per filter output sample. Neat!
If Figures 10-27(c) and 10-27(d)’s half-band filters’ coefficients are designed such that h(5) = 0.5,
which is often the case with commercial filter design software, the bottom path’s multiplication by
h(5) can be replaced with a binary right-shift-by-one-bit operation. On the other hand, to compensate
for the amplitude loss by a factor of two inherent in interpolation by two, the coefficients in Figure
10-27(d) are multiplied by two to make the filter’s gain equal to two. In that case coefficient h(5)
becomes one, eliminating the bottom path multiplication altogether.



10.13 Sample Rate Conversion with IFIR Filters
The interpolated FIR (IFIR) filters that we introduced in Chapter 7 are particularly useful in sample
rate conversion applications because they’re computationally efficient, and their signal data storage
requirements can be reduced in such applications.
To see why this is so, we refer to Figure 10-28(a) showing a standard IFIR filter with its cascaded
shaping and image-reject subfilters followed by downsampling by integer M (discard all but every
Mth sample). The high-order Hsh(z) shaping filter is an upsampled (zero-stuffed) by M version of an
Hp(z) prototype lowpass filter as discussed in Chapter 7. Because the Hsh(z) shaping subfilter and the
Hir(z) image-reject subfilter are linear and time invariant, we can swap their order as depicted in
Figure 10-28(b). Now comes the good part.

Figure 10-28 IFIR filter structures used for decimation.

Due to the noble identities we can swap the order of the Hsh(z) subfilter with the downsampler and
arrive at the structure shown in Figure 10-28(c). Every M-unit delay in the Hsh(z) filter’s tapped-
delay line is now replaced by a single unit delay, which takes us back to using our original low-order
Hp(z) prototype filter. This fortunate scenario reduces the signal data storage requirements of our
traditional IFIR filter. In addition, the Hir(z) and M downsampler combination can be implemented
using polyphase filtering to further reduce their computational complexity.
In a similar manner, IFIR filters can be used for interpolation as shown in Figure 10-29(a). There we
show an upsampling process followed by a standard IFIR filter structure. Again, we can swap the
order of subfilter Hsh(z) with the upsampler and arrive at the structure shown in Figure 10-29(b).
Every L-unit delay in Hsh(z) is now replaced by a single unit delay, which, again, takes us back to
using our original low-order prototype filter Hp(z) with its reduced data storage requirements. The L
upsampler and Hir(z) combination can be implemented using polyphase filtering to reduce their
computational workload.

Figure 10-29 IFIR filter structures used for interpolation.



Before concluding this chapter on sample rate conversion, we introduce one final topic, cascaded
integrator-comb filters. These important filters have become popular for sample rate conversion in
the hardware design of modern digital communications systems.

10.14 Cascaded Integrator-Comb Filters
Cascaded integrator-comb (CIC) filters are computationally efficient implementations of narrowband
lowpass filters and, as such, are used in hardware implementations of decimation and interpolation.
CIC filters are well suited to improve the efficiency of anti-aliasing filtering prior to decimation, as
shown in Figure 10-30(a), and for anti-imaging filtering for interpolating signals as in Figure 10-
30(b). Both applications are associated with very high-data-rate filtering such as hardware
quadrature modulation and demodulation in modern wireless systems, and delta-sigma A/D and D/A
converters.

Figure 10-30 CIC filter applications: (a) decimation; (b) interpolation.

Because their frequency magnitude response envelopes are sin(x)/x-like, CIC filters are typically
followed, or preceded, by higher-performance linear-phase lowpass tapped-delay line FIR filters
whose task is to compensate for the CIC filter’s non-flat passband as shown in Figure 10-30. That
cascaded-filter architecture has valuable benefits. For example, with decimation, narrowband
lowpass filtering can be attained at a greatly reduced computational complexity from that of a single
lowpass FIR filter due to the initial CIC filtering. In addition, the follow-on FIR filter operates at
reduced clock rates, minimizing power consumption in high-speed hardware applications. A crucial
bonus in using CIC filters, the property that makes them popular in hardware devices, is that they
require no multiplications. Their arithmetic is additions and subtractions only.
While CIC filters were introduced to the signal processing community over two decades ago, their
application possibilities have grown in recent years[10]. That’s because improvements in VLSI
integrated circuit technology, increased use of polyphase filtering techniques, advances in delta-sigma
converter implementations, and the significant growth in wireless communications systems have



spurred much interest in, and improvements upon, traditional CIC filters. Here we’ll introduce the
structure and behavior of traditional CIC filters, present their frequency-domain performance, and
discuss several important implementation issues.

10.14.1 Recursive Running Sum Filter
CIC filters originate from the notion of a recursive running sum filter, which is itself an efficient
version of the standard nonrecursive moving averager. Reviewing a D-point nonrecursive moving
average process in Figure 10-31(a), we see that D–1 summations (plus one multiply by 1/D) are
necessary to compute each y(n) output sample.

Figure 10-31 D-point averaging filters: (a) nonrecursive moving averager; (b) recursive moving
averager; (c) recursive running sum filter; (d) CIC version of a recursive running sum filter.

The D-point nonrecursive moving average filter’s y(n) time-domain output is expressed as
(10-22)

The z-domain expression for this nonrecursive moving averager is
(10-23)



while its z-domain Hma(z) transfer function is
(10-24)

where the subscript “ma” means “moving average.”
An equivalent, but more computationally efficient, form of a moving averager is the recursive moving
averager depicted in Figure 10-31(b). The recursive moving averager has the sweet advantage that
only two additions are required per output sample, regardless of the delay length D!
Notice that the delay line of the recursive moving averager has D delay elements, while the
nonrecursive moving averager has D–1 delay elements. The recursive moving averager’s difference
equation is

(10-25)

having a z-domain Hrma(z) transfer function of
(10-26)

where the subscript “rma” means “recursive moving average.” What is interesting is that the
nonrecursive moving averager and the recursive moving averager have identical behavior and, as
such, Hma(z) = Hrma(z). The transfer functions of the two averagers are equal to each other! (Actually,
we saw the equivalence of nonrecursive FIR filters and special recursive structures once before—it
was in regard to frequency sampling filters in Section 7.1.)
If we ignore the 1/D gain factor, we have a structure known as a recursive running sum filter shown
in Figure 10-31(c). Next we’ll see how a CIC filter is itself a recursive running sum filter.

10.14.2 CIC Filter Structures
If we condense the delay line representation in Figure 10-31(c), we obtain the classic representation
of a single-stage (1st-order) CIC filter, whose cascade structure (block diagram) is shown in Figure
10-31(d). The feedforward portion of the CIC filter is called the comb section, whose differential
delay is D, and the feedback section is called an integrator. The comb stage subtracts a delayed input
sample from the current input sample, and the integrator is simply an accumulator (performing
summations). The CIC filter’s difference equation is

(10-27)

and its z-domain transfer function is
(10-28)

Looking at Eq. (10-28), we see that the numerator is the transfer function of the comb filter and the



denominator is the transfer function of the integrator.
To see why the CIC filter is of interest, first we examine its time-domain behavior, for D = 5, shown
in Figure 10-32. If a unit impulse sequence, a unity-valued sample followed by many zero-valued
samples, was applied to the comb stage, that stage’s output is as shown in Figure 10-32(a). Think,
now, what would be the output of the integrator if its input was the comb stage’s impulse response?
The initial positive impulse from the comb filter starts the integrator’s all-ones output. Then, D
samples later, the negative impulse from the comb stage arrives at the integrator to make all further
CIC filter output samples equal to zero.

Figure 10-32 Single-stage CIC filter time-domain responses when D = 5.

The key issue is the combined unit impulse response of the CIC filter being a rectangular sequence,
identical to the unit impulse response of the recursive running sum filter. (Moving averagers,
recursive running sum filters, and CIC filters are close kin. They have the same z-domain pole/zero
locations, their frequency magnitude responses have identical shapes, their phase responses are
identical, and their transfer functions differ only by a constant scale factor.) The frequency magnitude
(in dB) and linear-phase response of a D = 5 CIC filter are shown in Figure 10-33(a).

Figure 10-33 Characteristics of a single-stage CIC filter when D = 5: (a) magnitude response; (b)
phase response; (c) pole/zero locations.

We can obtain an expression for the CIC filter’s frequency response by evaluating Eq. (10-28)’s
Hcic(z) transfer function on the z-plane’s unit circle, by setting z = ejω = ej2πf, yielding

(10-29)

In Eq. 10-29 the frequency variable f is in the range of –0.5 to 0.5, corresponding to a continuous-
time frequency range of –fs/2 to fs/2 Hz. Using Euler’s identity 2jsin(α) = ejα – e–jα, we can write

(10-30)



The first positive-frequency magnitude null in Figure 10-33(a), when D = 5 for example, is located at
a frequency of fs/D = fs/5 = 0.2fs Hz (f = 0.2). Equation (10-30) is in the form of Eq. (3-46). This
means, ignoring the linear-phase factor, a 1st-order CIC filter’s frequency magnitude response is
roughly equal to a sin(x)/x function centered at zero Hz as we see in Figure 10-33(a). (This is why
CIC filters are sometimes called sinc filters.)
Let’s stop here for a moment and mention a subtle characteristic of the phase of Hcic(f). The phase
angle, the –πf(D–1) in Eq. (10-30), is a linear function of frequency. Plotting that phase, over the
frequency range of –0.5 ≤ f ≤ 0.5, would yield a straight line (with negative slope). However, the
sin(πfD)/sin(πf) amplitude portion of Eq. (10-30) changes sign (polarity) between its amplitude nulls
(zero amplitude). So those sign changes show up as phase discontinuities of π radians (180 degrees)
in phase plots. For example, notice the phase discontinuity in Figure 10-33(b) at frequency f = 0.2.
That discontinuity is π radians, because the sin(πfD)/sin(πf) amplitude term changed sign from
positive to negative at f = 0.2.
The z-plane pole/zero characteristics of a D = 5 CIC filter are provided in Figure 10-33(c), where
the comb filter produces D zeros, equally spaced around the unit circle, and the integrator produces a
single pole canceling the zero at z = 1. Each of the comb’s zeros, being a Dth root of 1, are located at
z(k) = ej2πk /D, where k = 0, 1, 2, ..., D–1.
The normally risky situation of having a filter pole directly on the unit circle need not trouble us here
because there is no coefficient quantization error in our Hcic(z) transfer function. CIC filter
coefficients are ones and can be implemented with perfect precision using binary numbers. Although
recursive, CIC filters are guaranteed stable, linear phase as shown in Figure 10-33(b) and have
finite-length impulse responses.
If we examine just the magnitude of Hcic(f) from Eq. (10-30), we can determine the DC (zero Hz) gain
of our single-stage Figure 10-31(d) CIC filter. However, setting f = 0 in Eq. (10-30), we have

(10-31)

which is indeterminate. But don’t worry, we can apply the Marquis de L’Hopital’s rule to the
magnitude-only portion of Eq. (10-30), then set f = 0, to yield

(10-32)

So, the DC gain of a 1st-order CIC filter is equal to the comb filter delay D. This fact will be very
important to us when we actually implement a CIC filter in hardware.
CIC filters are primarily used for anti-aliasing filtering prior to decimation and for anti-imaging



filtering for interpolated signals. With those notions in mind, we swap the order of Figure 10-31(c)’s
comb and integrator—we’re permitted to do so because those are linear time-invariant operations—
and include downsampling by a sample rate conversion factor R in Figure 10-34(a). (Readers should
prove to themselves that the unit impulse response of the integrator/comb combination, prior to the
sample rate conversion, in Figure 10-34(a) is equal to that in Figure 10-32(c).) In most CIC filter
applications the sample rate change factor R is equal to the comb’s differential delay D, but we’ll
keep them as separate design parameters for now.

Figure 10-34 Single-stage CIC filters, used in: (a) decimation; (b) interpolation.

The downsampling operation in Figure 10-34(a) results in an output sample rate of fs,out = fs,in/R. To
investigate a CIC filter’s frequency-domain behavior in more detail, Figure 10-35(a) shows the
frequency magnitude response of a D = 8 CIC filter prior to downsampling. The spectral band, of
width B, centered at zero Hz, is the desired passband of the filter. A key aspect of CIC filters is the
spectral aliasing that takes place due to downsampling.

Figure 10-35 Frequency magnitude response of a 1st-order, D = 8, decimating CIC filter: (a)
response before decimation; (b) response and aliasing after R = 8 downsampling.

Those B-width shaded spectral bands centered at multiples of fs,in/R in Figure 10-35(a) will alias
directly into our desired passband after downsampling by R = 8 as shown in Figure 10-35(b). Notice
how the largest aliased spectral component, in this example, is approximately 16 dB below the peak
of the band of interest. Of course, the aliased power levels depend on the bandwidth B—the smaller
B is, the lower the aliased energy after downsampling.



Figure 10-34(b) shows a CIC filter used for interpolation where upsampling by R yields a y(m)
output sample rate of fs,out = Rfs,in. (In this CIC filter discussion, interpolation is defined as zeros-
insertion upsampling followed by filtering.) Figure 10-36(a) shows an arbitrary baseband spectrum,
with its spectral replications, of a signal applied to the D = R = 8 interpolating CIC filter of Figure
10-34(b). The filter’s output spectrum in Figure 10-36(b) shows how imperfect filtering gives rise to
the undesired spectral images.

Figure 10-36 Spectra of a 1st-order, D = R = 8, interpolating CIC filter: (a) input spectrum before
interpolation; (b) output spectral images.

After interpolation, unwanted images of the B-width baseband spectrum reside at the null centers,
located at integer multiples of fs,out/D. If we follow the CIC filter with a traditional lowpass tapped-
delay line FIR filter, whose stopband includes the first image band, fairly high image rejection can be
achieved.

10.14.3 Improving CIC Attenuation
The most common method to improve CIC filter anti-aliasing and image attenuation is by increasing
the order Q of the CIC filter using multiple stages. Figure 10-37 shows the structure and frequency
magnitude response of a 3rd-order (Q = 3) CIC decimation filter.

Figure 10-37 A 3rd-order (Q = 3), D = R = 8 CIC decimation filter: (a) structure; (b) frequency
magnitude response before decimation.



Notice the increased attenuation at multiples of fs,in/D in Figure 10-37(b) compared to the 1st-order
CIC filter in Figure 10-35(a). Because the Q = 3 CIC stages are in cascade, the overall before-
decimation transfer function will be the product of their individual single-stage transfer functions, or

(10-33)

The overall frequency magnitude response of the Q = 3 cascaded stages, before decimation, will be
(10-34)

where, again, the frequency variable f is in the range of –0.5 to 0.5 corresponding to a continuous-
time frequency range of –fs/2 to fs/2 Hz. The price we pay for improved anti-alias attenuation is
additional hardware adders and increased CIC filter passband droop. An additional penalty of
increased orders comes from the DC (zero Hz) gain of the decimation filter, which is DQ. That
potentially large gain causes significant binary data word-width growth for higher-order filters. Even
so, this multistage decimation implementation is common in commercial integrated circuits, where a
Qth-order CIC filter is called a sincQ filter.

10.14.4 CIC Filter Implementation Issues
With CIC filters, the comb section can precede, or follow, the integrator section. However, it’s
sensible to put the comb section on the side of the filter operating at the lower sample rate to reduce
the length of the delay line. Using the noble identities discussed earlier in this chapter, swapping the
Figure 10-34 comb filters with the rate conversion operations results in the most common
implementation of CIC filters as shown in Figure 10-38. Notice that the decimation filter’s comb
section now has a delay length (differential delay) of N = D/R. That’s because an N-sample delay
after downsampling by R is equivalent to a D-sample delay before downsampling by R. Likewise for
the interpolation filter; an N-sample delay before upsampling by R is equivalent to a D-sample delay
after upsampling by R.

Figure 10-38 Single-stage CIC filter implementations: (a) for decimation; (b) for interpolation.



Those Figure 10-38 configurations yield two major benefits: First, the comb section’s new
differential delay is decreased to N = D/R, reducing data storage requirements; second, the comb
section now operates at a reduced clock rate. Both of these effects reduce hardware power
consumption.
The comb section’s differential delay design parameter N = D/R is typically 1 or 2 for high-sample-
rate conversion ratios as is often done in commercial up/down-converter chips. Value N effectively
sets the number of nulls in the frequency response of a decimation filter, as shown in Figure 10-39(a).
Figure 10-39 CIC decimation filter frequency responses: (a) for various values of differential delay

N, when R = 8; (b) for two R downsampling factors when N = 2.

An important characteristic of a CIC decimator is that the shape of the filter response, relative to its
fs,out output sample rate, changes very little as a function of the downsampling factor R, as shown in
Figure 10-39(b). For R larger than roughly 16, the change in the filter shape is negligible. Fortunately,
this allows the same compensation FIR filter to be used for variable-decimation ratio systems.
The gain of a Qth-order CIC decimation filter is DQ, and individual integrators within the filter can
experience overflow. (An integrator’s gain is infinite at DC!) As such, the use of two’s complement
(non-saturating) arithmetic resolves this overflow situation just so long as the integrator word width
accommodates the maximum value expected at the CIC filter output. Happily, using the two’s
complement binary number format, with its modular wraparound property, the follow-on comb filter
will properly compute the correct difference between two successive integrator output samples.
To show this behavior, assume we’re using a four-bit two’s complement number format, and a CIC
decimation filter’s integrator must sum the values 7 + 4 and the comb filter must subtract 6 from that
sum. Figure 10-40(a) shows how a previous integrator output xint(0) sample of decimal 6 can be
subtracted by the comb filter from a later xint(D) integrator output sample of decimal 11 (11 = 7 + 4, a
temporary overflow condition), resulting in a correct difference of decimal plus 5 (+5dec).

Figure 10-40 Two’s complement overflow (numerical wraparound): (a) difference example; (b) D =
5 decimation example.



This two’s complement wraparound issue is so important that it deserves a second example. Think of
the D = 5 decimation filter in Figure 10-40(b). If we applied a unit step input (an all-ones x(n)
sequence) at time n = 1, we expect the v(n) sequence to ramp up to a decimal value of 5 and remain at
that value. Now if the integrator’s adder/accumulator register was only three bits wide, it will not
accommodate the v(n) output of 5 because the most positive value of a three-bit word in two’s
complement format is +3. That scenario is shown on the left side of Table 10-2, where all the values
are shown in decimal format. There we see that the v(n) sequence goes to an incorrect value of –3.

Table 10-2 Accumulator Example for D = 5 Decimation



If we increase the integrator’s accumulator width to four bits, the integrator accumulator experiences
overflow but the comb filter compensates for that situation and provides the correct v(n) sequence as
shown on the right side of Table 10-2.
So here’s the bottom line: When two’s complement fixed-point arithmetic is used, the number of bits
in a Qth-order CIC decimation filter’s integrator and comb registers must accommodate the filter’s
input signal times the filter’s total gain of DQ. To be specific, overflow errors are avoided if the
number of integrator and comb register bit widths is at least

(10-35)

where x(n) is the input to the CIC filter, and  means that if k is not an integer, round it up to the next
larger integer. For example, if a Q = 3-stage CIC decimation filter accepts one-bit binary input words
from a sigma-delta A/D converter and the decimation factor is R = D = 64, binary overflow errors
are avoided if the three integrator and three comb registers’ bit widths are no less than

(10-36)

Regarding a CIC decimation filter’s gain of DQ, we often see a multistage CIC decimation filter
implemented as shown in Figure 10-41 where R = D, and a gain reduction (by 1/DQ) stage is included
as a final operation. If D is an integer power of two, the multiply operation can be performed with a
binary right shift. That’s one of the computational benefits of decimating by an integer power of two.
In the Figure 10-41 scenario, the data words out of the final comb filter are shifted to the right by



Qlog2(D) bits to achieve an overall decimation filter gain of unity.
Figure 10-41 Unity gain, Q = 3, D = R, CIC decimation filter.

Interpolating CIC filters have zero-valued samples inserted after each original input sample reducing
its gain by a factor of 1/R, so the net gain of a CIC interpolation filter is DQ/R. For multistage
interpolation CIC filters, the integrators’ register bit widths grow in size in successive integrator
stages. This means that not all integrator accumulator registers need to have the same bit width, so
there is some flexibility in discarding some of the least significant bits (lsbs) within the stages of a
multistage CIC interpolation filter. The specific effects of this lsb removal are, however, a
complicated issue, so we refer the reader to references [9,10] for more details.
While the preceding discussion focused on hardwired CIC filters, these filters can also be
implemented with programmable fixed-point DSP chips. Although those chips have inflexible data
paths and fixed word widths, their use of CIC filtering can be advantageous for high-sample-rate
conversion. Large word widths can be accommodated with multiword additions at the expense of
extra instructions. Even so, for large R the computational workload per output sample may be small
compared to computations required using a more conventional tapped-delay line FIR filter approach
in fixed-point DSP chips.
One further CIC filter implementation issue deserves mention. When we need to implement cascaded
integrators, we showed those integrators as in Figure 10-42(a). As it turns out, depending on the
architecture of your hardware implementation, it may be advantageous to implement those cascaded
integrators as shown in Figure 10-42(b), where placing the unit-delay elements in the forward path
reduces the pipelined critical-path delay from three adder delays to a single adder delay[11]. While
the Figure 10-42(b) cascaded network adds additional time delay, the frequency magnitude responses
are identical for the two networks in Figure 10-42.

Figure 10-42 Cascaded integrator implementations: (a) traditional method; (b) reduced pipelined
critical-path delay method.

10.14.5 Compensation/Preconditioning FIR Filters
In typical decimation/interpolation filtering applications we desire a reasonably flat passband and
narrow transition region filter response. These desirable properties are not provided by CIC filters
alone, with their drooping passband gains and wide transition regions. We alleviate this problem, in



decimation for example, by following the CIC filter with a compensation nonrecursive FIR filter
(often called an inverse sinc filter), as in Figure 10-30(a), to narrow the output bandwidth and flatten
the passband gain.
The compensation FIR filter’s frequency magnitude response is ideally an inverted version of the CIC
filter passband response similar to that shown by the dashed curve in Figure 10-43(a) for a simple 3-
tap FIR filter whose coefficients are [–1/16, 9/8, –1/16]. With the dotted curve representing the
uncompensated passband droop of a 1st-order R = 8 CIC filter, the solid curve represents the
compensated response of the cascaded filters. If either the CIC filter’s order or passband width
increases, the correction becomes more demanding, requiring more compensation FIR filter taps. An
example of this situation is shown in Figure 10-43(b) where the dotted curve represents the passband
droop of a 3rd-order R = 8 CIC filter and the dashed curve, taking the form of [x/sin(x)]3, is the
response of a 15-tap compensation FIR filter having the coefficients [–1, 4, –16, 32, –64, 136, –352,
1312, –352, 136, –64, 32, –16, 4, –1].

Figure 10-43 Compensation FIR filter magnitude responses, dashed curves: (a) with a 1st-order
decimation CIC filter; (b) with a 3rd-order decimation CIC filter.

Wideband compensation also means that signals near fs,out/2 are attenuated with the CIC filter and
then must be amplified in the correction filter, which adds noise. As such, practitioners often limit the
passband width of the compensation FIR filter to roughly one-fourth the frequency of the first null in
the CIC filter response.†
† I thank my DSP pal Ray Andraka, of Andraka Consulting Group Inc., for his guidance on these implementation issues.

Those dashed curves in Figure 10-43 represent the frequency magnitude responses of compensating
FIR filters within which no sample rate change takes place. (The FIR filters’ input and output sample
rates are equal to the fs,out output rate of the decimating CIC filter.) If a compensating FIR filter were
designed to provide an additional decimation by two, its frequency magnitude response would look
similar to that in Figure 10-44, where fs,in is the compensation filter’s input sample rate.

Figure 10-44 Frequency magnitude response of a decimate-by-two compensation FIR filter.



After all of this discussion, just keep in mind that a decimating CIC filter is merely a very efficient
recursive implementation of a moving average filter, having D = NR taps, whose output is decimated
by R. Likewise, the interpolating CIC filter is insertion of R–1 zero-valued samples after each
original input sample followed by a D = NR-tap moving average filter running at the output sample
rate fs,out. The cascade implementations in Figure 10-30 result in total computational workloads far
less than those when using a single tapped-delay line FIR filter alone for high-sample-rate conversion
by decimation or interpolation. CIC filter structures are designed to maximize the amount of low-
sample-rate processing to minimize power consumption in high-speed hardware applications. Again,
CIC filters require no multiplications; their arithmetic is strictly additions and subtractions. Their
performance allows us to state that, technically speaking, CIC filters are lean, mean, fat-free filtering
machines.
Section 13.24 provides a few advanced tricks allowing us to implement nonrecursive CIC filters, and
this eases the word-width growth problem of the above traditional recursive CIC filters.
This chapter’s discussion of sample rate conversion has, by necessity, only touched the surface of this
important signal processing technique. Fortunately for us, the excellent work of early signal
processing engineers and mathematicians is well documented in the literature of DSP. Several
standard DSP textbooks briefly discuss multirate filter design concepts[12–14], and other texts are
devoted exclusively to polyphase filters and multirate processing[6–9]. The inquisitive reader can
probe further to learn how to choose the number of stages in a multistage process[1,3], the
interrelated considerations of designing optimum FIR filters[1,15], the benefits of half-band FIR
filters[5,16], when IIR filter structures may be advantageous[15], what special considerations are
applicable to sample rate conversion in image processing[17–19], guidance in developing the control
logic necessary for hardware implementations of rate conversion algorithms[15], how rate
conversion improves the usefulness of commercial test equipment[20,21], and software development
tools for designing multirate filters[22].
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Chapter 10 Problems
10.1 Assume we want to decimate an x(n) time-domain sequence by four.

(a) Should the x(n) sequence be lowpass filtered before or after we discard every fourth sample?
(b) Draw the frequency magnitude response of an ideal lowpass filter used in this decimation-by-

four process. Label the frequency axis of your drawing in both Hz (in terms of the filter’s input
data sampling rate fs Hz) and our “discrete-system” frequency notation of radians/sample.

(c) What should be the lowpass filter’s zero-Hz (DC) magnitude so that there is no time-domain
amplitude gain or loss in our decimation process?

10.2 Assume we have a 72-sample sinusoidal x(n) time-domain sequence, the first 36 samples of
which are shown in Figure P10-2(a). Next we decimate x(n) by two to generate 36 samples of the
y(m) sequence shown in Figure P10-2(b). Sequence y(m) is also sinusoidal, as we should expect,
but its frequency appears to be double the frequency of x(n). Explain that apparent frequency
difference.

Figure P10-2

10.3 Assume we collected 2048 samples of a sinewave whose frequency is 128 Hz using an fs
sample rate of 1024 Hz, and we call those samples w(n). The first 20 samples of w(n) are shown
in Figure P10-3. Next we perform a 2048-point FFT on w(n) to produce a W(m) sequence.

Figure P10-3

(a) What is the m frequency index value, mmax, of the FFT sample having the largest magnitude
over the positive-frequency range of |W(m)|? Show how you arrived at your answer.



(b) Next, suppose we decimate w(n) by a factor of two to generate the 1024-point sequence x(n)
defined by

x(n) = w(2n).
If we perform a 1024-point FFT of x(n), what is the m frequency index value, mmax,dec=2, of the
FFT sample having the largest magnitude over the positive-frequency range of |X(m)|? Show
how you arrived at your answer.

(c) Finally, assume we decimate x(n) by a factor of two to generate the 512-point sequence y(n)
defined by

y(n) = x(2n).
If we perform a 512-point FFT of y(n), what is the m frequency index value, mmax,dec=2, of the
FFT sample having the largest magnitude over the positive-frequency range of |Y(m)|? Show
how you arrived at your answer.

10.4 In this chapter we’ve portrayed decimation by an integer factor M with the block diagram shown
in Figure P10-4, that is, a lowpass decimation filter followed by a downsampler (the “↓M”
symbol) that discards all but every Mth filter output sample. In this problem we explore the
changes in signal time-domain amplitude and frequency-domain magnitude caused by decimation.

Figure P10-4

For this problem, our assumptions are:
• The lowpass filter in Figure P10-4 has a passband gain of unity and passband width of 0 to 250
Hz.

• The x(n) sequence contains a 100 Hz sinusoidal component whose time-domain peak amplitude
is P.

• In the frequency domain, the 100 Hz x(n) sinusoid is located exactly on a 4N-point discrete
Fourier transform (DFT) bin center and its 4N-point DFT spectral magnitude is K.

• Finally, we apply exactly 4N samples of w(n) to the M = 4 downsampler.
(a) What is the fs2 sample rate (in Hz) of the y(m) time-domain sequence?

(b) What is the peak time-domain amplitude of the 100 Hz sinusoid in the w(n) sequence?
(c) What is the peak time-domain amplitude of the 100 Hz sinusoid in the y(m) sequence? Justify

your answer.
(d) What is the magnitude of the 100 Hz spectral component in an N-point DFT of y(m)? Justify

your answer.
(e) What is the equation that defines Figure P10-4’s downsampled y(m) sequence in terms of the

w(n) sequence?



Hint: Your solution to this part of the problem will take the form
y(m) = w(?).

10.5 Given the xr(n) input signal in Figure P10-5(a), whose |Xr(f)| magnitude spectrum is shown in
Figure P10-5(b), draw a rough sketch of the |Xc(f)| spectrum of the system’s complex xc(m) =
xI(m) + jxQ(m) output sequence. The frequency magnitude responses of the complex bandpass
hBP(k) filter and the real-valued highpass hHP(k) filters are provided in Figures P10-5(c) and
P10-5(d).

Figure P10-5

10.6 Assume we want to design the decimation by M = 30 system shown in Figure P10-6(a). The
desired LPF0 lowpass filter’s frequency magnitude response is the solid lines shown in Figure
P10-6(b). The filter’s stopband attenuation is 50 dB. (The dashed lines are the spectral
replication of the lowpass filter’s frequency response.) The one-sided passband width of the
lowpass filter is B′ = 1.7 kHz.
(a) Using the text’s Eq. (10-3), estimate the number of taps in the LPF0 lowpass filter.

(b) Assuming we decide to implement our decimation by M = 30 system using two-stage
decimation as shown in Figure P10-6(c), what are the optimum M1 and M2 decimation factors?

Figure P10-6



(c) Using the text’s Eq. (10-3), estimate the number of taps in the LPF1 and LPF1 lowpass filters
in Figure P10-6(c).

(d) What is the reduction in number of filter taps using the system in Figure P10-6(c) compared to
the number of filter taps needed by the system in Figure P10-6(a)?

10.7 Here is a interesting problem. In Chapter 5 we discussed the transient response of tapped-delay
line FIR filters and stated that an FIR filter’s output samples are not valid until the filter’s delay
line is filled with input data samples. Assuming that the 23rd output sample of LPF1 is the first
sample applied to LPF2, how many xold(n) input samples must be applied to the two-stage
decimation filter shown in Figure P10-7 to fill the LPF1 and LPF2 lowpass filters with input data?

Figure P10-7

10.8 Assume we want to interpolate an x(n) time-domain sequence by three.
(a) Should we perform upsampling (insertion of zero-valued samples) on the x(n) sequence

before or after implementing lowpass filtering?
(b) Draw the frequency magnitude response of an ideal lowpass filter used in this interpolation-

by-three process. Label the frequency axis of your drawing in both Hz (in terms of the filter’s
input data sampling rate fs Hz) and our “discrete-system” frequency notation of radians/sample.

(c) What should be the lowpass filter’s zero-Hz (DC) magnitude so that there is no time-domain
amplitude gain or loss in our interpolation process?

10.9 Let’s make sure we fully understand the spectral effects of interpolation by considering the 8-
sample, single-cycle, x(n) sinewave sequence in Figure P10-9(a). That sequence’s X(m) DFT
spectral magnitude samples are shown in Figure P10-9(b). If we upsample x(n) by a factor of
three, by inserting two zero-valued samples between each x(n) sample, we produce the 24-sample



y(p) time sequence shown in Figure P10-9(c).
(a) What is the time-domain equation that defines the upsampled y(p) sequence in terms of the

x(n) sequence?
Figure P10-9

Hint: Your solution to this part of the problem will have two parts and look like

(b) Draw the spectral magnitude samples of the 24-point Y(m) DFT of y(p).
10.10 Assume we have a time-domain sequence of real-valued samples, xold(n), whose spectral

magnitude is shown in Figure P10-10. (We represent spectral replications by the dashed lines.)
There we see that the frequency points of spectral symmetry of |Xold(f)|, represented by the bold
down arrows, can be described by

Figure P10-10

where k is an integer. If we upsample xold(n) by two, by inserting a zero-valued sample between
each xold(n) sample, to generate a new time sequence xnew(m), what is the expression for the



frequency points of spectral symmetry of |Xnew(f)|?

10.11 Texas Instruments Inc. produces a digital filter chip, Part #GC2011A, used in cell phones for
frequency up-conversion. The process, described in their AN9804 application note document, is
depicted in Figure P10-11(a). The lowpass filter’s 1 MHz-wide passband covers the frequency
range shown in Figure P10-11(b). (The lowpass filter block comprises two separate real-valued 1
MHz-wide filters, filtering the real and imaginary parts of the complex signal at node B.) If the
spectral magnitude of the x(n) input is that shown by the solid curves in Figure P10-11(c), where
we represent spectral replications by the dashed curves, draw the spectral magnitudes of the
complex sequences at nodes A, B, C, and the real part of the y(m) output sequence.

Figure P10-11

Hint: In Chapter 8 we learned that multiplying a time sequence by e–j2n/4 = 1, –j, –1, j, ...,
translates the signal’s spectrum down in frequency.

10.12 Here is a fun interpolation problem. Figure P10-12(a) shows a simple digital filtering system.
Assume that the analog x(t) signal applied to the analog-digital (A/D) converter contains a 9 kHz
sinusoid and an 11 kHz sinusoid. The spectral magnitude of the sampled x(n) sequence is given in
Figure P10-12(b). The system’s function is to filter out the 11 kHz tone and provide a y(m) output
sequence that is a 9 kHz sinusoid at a sample rate of fs = 32 kHz. The dashed curve in Figure P10-
12(b) indicates the unity-gain bandpass filter’s frequency magnitude response, while the spectrum
of our desired filter output, whose magnitude is K, is given in Figure P10-12(c).

Figure P10-12



Now, assume that the system is constrained to use an A/D converter whose clock rate is 8 kHz
(instead of 32 kHz), as shown in Figure P10-12(d).
(a) Draw the block diagram of the processing system that provides the desired y(m) output

sequence at a sample rate of fs = 32 kHz which is four times the u(n) sample rate.

(b) Draw spectral diagrams that justify your solution.
10.13 In this chapter we discussed various forms of interpolation. There is a well-known

interpolation process called linear interpolation. It’s an interpolation-by-two method for
estimating sample values of a continuous function between some given x(n) sample values of that
function. For the x(n) time samples in Figure P10-13(a), linear interpolation is the process of
computing the intermediate y(n) samples shown as the black squares in Figure P10-13(b). That is,
the interpolated sample y(1) is the value lying at the center of the straight line connecting x(0) and
x(1), the interpolated sample y(2) is the value lying at the center of the straight line connecting
x(1) and x(2), and so on. Given this process of linear interpolation:
(a) What is the z-domain expression for the H(z) = Y(z)/X(z) transfer function of the linear

interpolation process?
(b) Draw a rough sketch of the frequency magnitude response of a linear interpolation filter over

the frequency range of ω = ±π radians/sample (±fs/2 Hz).

(c) Comment on the advantage of, and the disadvantage of, using linear interpolation to perform
interpolation by a factor of two.

Figure P10-13



10.14 Assume we must convert a compact disc (CD) audio signal, whose sample rate is fs,CD = 44.1
kHz, to a digital audio tape (DAT) signal whose sample rate is fs,DAT = 48 kHz. If we interpolate
that CD signal by a factor of L = 160, by what factor M must we decimate the interpolated signal
to obtain a final sample rate of 48 kHz?

10.15 Consider the xo(n) time sequence in Figure P10-15(a), whose sample rate is fs = 1 kHz. If we
decimate xo(n) by two, we obtain the xD(mD) sequence shown in Figure P10-15(b), where the
odd-n samples of xo(n) have been discarded. Next, if we interpolate xo(n) by two, we obtain the
xI(mI) sequence shown in Figure P10-15(c), where the interpolated samples are shown as white
dots. Comment on how decimation and interpolation affect the time duration of the decimated and
interpolated sequences relative to the time duration of the original xo(n) sequence.

Figure P10-15

10.16 Fill in the following table. When complete and correct, the table shows the time-domain and
frequency-domain gain of the two processes: decimation by M, and interpolation by L.

Here, decimation means lowpass filtering (by a unity-gain filter) NM time samples followed by the
discarding of every Mth filter output sample to obtain N time samples. By “interpolation” we mean
upsampling by inserting L–1 zero-valued samples between adjacent samples of an N-length time-



domain sequence followed by lowpass filtering using a unity-gain lowpass filter to obtain NL time
samples. Assume the sample rate change factors M and L are integers.

Sample Rate Conversion Gain

10.17 Here is an interesting, and educational, problem because it shows the spectral effects of
upsampling a downsampled sequence. Think about the sample rate change process in Figure P10-
17(a). The upsampling operation “↑4” means insert three zero-valued samples between each q(m)
sample. Assume the spectral magnitude of the x(n) sequence is the |X(f)| shown in Figure P10-
17(b).

Figure P10-17

(a) Draw the |Q(f)| spectrum of sequence q(m) including the peak spectral magnitude levels in
terms of K. Show spectral replications (located at multiples of the q(m) sample rate) as dashed
curves as was done in Figure P10-17(b).

(b) Draw the |W(f)| spectrum of sequence w(p) including the peak spectral magnitude levels in
terms of K. Show spectral replications as dashed curves.

(c) Draw the frequency magnitude response of the lowpass filter, including its passband gain
value, that would produce a y(p) output sequence whose Y(f) spectral magnitude is equal to
|X(f)|.

(d) When first learning the principles of sample rate change (multirate systems), it is easy to
believe that following a “↓4” decimation process with an “↑4” upsampling process would mean
the two processes cancel each other such that the overall cascaded effect would be no change.
Is this correct?

10.18 One way to implement a secure telephone communications channel is shown in Figure P10-
18(a). Anyone monitoring the telephone line will not be able to understand the audio speech signal
on that line. The scrambling network is shown in Figure P10-18(b), where the two identical L(f)
digital lowpass filters have passbands that extend from –2 kHz to +2 kHz. The two identical H(f)
digital highpass filters have passbands that extend from –6 kHz to –2 kHz, and 2 kHz to 6 kHz.
(a) If the x(n) input to the first scrambling network has the spectrum shown in Figure P10-18(c),

draw the spectrum, over the frequency range of ±fs, of the output sequence from the first
scrambling network in Figure P10-18(a).



Figure P10-18

(b) Draw the spectrum, over the frequency range of ±fs, of the output sequence from the second
scrambling network in Figure P10-18(a).

10.19 In Section 10.7 we depicted a polyphase filter, used in an interpolation-by-four process, with
the structure shown in Figure P10-19-I. The Hk(z) blocks represent tapped-delay line FIR
polyphase subfilters containing unit-delay elements, multipliers, and adders.
(a) Why are the polyphase subfilters useful when used in an interpolation process?
(b) Determine how to replace the commutating (rotating) switch in Figure P10-19-I using only the

delay and upsampler elements shown in Figure P10-19-II(a). That is, determine what’s inside
the mysterious block in Figure P10-19-II(b) to make that figure equivalent to Figure P10-19-I.

Figure P10-19-I

Figure P10-19-II



The correct solution to this problem will show a polyphase structure with which you should
become familiar. That structure is often used in the DSP literature of multirate systems to depict
polyphase interpolation filters.
Hint: Given some x(n) sequence, write the sample sequences on the four output lines of the
Hk(z) subfilters, and y(n) in Figure P10-19-I. Then determine how to obtain that same y(m)
output sequence in Figure P10-19-II(b). The coefficients of polynomial Hk(z) are not important
to this problem. Assume the subfilters have no delay elements, a single multiplier, and a
coefficient of one, if you wish.

10.20 Occasionally in the literature of DSP you’ll encounter documentation that uses a drawing like
that in Figure P10-20 to illustrate some concept, or principle, regarding multirate systems. Notice
that the cascaded elements are not our standard “z–1” delay-by-one-sample elements but, instead,
are advance-by-one-sample elements indicated by a “z” (z+1).

Figure P10-20

Show how you would implement the system in Figure P10-20, in our universe where we cannot
look forward in time, to provide the appropriate four time-domain sequences to the “Some useful
processing” subsystem’s input ports?

10.21 In the text we discussed decimation by M = 3 and showed two equivalent realizations of such a
decimation process as those in Figures P10-21(a) and P10-21(b). Assume that all six subfilters in
Figure P10-21 are tapped-delay lines containing four multipliers, and that fs = 30 samples/second.

(a) How many multiplications per second are performed in Figure P10-21(a)?
(b) How many multiplications per second are performed in Figure P10-21(b)?

Figure P10-21



10.22 The decimation-by-four (lowpass filtering followed by downsampling) process shown in
Figure P10-22(a) is inefficient because three out of every four computational results are
discarded. A more efficient decimation process is shown in Figure P10-22(b), where the switches
driving the multipliers close once, for one sample time period only, upon the arrival of every
fourth xold(n) sample. This way, no unnecessary computations are performed. Likewise, in
polyphase decimation filtering no unnecessary computations are performed. In real-time hardware
implementations, explain the fundamental difference between the computations performed, from a
time-domain standpoint, in the Figure P10-22(b) decimation filter and a polyphase decimation-by-
four filter having 12 multipliers?

Figure P10-22

10.23 In Section 10.7 we depicted a polyphase filter, used in a decimation-by-four process, with the
structure shown in Figure P10-23-I. The Hk(z) blocks represent tapped-delay line FIR polyphase
subfilters containing unit-delay elements, multipliers, and adders.

Figure P10-23-I



(a) Why are polyphase subfilters useful when used in a decimation process?
(b) Determine how to replace the commutating (rotating) input switch in Figure P10-23-I using

only the delay and downsampler elements shown in Figure P10-23-II(a). That is, determine
what interconnection of delay and downsampler elements must be inside the mysterious block in
Figure P10-23-II(b) to make that figure equivalent to Figure P10-23-I.

Figure P10-23-II

The correct solution to this problem will show a polyphase structure with which you should
become familiar. That structure is often used in the DSP literature of multirate systems to depict
polyphase decimation filters.
Hint: Given some x(n) sequence, write the x(n), x(n–1), x(n–2), etc., sample sequences on the
four lines driving the Hk(z) subfilters in Figure P10-23-I. Then determine how to obtain those
same sample sequences for routing to the subfilters in Figure P10-23-II(b).

10.24 This problem is related to the material in the text’s Section 10.10. Assume we are resampling a
time sequence by the rational factor 5/4 using a five-position commutating filter output switch as
shown in Figure P10-24.
(a) Determine the commutating switch’s port position value (index) k, and the index n of the most

recent input x(n) sample applied to the subfilters, used to compute the resampler’s y(m) sample
when output index m = 7. Show your work.

(b) For the resampler in Figure P10-24 to have a DC (zero Hz) gain of unity, what must be the DC
gain of the original prototype lowpass FIR filter from which the five Hk(z) subfilters were
obtained?

Figure P10-24



10.25 Think about the multirate decimation system, employing lowpass half-band filters, in Figure
P10-25(a). If the spectrum of the wideband x(n) noise sequence is that shown in Figure P10-
25(b), the spectrum of the a(n) noise sequence is as shown in Figure P10-25(c). Draw the spectra,
with appropriate frequency-axis labeling in Hz, of the b(n), c(m), and y(p) sequences.

Figure P10-25

10.26 The z-domain transfer function of a CIC filter’s comb subfilter having a delay line length of N =
8, shown in Figure P10-26(a), is

Hcomb(z) = 1 −z–8,

and its frequency magnitude response is shown on a linear scale in Figure P10-26(b).
Figure P10-26

(a) Each of those multiple frequency magnitude passband curves in Figure P10-26(b) looks
parabolic in shape. In terms of the frequency variable f, a single ideal downward-opening



parabola is described by the expression

|Hcomb(f)| = –Kf2

where K is some constant. Are the shapes of those passband curves in Figure P10-26(b) indeed
a function of f2, making them parabolic? Show your work.

(b) What is the peak value, P, of the |H(f)| frequency magnitude curve in P10–26(b)? Show your
work. (The P value is important. It tells us what is the maximum gain of a comb subfilter.)
Hint: Deriving an equation for the |Hcomb(f)| frequency magnitude response will provide the
solutions to Part (a) and Part (b) of this problem.

10.27 In the text we stated that the interpolation CIC filter in Figure P10-27(a) has an impulse
response, when its differential delay D = 5, equal to that shown in Figure P10-27(c). We also
stated that swapping Figure P10-27(a)’s comb and integrator resulted in a decimation CIC filter as
shown in Figure P10-27(b). Prove that the decimation CIC filter in Figure P10-27(b) also has an
impulse response equal to that shown in Figure P10-27(c).

Figure P10-27

10.28 Here is an important problem with regard to implementing two theoretically equivalent digital
filters. We illustrate our point using the CIC filters shown in Figures P10-28(a) and P10-28(b).
Because they are linear, we can swap the comb and integrator stages of the CIC filter used for
interpolation to obtain a CIC filter used for decimation. The two CIC filters have identical time-
domain impulse responses.

Figure P10-28



(a) However, to understand an important fundamental difference in the hardware implementation
of the two filters, draw the u(n) and y(n) sequences for both filters when the x(n) input to the
filters is the step sequence shown in Figure P10-28(c). Assume a comb delay of D = 4 for both
CIC filters. Your solution should comprise four separate drawings. (Also, assume that the u(n)
and y(n) values are zero, for both CIC filters, at time index n < 0.)

(b) To appreciate the implementation difference between interpolation and decimation CIC filters,
we need to determine the growth of the binary word width of the memory location, or hardware
register, containing the u(n) samples. To do so, fill in the following table, indicating how many
binary bits are needed to accommodate the u(n) and y(n) samples for each CIC filter up to time
index n = 500.
Hint: The number of binary bits needed to store u(n) is the next integer greater than log2[u(n)].

Memory, or Hardware Register, Bit-Width Requirements

(c) This question has great practical importance. What does your solution to Part (b) tell us about
the binary-word-width requirements of the memory locations, or hardware registers, containing
the integrators’ u(n) samples in CIC decimation and CIC interpolation filters?

10.29 Here is a typical problem faced by engineers who use CIC filters. As of this writing, Intersil
Corp. makes a decimating digital filter chip (Part #HSP43220) that contains a 5th-order CIC
filter. When used for decimation by a factor of R = 6, and the internal comb filters have a
differential delay of D = 6, the CIC filter’s frequency magnitude response is shown in Figure P10-
29(a).

Figure P10-29



(a) After the decimation by 6, any spectral energy in the shaded area of the filter’s response will
alias into the B-width signal-of-interest passband centered at 0 Hz as was described in the text.
For this commercial 5th-order CIC filter, what is the maximum level of the aliased spectral
energy after the decimation by 6? (Stated in different words, what is the value of Atten
measured in dB for the HSP43220 CIC filter?) Assume B = 0.04fs,in.

(b) Zooming in on the top portion of the CIC filter’s passband, we show the droop in the passband
gain in Figure P10-29(b). Measured in dB, what is the HSP43220’s maximum passband gain
loss at B/2 Hz?

10.30 There are digital filtering schemes that use the process conceptually shown in Figure P10-
30(a). In that network the input is lowpass filtered to generate the sequence w(n). The network’s
y(n) output is the x(n) input sequence minus the lowpass-filtered w(n) sequence. The actual
implementation of such a process is shown in Figure P10-30(b) where the multi-element delay
line in the upper path of Figure P10-30(b) is needed for time alignment to compensate for the time
(group) delay of the CIC filter. If we had to implement this parallel-path filter with a CIC filter
whose differential delay is D = 9, how many unit-delay elements would we use in the upper path
of Figure P10-30(b)? Show how you obtained your solution.

Figure P10-30







Chapter Eleven. Signal Averaging

How do we determine the typical amount, a valid estimate, or the true value of some measured
parameter? In the physical world, it’s not so easy to do because unwanted random disturbances
contaminate our measurements. These disturbances are due to both the nature of the variable being
measured and the fallibility of our measuring devices. Each time we try to accurately measure some
physical quantity, we’ll get a slightly different value. Those unwanted fluctuations in a measured
value are called noise, and digital signal processing practitioners have learned to minimize noise
through the process of averaging. In the literature, we can see not only how averaging is used to
improve measurement accuracy, but that averaging also shows up in signal detection algorithms as
well as in lowpass filter schemes. This chapter introduces the mathematics of averaging and
describes how and when this important process is used. Accordingly, as we proceed to quantify the
benefits of averaging, we’re compelled to make use of the statistical measures known as the mean,
variance, and standard deviation.
In digital signal processing, averaging often takes the form of summing a series of time-domain signal
samples and then dividing that sum by the number of individual samples. Mathematically, the average
of N samples of sequence x(n), denoted xave, is expressed as

(11-1)

(What we call the average, statisticians call the mean.) In studying averaging, a key definition that we
must keep in mind is the variance of the sequence, σ2, defined as

(11-2)

(11-2′)

As explained in Appendix D, the σ2 variance in Eqs. (11-2) and (11-2′) gives us a well-defined
quantitative measure of how much the values in a sequence fluctuate about the sequence’s average.
That’s because the x(1) – xave value in the bracket, for example, is the difference between the x(1)
value and the sequence average xave. The other important quantity that we’ll use is the standard
deviation, defined as the positive square root of the variance, or

(11-3)



To reiterate our thoughts, the average value xave is the constant level about which the individual
sequence values may vary. The variance σ2 indicates the sum of the magnitudes squared of the noise
fluctuations of the individual sequence values about the xave average value. If the sequence x(n)
represents a time series of signal samples, we can say that xave specifies the constant, or DC, value of
the signal, the standard deviation σ reflects the amount of the fluctuating, or AC, component of the
signal, and the variance σ2 is an indication of the power in the fluctuating component. (Appendix D
explains and demonstrates the nature of these statistical concepts for those readers who don’t use
them on a daily basis.)
We’re now ready to investigate two kinds of averaging, coherent and incoherent, to learn how
they’re different from each other and to see under what conditions they should be used.

11.1 Coherent Averaging
In the coherent averaging process (also known as time-synchronous averaging), the key feature is the
timing used in sampling the original signal; that is, we collect multiple sets of signal-plus-noise
samples, and we need the time phase of the signal in each set to be identical. For example, when
averaging a sinewave embedded in noise, coherent averaging requires that the phase of the sinewave
be the same at the beginning of each measured sample set. When this requirement is met, the sinewave
will average to its true sinewave amplitude value. The noise, however, is different in each sample set
and will average toward zero.† The point is that coherent averaging reduces the variance of the noise,
while preserving the amplitude of signals that are synchronous, or coherent, with the beginning of the
sampling interval. With coherent averaging, we can actually improve the signal-to-noise ratio of a
noisy signal. By way of example, consider the sequence of 128 data points plotted in Figure 11-1(a).
Those data points represent the time-domain sampling of a single pulse contaminated with random
noise. (For illustrative purposes the pulse, whose peak amplitude is 2.5, is shown in the background
of Figure 11-1.) It’s very difficult to see a pulse in the bold pulse-plus-noise waveform in the
foreground of Figure 11-1(a). Let’s say we collect 32 sets of 128 pulse-plus-noise samples of the
form
† Noise samples are assumed to be uncorrelated with each other and uncorrelated with the sample rate. If some component of the noise
is correlated with the sample rate, that noise component will be preserved after averaging.

(11-4)

Figure 11-1 Signal pulse plus noise: (a) one sample set; (b) average of 32 sample sets; (c) average of
256 sample sets.



Here’s where the coherent part comes in: the signal measurement times must be synchronized, in some
manner, with the beginning of the pulse, so that the pulse is in a constant time relationship with the
first sample of each sample set. Coherent averaging of the 32 sets of samples, adding up the columns
of Eq. (11-4), takes the form of

or
(11-5)

If we perform 32 averages indicated by Eq. (11-5) on a noisy pulse like that in Figure 11-1(a), we’d
get the 128-point xave(k) sequence plotted in Figure 11-1(b). Here, we’ve reduced the noise



fluctuations riding on the pulse, and the pulse shape is beginning to become apparent. The coherent
average of 256 sets of pulse measurement sequences results in the plot shown in Figure 11-1(c),
where the pulse shape is clearly visible now. We’ve reduced the noise fluctuations while preserving
the pulse amplitude. (An important concept to keep in mind is that summation and averaging both
reduce noise variance. Summation is merely implementing Eq. (11-5) without dividing the sum by N =
32. If we perform summations and don’t divide by N, we merely change the vertical scales for the
graphs in Figures 11-1(b) and 11-1(c). However, the noise fluctuations will remain unchanged
relative to true pulse amplitude on the new scale.)
The mathematics of this averaging process in Eq. (11-5) is both straightforward and important. What
we’d like to know is the signal-to-noise improvement gained by coherent averaging as a function of
N, the number of sample sets averaged. Let’s say that we want to measure some constant time signal
with amplitude A, and each time we actually make a measurement we get a slightly different value for
A. We realize that our measurements are contaminated with noise such that the nth measurement result
r(n) is

(11-6)

where noise(n) is the noise contribution. Our goal is to determine A when the r(n) sequence of noisy
measurements is all we have to work with. For a more accurate estimate of A, we average N separate
r(n) measurement samples and calculate a single average value rave. To get a feeling for the accuracy
of rave, we decide to take a series of averages, rave(k), to see how that series fluctuates with each new
average; that is,

(11-7)

or, more concisely,
(11-8)

To see how averaging reduces our measurement uncertainty, we need to compare the standard
deviation of our rave(k) sequence of averages with the standard deviation of the original r(n)
sequence.
If the standard deviation of our original series of measurements r(n) is σin, it has been shown[1–5]
that the standard deviation of our rave(k) sequence of N-point averages, σave, is given by

(11-9)

Likewise, we can relate the variance of our rave(k) sequence of N-point averages to the variance of
the original series of r(n) measurements as



(11-9′)

Equation (11-9) is significant because it tells us that the rave(k) series of averages will not fluctuate as
much around A as the original r(n) measurement values did; that is, the rave(k) sequence will be less
noisy than any r(n) sequence, and the more we average by increasing N, the more closely an
individual rave(k) estimate will approach the true value of A.†

† Equation (11-9) is based on the assumptions that the average of the original noise is zero and that neither A nor σin changes during the
time we’re performing our averages.

In a different way, we can quantify the noise reduction afforded by averaging. If the quantity A
represents the amplitude of a signal and σin represents the standard deviation of the noise riding on
that signal amplitude, we can state that the original signal-amplitude-to-noise ratio is

(11-10)

Likewise, the signal-amplitude-to-noise ratio at the output of an averaging process, SNRave, is defined
as

(11-11)

Continuing, the signal-to-noise ratio gain, SNRcoh gain, that we’ve realized through coherent
averaging is the ratio of SNRave over SNRin, or

(11-12)

Substituting σave from Eq. (11-9) in Eq. (11-12), the SNR gain becomes
(11-13)

Through averaging, we can realize a signal-to-noise ratio improvement proportional to the square
root of the number of signal samples averaged. In terms of signal-to-noise ratio measured in dB, we
have a coherent averaging, or integration, gain of

(11-14)

Again, Eqs. (11-13) and (11-14) are valid if A represents the amplitude of a signal and σin represents
the original noise standard deviation.
Another way to view the integration gain afforded by coherent averaging is to consider the standard
deviation of the input noise, σin, and the probability of measuring a particular value for the Figure 11-



1 pulse amplitude. Assume that we made many individual measurements of the pulse amplitude and
created a fine-grained histogram of those measured values to get the dashed curve in Figure 11-2. The
vertical axis of Figure 11-2 represents the probability of measuring a pulse-amplitude value
corresponding to the values on the horizontal axis. If the noise fluctuations follow the well-known
normal, or Gaussian, distribution, that dashed probability distribution curve is described by

(11-15)

Figure 11-2 Probability density curves of measured pulse amplitudes with no averaging (N = 1) and
with N = 32 averaging.

where σ = σin and the true pulse amplitude is represented by μ = 2.5. We see from that dashed curve
that any given measured value will most likely (with highest probability) be near the actual pulse-
amplitude value of 2.5. Notice, however, that there’s a nonzero probability that the measured value
could be as low as 1.0 or as high as 4.0. Let’s say that the dashed curve represents the probability
curve of the pulse-plus-noise signal in Figure 11-1(a). If we averaged a series of 32 pulse-amplitude
values and plotted a probability curve of our averaged pulse-amplitude measurements, we’d get the
solid curve in Figure 11-2. This curve characterizes the pulse-plus-noise values in Figure 11-1(b).
From this solid curve, we see that there’s a very low likelihood (probability) that a measured value,
after 32-point averaging, will be less than 2.0 or greater than 3.0.
From Eq. (11-9), we know that the standard deviation of the result of averaging 32 signal sample sets
is

(11-16)

In Figure 11-2, we can see a statistical view of how an averager’s output standard deviation is
reduced from the averager’s input standard deviation. Taking larger averages by increasing N beyond
32 would squeeze the solid curve in Figure 11-2 even more toward its center value of 2.5, the true
pulse amplitude.†
† The curves in Figure 11-2 are normalized for convenient illustration. From Eq. (11-15) and assuming that σ = 1 when N = 1, then K =
0.3989. When N = 32, the new standard deviation is  and .

Returning to the noisy pulse signal in Figure 11-1, and performing coherent averaging for various
numbers of sample sets N, we see in Figure 11-3(a) that as N increases, the averaged pulse amplitude



approaches the true amplitude of 2.5. Figure 11-3(b) shows how rapidly the variance of the noise
riding on the pulse falls off as N is increased. An alternate way to see how the noise variance
decreases with increasing N is the noise power plotted on a logarithmic scale as in Figure 11-3(c). In
this plot, the noise variance is normalized to that noise variance when no averaging is performed, i.e.,
when N = 1. Notice that the slope of the curve in Figure 11-3(c) closely approximates that predicted
by Eqs. (11-13) and (11-14); that is, as N increases by a factor of ten, we reduce the average noise
power by 10 dB. Although the test signal in this discussion was a pulse signal, had the signal been
sinusoidal, Eqs. (11-13) and (11-14) would still apply.

Figure 11-3 Results of averaging signal pulses plus noise: (a) measured pulse amplitude versus N;
(b) measured variance of pulse amplitude versus N; (c) measured pulse-amplitude noise power

versus N on a logarithmic scale.

11.2 Incoherent Averaging
The process of incoherent averaging (also known as rms, postdetection, scalar, or video averaging)
is the averaging of signal samples where no sample timing constraints are used; that is, signal
measurement time intervals are not synchronized in any way with the phase of the signal being



measured. Think for a moment what the average would be of the noisy pulse signal in Figure 11-1(a)
if we didn’t in some way synchronize the beginning of the collection of the individual signal sample
sets with the beginning of the pulse. The result would be pulses that begin at a different time index in
each sample set. The averaging of multiple sample sets would then smear the pulse across the sample
set, or just “average the pulse signal away.” (For those readers familiar with using oscilloscopes,
incoherent averaging would be like trying to view the pulse when the beginning of the scope sweep
was not triggered by the signal.) As such, incoherent averaging is not so useful in the time domain.† In
the frequency domain, however, it’s a different story because incoherent averaging can provide
increased accuracy in measuring relative signal powers. Indeed, incoherent averaging is used in many
test instruments, such as spectrum, network, and signal analyzers.
† The term incoherent averaging is a bit of a misnomer. Averaging a set of data is just that, averaging—we add up a set of data values
and divide by the number of samples in the set. Incoherent averaging should probably be called averaging data that’s obtained
incoherently.

In some analog test equipment, time-domain signals are represented in the frequency domain using a
narrowband sweeping filter followed by a power detector. These devices measure signal power as a
function of frequency. The power detector is necessary because the sweeping measurement is not
synchronized, in time, with the signal being measured. Thus the frequency-domain data represents
power only and contains no signal phase information. Although it’s too late to improve the input’s
signal-amplitude-to-noise ratio, incoherent averaging can improve the accuracy of signal power
measurements in the presence of noise; that is, if the signal-power spectrum is very noisy, we can
reduce the power estimation fluctuations and improve the accuracy of signal-power and noise-power
measurements. Figure 11-4(a) illustrates this idea where we see the power (magnitude squared)
output of an FFT of a fundamental tone and several tone harmonics buried in background noise.
Notice that the noise-power levels in Figure 11-4(a) fluctuate by almost 20 dB about the true average
noise power indicated by the dashed line at –19 dB.
Figure 11-4 Results of averaging signal tones plus noise-power spectra: (a) no averaging, N = 1; (b)

N = 10; (c) N = 100.



If we take 10 FFTs, average the square of their output magnitudes, and normalize those squared
values, we get the power spectrum shown in Figure 11-4(b). Here, we’ve reduced the variance of the
noise in the power spectrum but have not improved the tones’ signal-power-to-noise-power ratios;
that is, the average noise-power level remains unchanged. Averaging the output magnitudes squared of
100 FFTs results in the spectrum in Figure 11-4(c), which provides a more accurate measure of the
relative power levels of the fundamental tone’s harmonics.
Just as we arrived at a coherent integration SNR gain expression in Eq. (11-14), we can express an
incoherent integration gain, SNRincoh gain, in terms of SNR measured in dB as

(11-17)

Equation (11-17) applies when the quantity being averaged represents the power of a signal. That’s
why we used the factor of 10 in Eq. (11-17) as opposed to the factor of 20 used in Eq. (11-14).† We
can relate the processing gain effects of Eqs. (11-14) and (11-17) by plotting those expressions in
Figure 11-5.



† Section E.1 of Appendix E explains why the multiplying factor is 10 for signal-power measurements and 20 when dealing with signal-
amplitude values.

Figure 11-5 Time-domain amplitude SNR processing gain from Eq. (11-14), and the frequency-
domain power SNR processing gain from Eq. (11-17), as functions of N.

11.3 Averaging Multiple Fast Fourier Transforms
We discussed the processing gain associated with a single DFT in Section 3.12 and stated that we can
realize further processing gain by increasing the point size of any given N-point DFT. Let’s discuss
this issue when the DFT is implemented using the FFT algorithm. The problem is that large FFTs
require a lot of number crunching. Because addition is easier and faster to perform than
multiplication, we can average the outputs of multiple FFTs to obtain further FFT signal detection
sensitivity; that is, it’s easier and typically faster to average the outputs of four 128-point FFTs than it
is to calculate one 512-point FFT. The increased FFT sensitivity, or noise variance reduction, due to
multiple FFT averaging is also called integration gain. So the random noise fluctuations in an FFT’s
output bins will decrease, while the magnitude of the FFT’s signal bin output remains constant when
multiple FFT outputs are averaged. (Inherent in this argument is the assumption that the signal is
present throughout the observation intervals for all of the FFTs that are being averaged and that the
noise sample values are independent of the original sample rate.) There are two types of FFT
averaging integration gain: incoherent and coherent.
Incoherent integration, relative to FFTs, is averaging the corresponding bin magnitudes of multiple
FFTs; that is, to incoherently average k FFTs, the zeroth bin of the incoherent FFT average Fincoh(0) is
given by

(11-18)

where |Fn(0)| is the magnitude of the zeroth bin from the nth FFT. Likewise, the first bin of the
incoherent FFT average, Fincoh(1), is given by

(11-18′)



and so on, out to the last bin of the FFT average, Fincoh(N–1), which is
(11-18″)

Incoherent integration provides additional reduction in background noise variation to augment a
single FFT’s inherent processing gain. We can demonstrate this in Figure 11-6(a), where the shaded
curve is a single FFT output of random noise added to a tone centered in the 16th bin of a 64-point
FFT. The solid curve in Figure 11-6(a) is the incoherent integration of ten individual 64-point FFT
magnitudes. Both curves are normalized to their peak values, so that the vertical scales are referenced
to 0 dB. Notice how the variations in the noise power in the solid curve have been reduced by the
averaging of the ten FFTs. The noise-power values in the solid curve don’t fluctuate as much as the
shaded noise-power values. By averaging, we haven’t raised the power of the tone in the 16th bin, but
we have reduced the peaks of the noise-power values. The larger the number of FFTs averaged, the
closer the individual noise-power bin values will approach the true average noise power indicated
by the dashed horizontal line in Figure 11-6(a).

Figure 11-6 Single FFT output magnitudes (shaded) and the average of ten FFT output magnitudes
(solid): (a) tone at bin center; (b) tone between bin centers.

When the signal tone is not at a bin center, incoherent integration still reduces fluctuations in the
FFT’s noise-power bins. The shaded curve in Figure 11-6(b) is a single FFT output of random noise
added to a tone whose frequency is halfway between the 16th and 17th bins of the 64-point FFT.
Likewise, the solid curve in Figure 11-6(b) is the magnitude average of ten FFTs. The variations in



the noise power in the solid curve have again been reduced by the integration of the ten FFTs. So
incoherent integration gain reduces noise-power fluctuations regardless of the frequency location of
any signals of interest. As we would expect, the signal peaks are wider, and the true average noise
power is larger in Figure 11-6(b) relative to Figure 11-6(a) because leakage raises the average noise-
power level and scalloping loss reduces the FFT bin’s output power level in Figure 11-6(b). The
thing to remember is that incoherent averaging of FFT output magnitudes reduces the variations in the
background noise power but does not reduce the average background noise power. Equivalent to the
incoherent averaging results in Section 11.2, the reduction in the output noise variance[6] of the
incoherent average of k FFTs relative to the output noise variance of a single FFT is expressed as

(11-19)

Accordingly, if we average the magnitudes of k separate FFTs, we reduce the noise variance by a
factor of k.
In practice, when multiple FFTs are averaged and the FFT inputs are windowed, an overlap in the
time-domain sampling process is commonly used. Figure 11-7 illustrates this concept with 5.5Nts
seconds, worth of time series data samples, and we wish to average ten separate N-point FFTs where
ts is the sample period (1/fs). Because the FFTs have a 50 percent overlap in the time domain, some
of the input noise in the N time samples for the first FFT will also be contained in the second FFT.
The question is “What’s the noise variance reduction when some of the noise is common to two FFTs
in this averaging scheme?” Well, the answer depends on the window function used on the data before
the FFTs are performed. It has been shown that for the most common window functions using an
overlap of 50 percent or less, Eq. (11-19) still applies as the level of noise variance reduction[7].

Figure 11-7 Time relationship of multiple FFTs with 50 percent overlap.

Coherent FFT integration gain is possible when we average the real parts of multiple FFT bin outputs
separately from computing the average of the imaginary parts. We can then combine the single real
average and the single imaginary average into a single complex bin output average value. While this
process may be useful for people who use analog sinewave signals to test the performance of A/D
converters using the FFT, it only works for periodic time-domain signal sequences that have been
obtained through careful synchronous sampling. Coherent integration of multiple FFT results is of no
value in reducing spectral measurement noise for nonperiodic, real-world, information-carrying



signals.

11.4 Averaging Phase Angles
So far we’ve discussed averaging time-domain signal amplitude samples and averaging frequency-
domain magnitude samples. It’s prudent now to briefly discuss the tricky aspect of averaging phase-
angle samples. We say tricky because, as Peter Kootsookos points out, the circular (wraparound)
nature of angles can lead us into trouble when computing phase averages[8].
Consider computing the average of two phase angles, α = 7π/8 radians and β = –7π/8 radians. Due to
the directional nature of phase angles, we know the average of α and β is an angle exactly halfway
between 7π/8 radians and –7π/8 radians, or ±π radians (±180 degrees). However, standard numerical
averaging of the two scalar radian values 7π/8 and –7π/8 results in zero radians (0 degrees), which is
obviously incorrect.
The solution to this dilemma is to treat the two phase angles as the arguments of two complex
numbers, add the two complex numbers, and determine the sum’s argument (angle) to obtain the
desired average phase angle. That is,

(11-20)

where the notation “arg[ejq]” means the phase angle of complex number ejq. Of course, the complex
addition in Eq. (11-20) is performed in rectangular form.
As an example, the average of phase angles α = 7π/8 radians and β = –7π/8 radians is found by first
computing the sum:

(11-20′)

So, from Eq. (11-20′), our average phase angle is ±π radians (±180 degrees).

11.5 Filtering Aspects of Time-Domain Averaging
To reinforce our concept of signal averaging, let’s reiterate that we want to improve the accuracy (the
correctness) of our measurement of some physical quantity, but our repeated measurements (signal
level samples) are contaminated by random noise as shown in Figure 11-8. That random noise can be
inherent in the physical quantity that we’re measuring, or it could be caused by an imperfect
measurement device (transducer). Sadly, both of these sources of random noise are usually present in
our real-world signal measurement activities.

Figure 11-8 A constant-level signal contaminated by random noise.



Of course, we can improve the accuracy of our estimation of the true signal level in Figure 11-8 by
summing a block of 100 measurement values and dividing that sum by 100, which gives us a single
100-point average estimate of the true signal level. However, in a real-time scenario we’d have to
wait another 100-sample time interval (100/fs) before we could compute a new estimated true signal
level. To compute real-time signal averages at a sample rate of fs Hz (computing a new average value
upon the arrival of each new measurement value), we use digital filters.
In Section 5.2 we introduced nonrecursive FIR filters with a moving average example, and there we
learned that time-domain averaging performs lowpass filtering. Figure 11-9(a) shows an N-point
nonrecursive moving averager implemented with an N-tap FIR filter structure. The N-point
nonrecursive moving averager’s output in time is expressed as

(11-21)

Figure 11-9 N-point moving averagers: (a) nonrecursive; (b) recursive; (c) N = 4 impulse response;
(d) N = 4 z-plane zeros locations.



while its z-domain transfer function is
(11-22)

where the “ma” subscript means moving average.
Figure 11-9(b) illustrates an N-point recursive moving averager. The recursive moving averager has
the sweet advantage that only two additions are required per output sample, regardless of the number
of delay elements. (So a 100-point moving averager, for example, can be built that requires only two
adds per output sample.) (Some people refer to both of our moving averagers as “boxcar averagers.”)
An N-point recursive moving averager’s difference equation is

(11-23)

while its z-domain transfer function is
(11-24)

where the “rma” subscript means recursive moving average.
The nonrecursive and recursive moving averagers have identical time-domain impulse responses and
identical linear-phase frequency responses. As such, Hma(z) = Hrma(z). The nonrecursive and
recursive moving averagers are merely two different implementations of the process known as an “N-
point moving average.” The unit impulse response and z-plane pole/zero plot of N = 4 moving
averagers are provided in Figures 11-9(c) and 11-9(d).
Please be aware of two issues regarding the nonrecursive and recursive moving averagers. First, the
delay line of the nonrecursive moving averager will have N–1 delay elements, while the recursive
moving averager will have N delay elements. Second, the feedback in the recursive moving averager
means that, given certain x(n) signals, the y(n) output sequence can grow large in magnitude. This
means that when implementing a recursive moving averager in fixed-point binary hardware we must
test the process against our expected input signals to determine if binary overflow errors occur at the
output of the second adder.
An agreeable feature of the moving averagers is that when N is an integer power of two, the
multiplications by 1/N in Figure 11-9 can be implemented with binary arithmetic right shifts, thus
eliminating the multipliers altogether.
Both moving averagers have identical frequency magnitude responses, given by

(11-25)

where the normalized frequency variable f is in the range of –0.5 to 0.5 corresponding to a
continuous-time frequency range of –fs/2 to fs/2 Hz. (We derived Eq. (11-25) in Section 7.5.1 when k
= 0, and in Section 10.14.2.) That response shows us why the averagers’ outputs have reduced noise



fluctuations. Figure 11-10 depicts a moving averaging filter’s frequency magnitude responses for
various values of N. Those curves are approximated by the sin(x)/x-like curves we encountered so
often in Chapter 3 because they are the discrete Fourier transform (DFT) of an averager’s rectangular
time-domain impulse responses.

Figure 11-10 N-point moving averager frequency magnitude response as a function of N.

In Figure 11-10 we see the moving average filter has a passband centered at zero Hz, and as N
increases, the filter becomes more and more narrowband, attenuating more and more of the noise
spectrum of an input signal. The frequencies of the response nulls in Figure 11-10 for N = 4 (±fs/4 and
fs/2) correspond to the locations of the z-plane zeros on the unit circle in Figure 11-9(d). In the
general case, the z-plane zeros on the unit circle for an N-point moving averager will be located at
angles

(11-26)

corresponding to magnitude response nulls at frequencies
(11-26′)

where k = 1, 2, 3, ..., N–1.
The output variance (noise power) properties of both moving averagers abide by the important
relationship of

(11-27)

While used in many applications seeking noise reduction through real-time averaging, the above
moving averagers have two shortcomings. First, the number of points in the average, N, must be an
integer, so if we desired a noise-reducing frequency response somewhere between, say, N = 4 and N
= 5 in Figure 11-10, we’re out of luck. Second, in real-time applications, these averagers are sluggish
(slow) in their time response to abrupt amplitude changes in an input signal. One popular solution to
these shortcomings is the computationally efficient exponential averager. Please read on.

11.6 Exponential Averaging
There is a kind of time-domain averaging that’s used in many applications—it’s called exponential



averaging[9–12]. This noise-reduction process, occasionally called exponential smoothing, uses a
simple recursive lowpass filter described by the difference equation

(11-28)

where y(n) is the current averager output sample, y(n–1) is the previous averager output sample, and
α is a constant weighting factor in the range 0 < α < 1. The process described by Eq. (11-28) is
implemented as shown in Figure 11-11.

Figure 11-11 Exponential averager.

With regard to noise-reduction filtering, the exponential averager has three very appealing properties.
First, unlike the nonrecursive and recursive moving averagers described in the last section, the
exponential averager permits meaningful control over its frequency response, i.e., its noise-reduction
behavior. Second, the exponential averager requires fewer computations per output sample than
standard nonrecursive moving averagers; and third, the exponential averager has greatly reduced
memory requirements. Only one delay element, i.e., one memory location, is needed by the
exponential averager to store the y(n–1) sample.
The multiply by α operation could be placed after rather than before the feedback network, if we
chose to do so.

11.6.1 Time-Domain Filter Behavior
The exponential averager’s name stems from its time-domain impulse response. Let’s assume that the
input to the averager is a long string of zeros, and we apply a single sample of value 1 at time n = 0.
Then the input returns again to a string of zero-valued samples. Now if the weighting factor is α = 0.4,
the averager’s output is the impulse response sequence in Figure 11-12. When n = 0, the input sample
is multiplied by α, so the output is 0.4. On the next clock cycle, the input is zero, and the old value of
0.4 is multiplied by (1 − 0.4), or 0.6 multiplied by (1 − 0.4), or 0.6 to provide an output of 0.24. On
the following clock cycle the input is zero and the previous output of 0.24 is multiplied by 0.6 to
provide a new output of 0.144. This continues with the averager’s impulse response output falling off
exponentially because of the successive multiplications by 0.6.†
† We often see exponential decay in nature—everywhere from a capacitor discharging through a resistor, the flow of heat, to the
shrinkage of bubbles in a glass of beer. (See reference [13].)

Figure 11-12 Exponential averager impulse response with α = 0.4.



A useful feature of the exponential averager is its capability to vary the amount of noise reduction by
changing the value of the α weighting factor. If α equals one, input samples are not attenuated, past
averager outputs are ignored, and no averaging takes place. In this case the averager output responds
immediately to changes at the input. As α is decreased in value, input samples are attenuated and past
averager outputs begin to affect the present output. These past values represent an exponentially
weighted sum of recent inputs, and that summation tends to smooth out noisy signals. The smaller α
gets, the more noise reduction is realized. However, with smaller values for α, the slower the
averager is in responding to changes in the input. We can demonstrate this behavior by looking at the
exponential averager’s time-domain step response as a function of α as shown in Figure 11-13.

Figure 11-13 Exponential averager output versus α when a step input is applied at time n = 0.

As so often happens in signal processing, we have a trade-off. The more the noise reduction, the more
sluggish the averager will be in responding to abrupt changes at the input. We can see in Figure 11-13
that as α gets smaller, affording better noise reduction, the averager’s output takes longer to respond
and stabilize. Some test instrumentation manufacturers use a clever scheme to resolve this noise
reduction versus response time trade-off. They use a large value for α at the beginning of a
measurement so the averager’s output responds immediately with a nonzero value. Then as the
measurement proceeds, the value of α is decreased in order to reduce the noise fluctuations at the
input.
The exponential averager’s noise variance reduction as a function of the weighting factor α has been
shown to be[10,11]

(11-29)



Equation (11-29) is useful because it allows us to determine α given some desired averager noise
variance (power) reduction. That is, if our desired noise variance reduction factor is R, where R = (2
− α)/α, we can write

(11-30)

For example, if we want the output noise variance reduced by a factor of R = 10, then α = 2/(10+1) =
0.182. The behavior of exponential averaging is such that to achieve noise reduction roughly
equivalent to an N-point moving averager, we define α as

(11-31)

Considering the exponential averager’s noise power reduction in Eq. (11-29) as an output signal-to-
noise (SNR) increase, we can say the averager’s output SNR increase (in dB) is

(11-32)

Equation (11-32) is plotted in Figure 11-14 to illustrate the trade-off between output noise reduction
and averager response times.

Figure 11-14 Exponential averager output SNR increase as a function of the weighting factor α.

To demonstrate the exponential averager’s output noise power reduction capabilities, Figure 11-15
shows the averager’s output with a low-frequency (relative to the sample rate) cosine wave plus
high-level noise as an input. The weighting factor α starts out with a value of 1 and decreases linearly
to a final value of 0.1 at the 180th data input sample. Notice that the noise is reduced as α decreases.

Figure 11-15 Exponential averager output noise reduction as α decreases.



11.6.2 Frequency-Domain Filter Behavior
The reader may recognize the exponential averager as a 1st-order infinite impulse response (IIR)
digital filter. It has a z-domain transfer function of

(11-33)

Being a 1st-order IIR filter, the exponential averager has a single pole on the z-plane located at z = 1–
α as shown in Figure 11-16. When α is reduced in value, the pole resides closer to the z-plane’s unit
circle, giving us a narrower lowpass passband width.

Figure 11-16 Exponential averager z-plane pole location.

Setting z in Eq. (11-33) equal to ejω, we can write the frequency response of the exponential averager
as

(11-34)

If we’re interested in the magnitude response of our averager, we can express it as
(11-35)

Evaluating Eq. (11-35) over the normalized angular range of 0 ≤ ω ≤ π (corresponding to a
continuous-time frequency range of 0 to fs/2 Hz), the frequency magnitude responses of our
exponential averager for various values of α are shown in Figure 11-17(a). There we see that the
averager’s DC gain, its gain at zero Hz, is unity, which is just what we want for our noise-reduction
applications. It’s worth noting that if we can tolerate a DC gain of 1/α, the multiply by α in Figure 11-
11 can be eliminated to reduce the averager’s computational workload.
Figure 11-17 Exponential averager frequency response versus α: (a) normalized magnitude response

(linear); (b) normalized magnitude response in dB; (c) phase response in degrees.



The exponential averager’s magnitude responses plotted on a logarithmic scale (dB) are provided in
Figure 11-17(b). Notice as α decreases, the exponential averager behaves more and more like a
lowpass filter. Again, it is from this behavior that the exponential averager’s noise-reduction
properties stem.
For those readers who prefer to think of a lowpass filter in terms of its 3 dB bandwidth, we can
compute the appropriate value of the weighting factor α to achieve a desired exponential averaging
filter 3 dB bandwidth. If fc is the desired positive cutoff frequency in Hz, where the exponential
averager’s frequency magnitude response is 3 dB below the averager’s zero-Hz response, the value
of α needed to achieve such an fc cutoff frequency is

(11-36)

where fs is the averager’s input sample rate in Hz.

To comment on the exponential averager’s nonlinear phase response: We’re primarily concerned with
the averager’s frequency response at zero Hz. We want the averager to pass a zero-Hz (constant-
amplitude) signal and attenuate noise fluctuations riding on the constant-amplitude signal of interest.
As such, the exponential averager’s phase nonlinearity is usually of little consequence.

11.6.3 Exponential Averager Application
I first encountered the exponential averager as lowpass filter in a specialized real-time hardware
spectrum analyzer application. That analyzer, using the fast Fourier transform (FFT) shown in Figure



11-18, was similar in operation to a graphics equalizer in home stereo systems. As P spectral power
estimates were displayed on a computer monitor in real time, the common weighting factor α (used by
each exponential averager) could be increased to speed the display’s response to abrupt changes in
the spectral content in x(n). Then again, α could be reduced to minimize abrupt fluctuations (reduced
variance) in the P power samples, yielding a slowly changing (sluggish) spectral display. The
notation in Figure 11-18 is such that Xp(n) represents the pth FFT bin’s complex sample value at the
nth instant in time.

Figure 11-18 An application of exponential averaging.

In this application the exponential averagers were referred to as “leaky integrators” and, again, their
nonlinear phase was unimportant. Their only purpose in life was to reduce the fluctuations in the real-
time |Xp(n)|2 power samples by means of lowpass filtering.
As an example of their utility, exponential averagers are used when we swipe our charge cards
through a magnetic stripe reader (MSR). The analog signal from the magnetic read head is digitized
with an A/D converter, and the discrete samples are exponentially averaged before the binary data
(ones and zeros) detection process is performed[14].
To conclude this section, we inform the reader that Section 13.33 presents computationally efficient
implementations of exponential averagers.
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Chapter 11 Problems
11.1 Assume we have a four-sample x(n) sequence, where index n is 1 ≤ n ≤ 4, whose samples are

x(1) = 1, x(2) = 2, x(3) = 3, x(4) = 4.
(a) What is the average of x(n)?
(b) What is the variance of x(n)?
(c) What is the standard deviation of x(n)?

11.2 This problem illustrates an important characteristic of the quantity known as the average (mean
value) of a sequence of numbers. Suppose we have a six-sample x(n) sequence, where index n is
1 ≤ n ≤ 6, defined by

x(1) = 1, x(2) = –2, x(3) = 3, x(4) = –4, x(5) = 6, x(6) = unspecified,
and the average of x(n) is xave = 4. (Note that the sixth sample in x(n) is not explicitly defined.)
The difference between x(n) and xave is the sequence diff(n) = x(n) – xave, given as

diff(1) = –3, diff(2) = –6, diff(3) = –1, diff(4) = –8, diff(5) = 2, diff(6) = unspecified.

(a) What is the value of diff(6)? Justify your answer.

Hint: The discussion of sequence averages in Appendix D’s Section D.1 will be helpful here.
(b) What is the value of x(6)?

11.3 Let’s look at an important topic regarding averaging. Assume we have two N-point discrete
sequences, x(n) and y(n), where index n is 1 ≤ n ≤ N, and the N-point averages of the two
sequences are

http://www.dsprelated.com/showarticle/57.php


Next, let’s add the two sequences, element for element, to obtain a new N-point sequence z(n) =
x(n) + y(n). Is it correct to say that the average of z(n), defined as

is equal to the sum of xave and yave? (In different words, we’re asking, “Is the average of sums
equal to the sum of averages?”) Explain how you arrived at your answer.
Note: This problem is not “busy work.” If the above statement zave = xave + yave is true, it tells us
that the average of a noisy signal is equal to the average of the noise-free signal plus the average
of the noise.

11.4 Suppose we had three unity-magnitude complex numbers whose phase angles are π/4 radians, –
3π/4 radians, and –π/4 radians. What is the average phase angle, measured in degrees, of the three
phase angles? Show your work.

11.5 Assume we’re averaging magnitude samples from multiple FFTs (fast Fourier transforms) and
we want the variance of the averaged FFT magnitudes to be reduced below the variance of
single-FFT magnitudes by a factor of 20. That is, we want

How many FFTs, k, must we compute and then average their magnitude samples?
11.6 Concerning the moving averager filters in the text’s Figure 11-9, we stated that their transfer

functions are equal. Prove that Hma(z) = Hrma(z).

Hint: Hma(z) is a geometric series that we’d like to represent as a closed-form equation. To
obtain a closed-form equation for a geometric series, start by looking up geometric series in the
Index.

11.7 If we remove the 1/N multiplier from the recursive moving averager in the text’s Figure 11-9(b),
the remaining structure is called a recursive running sum. To exercise your digital network
analysis skills, plot the frequency magnitude responses of a recursive running sum system for N =
4, 8, and 16 as we did in Figure 11-10.
Hint: The frequency response of a recursive running sum network is, of course, the discrete
Fourier transform (DFT) of the network’s rectangular impulse response. Note that the recursive
running sum network’s magnitude response curves will be similar, but not equal, to the curves in
Figure 11-10.

11.8 In the text we said that the phase responses of both nonrecursive and recursive N-point moving
averagers are linear. Why is it valid to make that statement?

11.9 Draw a rough sketch of the frequency magnitude response, over the positive-frequency range, of
a three-point moving averager. Clearly show the frequency magnitude response at fs/2 Hz.

Note: The locations of the frequency response nulls are defined by the locations of the averager’s



transfer function zeros on its z-plane unit circle.
11.10 Think about building a two-stage filter comprising a four-point moving averager in cascade

(series) with a two-point moving averager.
(a) Draw a rough sketch of the frequency magnitude response of the two-stage filter.
(b) Does the cascaded filter have a linear phase response? Justify your answer.

11.11 Let’s assume we’re measuring a constant-level, but very noisy, temperature signal from a
thermocouple and we wish to reduce the noise variance (power) of our measurements by 13 dB.
(a) What is the number of delay elements needed in a nonrecursive moving average filter to

achieve the desired measurement-noise reduction?
(b) What is the number of delay elements needed in a recursive moving average filter to achieve

the desired measurement-noise reduction?
(c) What is the value of the α weighting factor in a standard exponential averager to achieve the

desired measurement-noise reduction?
(d) Fill in the following table describing the implementation requirements to achieve

measurement-noise variance reduction of 13 dB.
Implementation Requirements for 13 dB Noise Reduction

11.12 Regarding the exponential averaging filter, when α = 0, the filter’s single pole lies right on the
z-plane unit circle. In Chapter 6 and Chapter 7 we discussed that having digital filter poles on the
unit circle can lead to filter stability problems because quantizing a filter’s coefficients to a fixed-
width binary word representation can sometimes cause the poles to reside just outside the unit
circle. Why does using α = 0 cause no stability problems for us when we use exponential
averagers?

11.13 In the text we stated that an alternate version of an exponential averager, shown in Figure P11-
13, has a DC (zero Hz) gain of 1/α. Prove that this DC gain factor of 1/α is correct.

Figure P11-13

11.14 Show how to derive the equation for the frequency magnitude response of an exponential
averager whose weighting factor is α.

11.15 Explain why it’s valid to call the exponential averager in Figure P11-15(a), where for example



α = 0.4, by the name leaky integrator compared to a standard (rectangular rule) integrator shown
in Figure P11-15(b)?

Figure P11-15

Hint: Compare the impulse responses of the two networks.
11.16 Here are (somewhat) challenging problems regarding the exponential averager in Figure P11-

16:
Figure P11-16

(a) Derive an algebraic expression for the exponential averager’s time-domain response to a
unity-valued input sample applied at time n = 0 followed by all zero-valued input samples. Use
the term h(n) to represent this impulse response, where n is the time-domain index. (Assume the
output of the z–1 delay element is zero at time n = 0.)

(b) Use your h(n) expression from Part (a) to determine the exponential averager’s gain at zero
Hz (DC gain).

Hint: Recall the relationship between a filter’s impulse response and its gain at zero Hz.
(c) Comment on how the value of the α weighting factor affects the averager’s gain at zero Hz

(DC gain).





Chapter Twelve. Digital Data Formats and Their Effects

In digital signal processing, there are many ways to represent numerical data in computing hardware.
These representations, known as data formats, have a profound effect on the accuracy and ease of
implementation of any given signal processing algorithm. The simpler data formats enable
uncomplicated hardware designs to be used at the expense of a restricted range of number
representation and susceptibility to arithmetic errors. The more elaborate data formats are somewhat
difficult to implement in hardware, but they allow us to manipulate very large and very small numbers
while providing immunity to many problems associated with digital arithmetic. The data format
chosen for any given application can mean the difference between processing success and failure—
it’s where our algorithmic rubber meets the road.
In this chapter, we’ll introduce the most common types of fixed-point digital data formats and show
why and when they’re used. Next, we’ll use analog-to-digital (A/D) converter operations to establish
the precision and dynamic range afforded by these fixed-point formats along with the inherent errors
encountered with their use. Finally, we’ll cover the interesting subject of floating-point binary
formats.

12.1 Fixed-Point Binary Formats
Within digital hardware, numbers are represented by binary digits known as bits—in fact, the term bit
originated from the words Binary digIT. A single bit can be in only one of two possible states: either
a one or a zero.† A six-bit binary number could, for example, take the form 101101, with the leftmost
bit known as the most significant bit (msb); the rightmost bit is called the least significant bit (lsb).
The number of bits in a binary number is known as the word length—hence 101101 has a word length
of six. Like the decimal number system so familiar to us, the binary number system assumes a weight
associated with each digit in the number. That weight is the base of the system (two for binary
numbers and ten for decimal numbers) raised to an integral power. To illustrate this with a simple
example, the decimal number 4631 is
† Binary numbers are used because early electronic computer pioneers quickly realized that it was much more practical and reliable to
use electrical devices (relays, vacuum tubes, transistors, etc.) that had only two states, on or off. Thus, the on/off state of a device could
represent a single binary digit.

(12-1)

The factors 103, 102, 101, and 100 are the digit weights in Eq. (12-1). Similarly, the six-bit binary
number 101101 is equal to decimal 45 as shown by

(12-2)



Using subscripts to signify the base of a number, we can write Eq. (12-2) as 1011012 = 4510. Equation
(12-2) shows us that, like decimal numbers, binary numbers use the place value system where the
position of a digit signifies its weight. If we use B to denote a number system’s base, the place value
representation of the four-digit number a3a2a1a0 is

(12-3)

In Eq. (12-3), Bn is the weight multiplier for the digit an, where 0 ≤ an ≤ B−1. (This place value
system of representing numbers is very old—so old, in fact, that its origin is obscure. However, with
its inherent positioning of the decimal or binary point, this number system is so convenient and
powerful that its importance has been compared to that of the alphabet[1].)

12.1.1 Octal Numbers
As the use of minicomputers and microprocessors rapidly expanded in the 1960s, people grew tired
of manipulating long strings of ones and zeros on paper and began to use more convenient ways to
represent binary numbers. One way to express a binary number is an octal format, with its base of
eight. (Of course, the only valid digits in the octal format are 0 to 7—the digits 8 and 9 have no
meaning in octal representation.)
Converting from binary to octal is as simple as separating the binary number into three-bit groups
starting from the right. For example, the binary number 101010012 can be converted to octal format as

101010012 →    10 | 101 | 001 = 2518.

Thus the octal format enables us to represent an eight-digit binary value with a simpler three-digit
octal value. However, the relentless march of technology is pushing octal numbers, like wooden
tennis rackets, into extinction.

12.1.2 Hexadecimal Numbers
Today the predominant binary number representation format is the hexadecimal number format using
16 as its base. Converting from binary to hexadecimal is done, this time, by separating the binary
number into four-bit groups starting from the right. The binary number 101010012 is converted to
hexadecimal format as

101010012 →    1010 | 1001 = A916.

If you haven’t seen the hexadecimal format used before, don’t let the A9 digits confuse you. In this
format, the characters A, B, C, D, E, and F represent the digits whose decimal values are 10, 11, 12,
13, 14, and 15 respectively. We convert the two groups of bits above to two hexadecimal digits by
starting with the left group of bits, 10102 = 1010 = A16, and 10012 = 910 = 916. Hexadecimal format
numbers also use the place value system, meaning that A916 = (A · 161 + 9 · 160). For convenience,
then, we can represent the eight-digit 101010012 with the two-digit number A916. Table 12-1 lists the
permissible digit representations in the number systems discussed thus far.

Table 12-1 Allowable Digit Representations versus Number System Base



In the above example we used a subscripted 16 to signify a hexadecimal number. Note that it’s
common, in the literature of binary number formats, to have hexadecimal numbers preceded by
special characters to signify that indeed they are hexadecimal. You may see, for example, numbers
like $A9 or 0xA9 where the “$” and “0x” characters specify the follow-on digits to be hexadecimal.

12.1.3 Sign-Magnitude Binary Format
For binary numbers to be at all useful in practice, they must be able to represent negative values.
Binary numbers do this by dedicating one of the bits in a binary word to indicate the sign of a number.
Let’s consider a popular binary format known as sign magnitude. Here, we assume that a binary
word’s leftmost bit is a sign bit and the remaining bits represent the magnitude of a number that is
always positive. For example, we can say that the four-bit number 00112 is +310 and the binary
number 10112 is equal to −310, or

Of course, using one of the bits as a sign bit reduces the magnitude of the numbers we can represent. If
an unsigned binary number’s word length is b bits, the number of different values that can be
represented is 2b. An eight-bit word, for example, can represent 28 = 256 different integral values.
With zero being one of the values we have to express, a b-bit unsigned binary word can represent
integers from 0 to 2b−1. The largest value represented by an unsigned eight-bit word is 28−1 = 25510

= 111111112. In the sign-magnitude binary format a b-bit word can represent only a magnitude of ±2b

−1−1, so the largest positive or negative value we can represent by an eight-bit sign-magnitude word
is ±28−1−1 = ±127.



12.1.4 Two’s Complement Format
Another common binary number scheme, known as the two’s complement format, also uses the
leftmost bit as a sign bit. The two’s complement format is the most convenient numbering scheme
from a hardware design standpoint and has been used for decades. It enables computers to perform
both addition and subtraction using the same hardware adder logic. To obtain the negative version of
a positive two’s complement number, we merely complement (change a one to a zero, and change a
zero to a one) each bit, add a binary one to the complemented word, and discard any bits carried
beyond the original word length. For example, with 00112 representing a decimal 3 in two’s
complement format, we obtain a negative decimal 3 through the following steps:

In the two’s complement format, a b-bit word can represent positive amplitudes as great as 2b−1−1,
and negative amplitudes as large as −2b−1. Table 12-2 shows four-bit word examples of sign-
magnitude and two’s complement binary formats.

Table 12-2 Integer Binary Number Formats

While using two’s complement numbers, we have to be careful when adding two numbers of different
word lengths. Consider the case where a four-bit number is added to an eight-bit number:

No problem so far. The trouble occurs when our four-bit number is negative. Instead of adding a +3 to
the +15, let’s try to add a −3 to the +15:



The above arithmetic error can be avoided by performing what’s called a sign-extend operation on
the four-bit number. This process, typically performed automatically in hardware, extends the sign bit
of the four-bit negative number to the left, making it an eight-bit negative number. If we sign-extend
the −3 and then perform the addition, we’ll get the correct answer:

12.1.5 Offset Binary Format
Another useful binary number scheme is known as the offset binary format. While this format is not as
common as two’s complement, it still shows up in some hardware devices. Table 12-2 shows offset
binary format examples for four-bit words. Offset binary represents numbers by subtracting 2b−1 from
an unsigned binary value. For example, in the second row of Table 12-2, the offset binary number is
11102. When this number is treated as an unsigned binary number, it’s equivalent to 1410. For four-bit
words b = 4 and 2b−1 = 8, so 1410 − 810 = 610, which is the decimal equivalent of 11102 in offset
binary. The difference between the unsigned binary equivalent and the actual decimal equivalent of
the offset binary numbers in Table 12-2 is always −8. This kind of offset is sometimes referred to as a
bias when the offset binary format is used. (It may interest the reader that we can convert back and
forth between the two’s complement and offset binary formats merely by complementing a word’s
most significant bit.)
The history, arithmetic, and utility of the many available number formats is a very broad field of
study. A thorough and very readable discussion of the subject is given by Knuth in reference [2].

12.1.6 Fractional Binary Numbers
All of the binary numbers we’ve considered so far had integer decimal values. Noninteger decimal
numbers, numbers with nonzero digits to the right of the decimal point, can also be represented with
binary numbers if we use a binary point, also called a radix point, identical in function to our
familiar decimal point. (As such, in the binary numbers we’ve discussed so far, the binary point is
assumed to be fixed just to the right of the rightmost, lsb, bit.) For example, using the symbol ◊ to
denote a binary point, the six-bit unsigned binary number 11◊01012 is equal to decimal 3.3125 as
shown by

(12-4)

For our 11◊01012 example in Eq. (12-4) the binary point is set between the second and third most
significant bits and we call that binary number a fractional number. Having a stationary position for



the binary point is why this binary number format is called fixed-point binary. The unsigned number
11◊01012 has two integer bits and four fractional bits, so, in the parlance of binary numbers, such a
number is said to have a 2.4, “two dot four,” format (two integer bits and four fractional bits).
Two’s complement binary numbers can also have this integer plus fraction format, and Table 12-3
shows, for example, the decimal value ranges for all possible eight-bit two’s complement fractional
binary numbers. Notice how the 8.0-format row in Table 12-3 shows the decimal values associated
with an eight-bit two’s complement binary number whose binary point is to the right of the lsb,
signifying an all-integer binary number. On the other hand, the 1.7-format row in Table 12-3 shows
the decimal values associated with an eight-bit two’s complement binary number whose binary point
is just to the right of the msb (the sign bit), signifying an all-fraction binary number.

Table 12-3 Eight-Bit, Two’s Complement, Fractional Format Values

The decimal value range of a general fractional two’s complement binary number is
(12-5)

where the “# of integer bits” notation means the number of bits to the left of the binary point and “# of
fraction bits” means the number of bits to the right of the binary point.
Table 12-3 teaches us two important lessons. First, we can place the implied binary point anywhere
we wish in the eight-bit word, just so long as everyone accessing the data agrees on that binary point
placement and the designer keeps track of that placement throughout all of the system’s arithmetic
computations. Binary arithmetic hardware behavior does not depend on the “agreed upon” binary
point placement. Stated in different words, binary point placement does not affect two’s complement
binary arithmetic operations. That is, adding or multiplying two binary numbers will yield the same
binary result regardless of the implied binary point location within the data words. We leave an
example of this behavior as a homework problem.
Second, for a fixed number of bits, fractional two’s complement binary numbers allow us to represent
decimal numbers with poor precision over a wide range of values, or we can represent decimal
numbers with fine precision but only over a narrow range of values. In practice you must “pick your
poison” by choosing the position of the binary point based on what’s more important to you, number
range or number precision.



Due to their 16-bit internal data paths, it’s very common for programmable 16-bit DSP chips to use a
1.15 format (one integer bit to represent sign, and 15 fractional bits) to represent two’s complement
numbers. These 16-bit signed all-fraction binary numbers are particularly useful because multiplying
two such numbers results in an all-fraction product, avoiding any unpleasant binary overflow
problems, to be discussed shortly. (Be aware that this 1.15 format is also called Q15 format.)
Because the 1.15-format is so commonly used in programmable hardware, we give examples of it and
other 16-bit formats in Table 12-4. In that table, the “resolution” is the decimal value of the format’s
lsb.

Table 12-4 16-Bit Format Values

Multiplication of two 1.15 binary words results in a 2.30-format (also called a Q30-format)
fractional number. That 32-bit product word contains two sign bits and 30 fractional bits, with the
msb being called an extended sign bit. We have two ways to convert (truncate) such a 32-bit product
to the 1.15 format so that it can be stored as a 16-bit word. They are

• shifting the 32-bit word left by one bit and storing the upper 16 bits, and
• shifting the 32-bit word right by 15 bits and storing the lower 16 bits.

To conclude this fractional binary discussion, we provide the steps to convert a decimal number
whose magnitude is less than one, such as an FIR digital filter coefficient, to the 1.15 binary format.
As an example, to convert the decimal value 0.452 to the two’s complement 1.15 binary format:

1. Multiply the absolute value of the original decimal number 0.452 by 32768 (215), yielding a
scaled decimal 14811.136.



2. Round the value 14811.136 to an integer, using your preferred rounding method, producing a
scaled decimal value of 14811.

3. Convert the decimal 14811 to a binary integer and place the binary point to the right of the msb,
yielding 0◊011 1001 1101 1011 (39DB16).

4. If the original decimal value was positive, stop now. If the original decimal value was negative,
implement a two’s complement conversion by inverting Step 3’s binary bits and add one.

If you, unfortunately, do not have software to perform the above positive decimal integer to 1.15
binary conversion in Step 3, here’s how the conversion can be done (painfully) by hand:
3.1. Divide 14811 by 2, obtaining integer 7405 plus a remainder of 0.5. Because the remainder is not

zero, place a one as the lsb of the desired binary number. Our binary number is 1.
3.2. Divide 7405 by 2, obtaining integer 3702 plus a remainder of 0.5. Because the remainder is not

zero, place a one as the bit to the left of the lsb bit established in Step 3.1 above. Our binary
number is now 11.

3.3. Divide 3702 by 2, obtaining integer 1851 plus a remainder of zero. Because the remainder is
zero, place a zero as the bit to the left of the bit established in Step 3.2 above. Our binary number
is now 011.

3.4. Continue this process until the integer portion of the divide-by-two quotient is zero. Append
zeros to the left of the binary word to extend its length to 16 bits.

Using the above steps to convert decimal 1481110 to binary 1.15 format proceeds as shown in Table
12-5, producing our desired binary number of 0◊011 1001 1101 1011 (39DB16).

Table 12-5 Decimal 14811 to Binary 1.15 Conversion Example

12.2 Binary Number Precision and Dynamic Range
As we implied earlier, for any binary number format, the number of bits in a data word is a key
consideration. The more bits used in the word, the better the resolution of the number, and the larger
the maximum value that can be represented.† Assuming that a binary word represents the amplitude of



a signal, digital signal processing practitioners find it useful to quantify the dynamic range of various
binary number schemes. For a signed integer binary word length of b+1 bits (one sign bit and b
magnitude bits), the dynamic range is defined by
† Some computers use 64-bit words. Now, 264 is approximately equal to 1.8 · 1019—that’s a pretty large number. So large, in fact, that if
we started incrementing a 64-bit counter once per second at the beginning of the universe (≈20 billion years ago), the most significant
four bits of this counter would still be all zeros today.

(12-6)

The dynamic range measured in dB is
(12-6′)

When 2b is much larger than 1, we can ignore the −1 in Eq. (12-6′) and state that
(12-6″)

Equation (12-6″), dimensioned in dB, tells us that the dynamic range of our number system is directly
proportional to the word length. Thus, an eight-bit two’s complement word, with seven bits available
to represent signal magnitude, has a dynamic range of 6.02 · 7 = 42.14 dB. Most people simplify Eq.
(12-6″) by using the rule of thumb that the dynamic range is equal to “6 dB per bit.”

12.3 Effects of Finite Fixed-Point Binary Word Length
The effects of finite binary word lengths touch all aspects of digital signal processing. Using finite
word lengths prevents us from representing values with infinite precision, increases the background
noise in our spectral estimation techniques, creates nonideal digital filter responses, induces noise in
analog-to-digital (A/D) converter outputs, and can (if we’re not careful) lead to wildly inaccurate
arithmetic results. The smaller the word lengths, the greater these problems will be. Fortunately, these
finite, word-length effects are rather well understood. We can predict their consequences and take
steps to minimize any unpleasant surprises. The first finite, word-length effect we’ll cover is the
errors that occur during the A/D conversion process.

12.3.1 A/D Converter Quantization Errors
Practical A/D converters are constrained to have binary output words of finite length. Commercial
A/D converters are categorized by their output word lengths, which are normally in the range from 8
to 16 bits. A typical A/D converter input analog voltage range is from −1 to +1 volt. If we used such
an A/D converter having 8-bit output words, the least significant bit would represent

(12-7)



What this means is that we can represent continuous (analog) voltages perfectly as long as they’re
integral multiples of 7.81 millivolts—any intermediate input voltage will cause the A/D converter to
output a best estimate digital data value. The inaccuracies in this process are called quantization
errors because an A/D output least significant bit is an indivisible quantity. We illustrate this situation
in Figure 12-1(a), where the continuous waveform is being digitized by an 8-bit A/D converter whose
output is in the sign-magnitude format. When we start sampling at time t = 0, the continuous waveform
happens to have a value of 31.25 millivolts (mv), and our A/D output data word will be exactly
correct for sample x(0). At time T when we get the second A/D output word for sample x(1), the
continuous voltage is between 0 and −7.81 mv. In this case, the A/D converter outputs a sample value
of 10000001, representing −7.81 mv, even though the continuous input was not quite as negative as
−7.81 mv. The 10000001 A/D output word contains some quantization error. Each successive sample
contains quantization error because the A/D’s digitized output values must lie on the horizontal line in
Figure 12-1(a). The difference between the actual continuous input voltage and the A/D converter’s
representation of the input is shown as the quantization error in Figure 12-1(b). For an ideal A/D
converter, the quantization error, a kind of roundoff noise, can never be greater than ±1/2 an lsb, or
±3.905 mv.

Figure 12-1 Quantization errors: (a) digitized x(n) values of a continuous signal; (b) quantization
error between the actual analog signal values and the digitized signal values.

While Figure 12-1(b) shows A/D quantization noise in the time domain, we can also illustrate this



noise in the frequency domain. Figure 12-2(a) depicts a continuous sinewave of one cycle over the
sample interval shown as the dashed line and a quantized version of the time-domain samples of that
wave as the dots. Notice how the quantized version of the wave is constrained to have only integral
values, giving it a stair-step effect oscillating above and below the true unquantized sinewave. The
quantization here is four bits, meaning that we have a sign bit and three bits to represent the magnitude
of the wave. With three bits, the maximum peak values for the wave are ±7. Figure 12-2(b) shows the
discrete Fourier transform (DFT) of a discrete version of the sinewave whose time-domain sample
values are not forced to be integers but have high precision. Notice in this case that the DFT has a
nonzero value only at m = 1. On the other hand, Figure 12-2(c) shows the spectrum of the four-bit
quantized samples in Figure 12-2(a), where quantization effects have induced noise components
across the entire spectral band. If the quantization noise depictions in Figures 12-1(b) and 12-2(c)
look random, that’s because they are. As it turns out, even though A/D quantization noise is random,
we can still quantify its effects in a useful way.
Figure 12-2 Quantization noise effects: (a) input sinewave applied to a 64-point DFT; (b) theoretical
DFT magnitude of high-precision sinewave samples; (c) DFT magnitude of a sinewave quantized to

four bits.

In the field of communications, people often use the notion of output signal-to-noise ratio, or SNR =
(signal power)/(noise power), to judge the usefulness of a process or device. We can do likewise and



obtain an important expression for the output SNR of an ideal A/D converter, SNRA/D, accounting for
finite word-length quantization effects. Because quantization noise is random, we can’t explicitly
represent its power level, but we can use its statistical equivalent of variance to define SNRA/D
measured in dB as

(12-8)

Next, we’ll determine an A/D converter’s quantization noise variance relative to the converter’s
maximum input peak voltage Vp. If the full-scale (−Vp to +Vp volts) continuous input range of a b-bit
A/D converter is 2Vp, a single quantization level q is that voltage range divided by the number of
possible A/D output binary values, or q = 2Vp/2b. (In Figure 12-1, for example, the quantization level
q is the lsb value of 7.81 mv.) A depiction of the likelihood of encountering any given quantization
error value, called the probability density function p(e) of the quantization error, is shown in Figure
12-3.

Figure 12-3 Probability density function of A/D conversion roundoff error (noise).

This simple rectangular function has much to tell us. It indicates that there’s an equal chance that any
error value between −q/2 and +q/2 can occur. By definition, because probability density functions
have an area of unity (i.e., the probability is 100 percent that the error will be somewhere under the
curve), the amplitude of the p(e) density function must be the area divided by the width, or p(e) = 1/q.
From Figure D-7 and Eq. (D-29) in Appendix D, the variance of our uniform p(e) is

(12-9)

We can now express the A/D noise error variance in terms of A/D parameters by replacing q in Eq.
(12-9) with q = 2Vp/2b to get

(12-10)

OK, we’re halfway to our goal—with Eq. (12-10) giving us the denominator of Eq. (12-8), we need
the numerator. To arrive at a general result, let’s express the input signal in terms of its root mean



square (rms), the A/D converter’s peak voltage, and a loading factor LF defined as
(12-11)

† As covered in Appendix D, Section D.2, although the variance σ2 is associated with the power of a signal, the standard deviation is
associated with the rms value of a signal.

With the loading factor defined as the input rms voltage over the A/D converter’s peak input voltage,

we square and rearrange Eq. (12-11) to show the signal variance  as
(12-12)

Substituting Eqs. (12-10) and (12-12) in Eq. (12-8),
(12-13)

Eq. (12-13) gives us the SNRA/D of an ideal b-bit A/D converter in terms of the loading factor and the
number of bits b. Figure 12-4 plots Eq. (12-13) for various A/D word lengths as a function of the
loading factor. Notice that the loading factor in Figure 12-4 is never greater than −3 dB, because the
maximum continuous A/D input peak value must not be greater than Vp volts. Thus, for a sinusoid

input, its rms value must not be greater than  volts (3 dB below Vp).
Figure 12-4 SNRA/D of ideal A/D converters as a function of loading factor in dB.

When the input sinewave’s peak amplitude is equal to the A/D converter’s full-scale voltage Vp, the
full-scale LF is

(12-14)



Under this condition, the maximum A/D output SNR from Eq. (12-13) is
(12-15)

This discussion of SNR relative to A/D converters means three important things to us:
1. An ideal A/D converter will have an SNRA/D defined by Eq. (12-13), so any discrete x(n) signal

produced by a b-bit A/D converter can never have an SNR greater than Eq. (12-13). (Appendix D
dicusses methods for computing the SNR of discrete signals.) For example, let’s say we want to
digitize a continuous signal whose SNR is 55 dB. Using an ideal eight-bit A/D converter with its
full-scale SNRA/D of 6.02 · 8 + 1.76 = 49.9 dB from Eq. (12-15), the quantization noise will
contaminate the digitized values, and the resultant digital signal’s SNR can be no better than 49.9
dB. We’ll have lost signal SNR through the A/D conversion process. (A ten-bit A/D, with its ideal
SNRA/D ≈ 62 dB, could be used to digitize a 55 dB SNR continuous signal to reduce the SNR
degradation caused by quantization noise.) Equations (12-13) and (12-15) apply to ideal A/D
converters and don’t take into account such additional A/D noise sources as aperture jitter error,
missing output bit patterns, and other nonlinearities. So actual A/D converters are likely to have
SNRs that are lower than that indicated by theoretical Eq. (12-13). To be safe in practice, it’s
sensible to assume that SNRA/D-max is 3 to 6 dB lower than indicated by Eq. (12-15).

2. Equation (12-15) is often expressed in the literature, but it can be a little misleading because it’s
imprudent to force an A/D converter’s input to full scale. It’s wise to drive an A/D converter to
some level below full scale because inadvertent overdriving will lead to signal clipping and will
induce distortion in the A/D’s output. So Eq. (12-15) is overly optimistic, and, in practice, A/D
converter SNRs will be less than indicated by Eq. (12-15). The best approximation for an A/D’s
SNR is to determine the input signal’s rms value that will never (or rarely) overdrive the
converter input, and plug that value into Eq. (12-11) to get the loading factor value for use in Eq.
(12-13).† Again, using an A/D converter with a wider word length will alleviate this problem by
increasing the available SNRA/D.

† By the way, some folks use the term crest factor to describe how hard an A/D converter’s input is being driven. The crest factor is the
reciprocal of the loading factor, or CF = Vp/(rms of the input signal).

3. Remember, now, real-world continuous signals always have their own inherent continuous SNR,
so using an A/D converter whose SNRA/D is a great deal larger than the continuous signal’s SNR
serves no purpose. In this case, we would be wasting A/D converter bits by digitizing the analog
signal’s noise to a high degree of accuracy, which does not improve our digital signal’s overall
SNR. In general, we want the converter’s SNRA/D value to be approximately 6 dB greater than an
analog signal’s SNR.

A word of caution is appropriate here concerning our analysis of A/D converter quantization errors.
The derivations of Eqs. (12-13) and (12-15) are based upon three assumptions:



1. The cause of A/D quantization errors is a stationary random process; that is, the performance of
the A/D converter does not change over time. Given the same continuous input voltage, we always
expect an A/D converter to provide exactly the same output binary code.

2. The probability density function of the A/D quantization error is uniform. We’re assuming that the
A/D converter is ideal in its operation and all possible errors between −q/2 and +q/2 are equally
likely. An A/D converter having stuck bits or missing output codes would violate this assumption.
High-quality A/D converters being driven by continuous signals that cross many quantization
levels will result in our desired uniform quantization noise probability density function.

3. The A/D quantization errors are uncorrelated with the continuous input signal. If we were to
digitize a single continuous sinewave whose frequency was harmonically related to the A/D
sample rate, we’d end up sampling the same input voltage repeatedly and the quantization error
sequence would not be random. The quantization error would be predictable and repetitive, and
our quantization noise variance derivation would be invalid. In practice, complicated continuous
signals such as music or speech, with their rich spectral content, avoid this problem.

To conclude our discussion of A/D converters, let’s consider one last topic. In the literature the
reader is likely to encounter the expression

(12-16)

Equation (12-16) is used by test equipment manufacturers to specify the sensitivity of test instruments
using a beff parameter known as the number of effective bits, or effective number of bits (ENOB)
[3–8]. Equation (12-16) is merely Eq. (12-15) solved for b and is based on the assumption that the
A/D converter’s analog input peak-peak voltage spans roughly 90 percent of the converter’s full-
scale voltage range. Test equipment manufacturers measure the actual SNR of their product, indicating
its ability to capture continuous input signals relative to the instrument’s inherent noise
characteristics. Given this true SNR, they use Eq. (12-16) to determine the beff value for
advertisement in their product literature. The larger the beff, the greater the continuous voltage that can
be accurately digitized relative to the equipment’s intrinsic quantization noise.

12.3.2 Data Overflow
The next finite, word-length effect we’ll consider is called overflow. Overflow is what happens when
the result of an arithmetic operation has too many bits, or digits, to be represented in the hardware
registers designed to contain that result. We can demonstrate this situation to ourselves rather easily
using a simple four-function, eight-digit pocket calculator. The sum of a decimal 9.9999999 plus 1.0
is 10.9999999, but on an eight-digit calculator the sum is 10.999999 as

The hardware registers, which contain the arithmetic result and drive the calculator’s display, can
hold only eight decimal digits; so the least significant digit is discarded (of course). Although the
above error is less than one part in ten million, overflow effects can be striking when we work with



large numbers. If we use our calculator to add 99,999,999 plus 1, instead of getting the correct result
of 100 million, we’ll get a result of 1. Now that’s an authentic overflow error!
Let’s illustrate overflow effects with examples more closely related to our discussion of binary
number formats. First, adding two unsigned binary numbers is as straightforward as adding two
decimal numbers. The sum of 42 plus 39 is 81, or

In this case, two 6-bit binary numbers required 7 bits to represent the results. The general rule is the
sum of m individual b-bit binary numbers can require as many as [b + log2(m)] bits to represent
the results. So, for example, a 24-bit result register (accumulator) is needed to accumulate the sum of
sixteen 20-bit binary numbers, or 20 + log2(16) = 24. The sum of 256 eight-bit words requires an
accumulator whose word length is [8 + log2(256)], or 16 bits, to ensure that no overflow errors
occur.
In the preceding example, if our accumulator word length was six bits, an overflow error occurs as

Here, the most significant bit of the result overflowed the six-bit accumulator, and an error occurred.
With regard to overflow errors, the two’s complement binary format has two interesting
characteristics. First, under certain conditions, overflow during the summation of two numbers causes
no error. Second, with multiple summations, intermediate overflow errors cause no problems if the
final magnitude of the sum of the b-bit two’s complement numbers is less than 2b−1. Let’s illustrate
these properties by considering the four-bit two’s complement format in Figure 12-5, whose binary
values are taken from Table 12-2.

Figure 12-5 Four-bit two’s complement binary numbers.



The first property of two’s complement overflow, which sometimes causes no errors, can be shown
by the following examples:

Then again, the following examples show how two’s complement overflow sometimes does cause
errors:

The rule with two’s complement addition is if the carry bit into the sign bit is the same as the
overflow bit out of the sign bit, the overflow bit can be ignored, causing no errors; if the carry bit
into the sign bit is different from the overflow bit out of the sign bit, the result is invalid. An even
more interesting property of two’s complement numbers is that a series of b-bit word summations can



be performed where intermediate sums are invalid, but the final sum will be correct if its magnitude
is less than 2b−1. We show this by the following example. If we add a +6 to a +7, and then add a −7,
we’ll encounter an intermediate overflow error but our final sum will be correct, as

The magnitude of the sum of the three four-bit numbers was less than 24−1 (<8), so our result was
valid. If we add a +6 to a +7, and next add a −5, we’ll encounter an intermediate overflow error, and
our final sum will also be in error because its magnitude is not less than 8.

Another situation where overflow problems are conspicuous is during the calculation of the fast
Fourier transform (FFT). It’s difficult at first to imagine that multiplying complex numbers by sines
and cosines can lead to excessive data word growth—particularly because sines and cosines are
never greater than unity. Well, we can show how FFT data word growth occurs by considering a
decimation-in-time FFT butterfly from Figure 4-14(c), repeated here as Figure 12-6(a), and grinding
through a little algebra. The expression for the x’ output of this FFT butterfly, from Eq. (4-26), is

(12-17)

Figure 12-6 Data overflow scenarios: (a) single decimation-in-time FFT butterfly; (b) 2nd-order IIR
filter.

Breaking up the butterfly’s x and y inputs into their real and imaginary parts and remembering that 
, we can express Eq. (12-17) as

(12-18)

If we let α be the twiddle factor angle of 2πk/N, and recall that e−jα = cos(α) − jsin(α), we can
simplify Eq. (12-18) as



(12-19)

If we look, for example, at just the real part of the x’ output, x’real, it comprises the three terms
(12-20)

If xreal, yreal, and yimag are of unity value when they enter the butterfly and the twiddle factor angle α =
2πk/N happens to be π/4 = 45°, then, x’real can be greater than 2 as

(12-21)

So we see that the real part of a complex number can more than double in magnitude in a single stage
of an FFT. The imaginary part of a complex number is equally likely to more than double in magnitude
in a single FFT stage. Without mitigating this word growth problem, overflow errors could render an
FFT algorithm useless.
Overflow problems can also be troublesome for fixed-point systems containing feedback as shown in
Figure 12-6(b). Examples of such networks are infinite impulse response (IIR) filters, cascaded
integrator-comb (CIC) filters, and exponential averagers. The hardware register (accumulator)
containing w(n) must have a binary word width that will hold data values as large as the network’s
DC (zero Hz) gain G times the input signal, or G · x(n). To avoid data overflow, the number of bits in
the w(n)-results register must be at least

(12-22)

where  means that if log2(G) is not an integer, round it up to the next larger integer. (As a quick
reminder, we can determine the DC gain of a digital network by substituting z = 1 in the network’s z-
domain transfer function.)
OK, overflow problems are handled in one of two ways—by truncation or rounding—each inducing
its own individual kind of quantization errors, as we shall see.

12.3.3 Truncation
Truncation is the process where some number of least significant bits are discarded from a binary
number. A practical example of truncation is the situation where the results of a processing system are
16-bit signal samples that must be passed on to a 12-bit digital-to-analog converter. To avoid
overflowing the converter’s 12-bit input register, the least significant 4 bits of the 16-bit signal
samples must be discarded. Thinking about decimal numbers, if we’re quantizing to decimal integer
values, for example, the real value 1.2 would be quantized to 1.
An example of truncation to integer values is shown in Figure 12-7(a), where all values of x in the



range of 0 ≤ x < 1 are set equal to 0, values of x in the range of 1 ≤ x < 2 are set equal to 1, and so on.
The quantization level (value), in that figure, is q = 1. The quantization error induced by this
truncation is the vertical distance between the horizontal bold lines and the dashed diagonal line in
Figure 12-7(a).

Figure 12-7 Truncation: (a) quantization nonlinearities; (b) error probability density function; (c)
binary truncation.

As we did with A/D converter quantization errors, we can call upon the concept of probability
density functions to characterize the quantization errors induced by truncation. The probability density
function of truncation errors, in terms of the quantization level q, is shown in Figure 12-7(b). In
Figure 12-7(a) the quantization level q is 1, so in this case we can have truncation errors as great as
−1. Drawing upon our results from Eqs. (D-11) and (D-12) in Appendix D, the mean and variance of
our uniform truncation error probability density function are expressed as

(12-23)

and
(12-24)

The notion of binary number truncation is shown in Figure 12-7(c), where the ten-bit binary word W



is to be truncated to six bits by discarding the four Truncate bits. So in this binary truncation situation,
q in Figure 12-7(b) is equal to the least significant bit (lsb) value (bit R0) of the retained binary
word.
In a sense, truncation error is the price we pay for the privilege of using integer binary arithmetic.
One aspect of this is the error introduced when we use truncation to implement division by some
integer power of two. A quick way of dividing a binary value by 2K is to shift a binary word K bits to
the right; that is, we’re truncating the data value (not the binary word width) by discarding the
rightmost K bits after the right shift.
For example, let’s say we have the value 31 represented by the six-bit binary number 0111112, and
we want to divide it by 16 through shifting the bits K = 4 places to the right and discarding those
shifted bits. After the right shift we have a binary quotient of 0000012. Well, we see the significance
of the problem because this type of division gave us a result of one instead of the correct quotient
31/16 = 1.9375. Our division-by-truncation error here is roughly 50 percent of the correct quotient.
Had our original dividend been 63 represented by the six-bit binary number 1111112, dividing it by
16 through a four-bit shift would give us an answer of binary 0000112, or decimal three. The correct
answer, of course, is 63/16 = 3.9375. In this case the percentage error is 0.9375/3.9375, or about
23.8 percent. So, the larger the dividend, the lower the truncation error.
If we study these kinds of errors, we’ll find that truncation error depends on three things: the number
of value bits shifted and discarded, the values of the discarded bits (were those dropped bits ones or
zeros?), and the magnitude of the binary number left over after shifting. Although a complete analysis
of these truncation errors is beyond the scope of this book, a practical example of how division by
truncation can cause serious numerical errors is given in reference [9].
Unfortunately, truncation induces a DC bias (an error whose average is a nonzero negative number)
on the truncated signal samples, as predicted by Eq. (12-23). We see this behavior in Figure 12-7(b)
where the truncation error is always negative. Inducing a constant (DC) error to a signal sequence can
be troublesome in many applications because the always-negative truncation error can grow to an
unacceptable level in subsequent computations. So, in an effort to avoid overflow errors, rounding
(discussed in the next section) is often preferred over truncation.

12.3.4 Data Rounding
Rounding is where a binary number requiring truncation is slightly modified before the truncation
operation is performed. Let’s review the behavior of rounding by first defining rounding as the
process wherein a number is modified such that it is subsequently represented by, or rounded off to,
its nearest quantization level. For example, if we’re quantizing to integer values, the decimal number
1.2 would be quantized to 1, and the number 1.6 would be quantized to 2. This is shown in Figure 12-
8(a), where all values of x in the range of −0.5 ≤ x < 0.5 are set equal to 0, values of x in the range of
0.5 ≤ x < 1.5 are set equal to 1, and so on.

Figure 12-8 Rounding: (a) quantization nonlinearities; (b) error probability density function.



The quantization error induced by such a rounding operation is the vertical distance between the bold
horizontal lines and the dashed diagonal line in Figure 12-8(a). The probability density function of the
error induced by rounding, in terms of the quantization level q, is shown in Figure 12-8(b). In Figure
12-8(a) the quantization level is q = 1, so in this case we can have quantization error magnitudes no
greater than q/2, or 1/2. Using our Eqs. (D-11) and (D-12) results from Appendix D, the mean and
variance of our uniform rounding probability density function are expressed as

(12-25)

and
(12-26)

The notion of binary number rounding can be described using Figure 12-7(c), where the binary word
W is to be truncated by discarding the four Truncate bits. With rounding, the binary word W is
modified before the Truncate bits are discarded. So with binary rounding, q in Figure 12-8(b) is
equal to the lsb value of the preserved binary word R0.
Let’s not forget: the purpose of rounding, its goal in life, is to avoid data overflow errors while
reducing the DC bias error (an error whose average is not zero) induced by simple truncation.
Rounding achieves this goal because, in theory, its average error is zero as shown by Eq. (12-25).
Next we discuss two popular methods of data rounding.
A common form of binary data rounding is straightforward to implement. Called round-to-nearest, it
comprises the two-step process of adding one to the most significant (leftmost) of the lsb bits to be
discarded, bit T3 of word W in Figure 12-7(c), and then discarding the appropriate Truncate bits. For
an example of this rounding method, let’s say we have 16-bit signal samples destined to be routed to a
12-bit digital-to-analog converter. To avoid overflowing the converter’s 12-bit input register, we add
a binary value of 10002 (decimal 810 = 23) to the original 16-bit sample value and then truncate



(discard) the sum’s least significant 4 bits. As another example of round-to-nearest rounding, if a 32-
bit “long” word is rounded to 16 bits, a value of 215 is added to the long word before discarding the
sum’s 16 least significant bits.
Stated in different words, this round-to-nearest rounding method means: If the T3 bit is a one,
increment the R bits by one. Then shift the R bits to the right, discarding the Truncate bits.
The round-to-nearest method does reduce the average (DC bias) of the quantization error induced by
simple truncation; however the round-to-nearest method’s average error bias is close to but not
exactly equal to zero. (That’s because the R bits, in Figure 12-7(c), are always incremented when the
value of the Truncate bits is equal to the value R0/2. This means that over time the R bits are rounded
up slightly more often than they are rounded down.) With additional bit checking we can force the
average rounding error to be exactly zero using a scheme called convergent rounding.
Convergent rounding, also called round to even, is a slightly more complicated method of rounding,
but one that yields zero-average rounding error on the rounded binary signal samples. Similar to the
round-to-nearest method, convergent rounding does not always increment Figure 12-7(c)’s R bits (the
value Retain) when the value of the Truncate bits is equal to R0/2. In the convergent rounding scheme,
when Truncate = R0/2, the value Retain is only incremented if its original value was an odd number.
This clever process is shown in Figure 12-9.

Figure 12-9 Convergent rounding.

OK, here’s what we’ve learned about rounding: Relative to simple truncation, rounding requires more
computations, but rounding both minimizes the constant-level (DC bias) quantization error induced by
truncation alone, and rounding has a lower maximum quantization error. So rounding is often the
preferred method used to avoid binary data overflow errors. The above two rounding methods can,
by the way, be used in two’s complement number format systems.
As a practical rule, to retain maximum numerical precision, all necessary full-width binary arithmetic
should be performed first and then rounding (or truncation) should be performed as the very last
operation. For example, if we must add twenty 16-bit binary numbers followed by rounding the sum
to 12 bits, we should perform the additions at full 16-bit precision and, as a final step, round the
summation result to 12 bits.
In digital signal processing, statistical analysis of quantization error effects is complicated because
quantization is a nonlinear process. Analytical results depend on the types of quantization errors, the
magnitude of the data being represented, the numerical format used, and which of the many FFT or



digital filter structures we are implementing. Be that as it may, digital signal processing experts have
developed simplified error models whose analysis has proved useful. Although discussion of these
analysis techniques and their results is beyond the scope of this introductory text, many references are
available for the energetic reader[10–18]. (Reference [11] has an extensive reference list of its own
on the topic of quantization error analysis.)
Again, the overflow problems using fixed-point binary formats—which we try to alleviate with
truncation or rounding—arise because so many digital signal processing algorithms comprise large
numbers of additions or multiplications. This obstacle, particularly in hardware implementations of
digital filters and the FFT, is avoided by hardware designers through the use of floating-point binary
number formats.

12.4 Floating-Point Binary Formats
Floating-point binary formats allow us to overcome most of the limitations of precision and dynamic
range mandated by fixed-point binary formats, particularly in reducing the ill effects of overflow[19].
Floating-point formats segment a data word into two parts: a mantissa m and an exponent e. Using
these parts, the value of a binary floating-point number n is evaluated as

(12-27)

that is, the number’s value is the product of the mantissa and 2 raised to the power of the exponent.
(Mantissa is a somewhat unfortunate choice of terms because it has a meaning here very different
from that in the mathematics of logarithms. Mantissa originally meant the decimal fraction of a
logarithm.† However, due to its abundance in the literature we’ll continue using the term mantissa
here.) Of course, both the mantissa and the exponent in Eq. (12-27) can be either positive or negative
numbers.
† For example, the common logarithm (log to the base 10) of 256 is 2.4082. The 2 to the left of the decimal point is called the
characteristic of the logarithm and the 4082 digits are called the mantissa. The 2 in 2.4082 does not mean that we multiply .4082 by 102.
The 2 means that we take the antilog of .4082 to get 2.56 and multiply that by 102 to get 256.

Let’s assume that a b-bit floating-point number will use be bits for the fixed-point signed exponent and
bm bits for the fixed-point signed mantissa. The greater the number of be bits used, the larger the
dynamic range of the number. The more bits used for bm, the better the resolution, or precision, of the
number. Early computer simulations conducted by the developers of b-bit floating-point formats
indicated that the best trade-off occurred with be ≈ b/4 and bm ≈ 3b/4. We’ll see that for typical 32-bit
floating-point formats used today, be ≈ 8 bits and bm ≈ 24 bits.

To take advantage of a mantissa’s full dynamic range, most implementations of floating-point numbers
treat the mantissa as a fractional fixed-point binary number, shift the mantissa bits to the right or left,
so that the most significant bit is a one, and adjust the exponent accordingly. The process of shifting a
binary bit pattern so that the most significant bit is a one is called bit normalization. When
normalized, the mantissa bits are typically called the fraction of the floating-point number, instead of
the mantissa. For example, the decimal value 3.687510 can be represented by the fractional binary
number 11.10112. If we use a two-bit exponent with a six-bit fraction floating-point word, we can just
as well represent 11.10112 by shifting it to the right two places and setting the exponent to two as



(12-28)

The floating-point word above can be evaluated to retrieve our decimal number again as
(12-29)

After some experience using floating-point normalization, users soon realized that always having a
one in the most significant bit of the fraction was wasteful. That redundant one was taking up a single
bit position in all data words and serving no purpose. So practical implementations of floating-point
formats discard that one, assume its existence, and increase the useful number of fraction bits by one.
This is why the term hidden bit is used to describe some floating-point formats. While increasing the
fraction’s precision, this scheme uses less memory because the hidden bit is merely accounted for in
the hardware arithmetic logic. Using a hidden bit, the fraction in Eq. (12-28)’s floating-point number
is shifted to the left one place and would now be

(12-30)

Recall that the exponent and mantissa bits were fixed-point signed binary numbers, and we’ve
discussed several formats for representing signed binary numbers, i.e., sign magnitude, two’s
complement, and offset binary. As it turns out, all three signed binary formats are used in industry-
standard floating-point formats. The most common floating-point formats, all using 32-bit words, are
listed in Table 12-6.

Table 12-6 Floating–Point Number Formats



The IEEE P754 floating-point format is the most popular because so many manufacturers of floating-
point integrated circuits comply with this standard[8,20–22]. Its exponent e is offset binary (biased
exponent), and its fraction is a sign-magnitude binary number with a hidden bit that’s assumed to be
20. The decimal value of a normalized IEEE P754 floating-point number is evaluated as

(12-31)

where f is the decimal-formatted value of the fractional bits divided by 223. Value e is the decimal
value of the floating-point number’s exponent bits.
The IBM floating-point format differs somewhat from the other floating-point formats because it uses
a base of 16 rather than 2. Its exponent is offset binary, and its fraction is sign magnitude with no
hidden bit. The decimal value of a normalized IBM floating-point number is evaluated as

(12-32)

The DEC floating-point format uses an offset binary exponent, and its fraction is sign magnitude with
a hidden bit that’s assumed to be 2−1. The decimal value of a normalized DEC floating-point number
is evaluated as

(12-33)



MIL-STD 1750A is a United States Military Airborne floating-point standard. Its exponent e is a
two’s complement binary number residing in the least significant eight bits. MIL-STD 1750A’s
fraction is also a two’s complement number (with no hidden bit), and that’s why no sign bit is
specifically indicated in Table 12-6. The decimal value of a MIL-STD 1750A floating-point number
is evaluated as

(12-34)

Notice how the floating-point formats in Table 12-6 all have word lengths of 32 bits. This was not
accidental. Using 32-bit words makes these formats easier to handle using 8-, 16-, and 32-bit
hardware processors. That fact not withstanding and given the advantages afforded by floating-point
number formats, these formats do require a significant amount of logical comparisons and branching
to correctly perform arithmetic operations. Reference [23] provides useful flow charts showing what
procedural steps must be taken when floating-point numbers are added and multiplied.

12.4.1 Floating-Point Dynamic Range
Attempting to determine the dynamic range of an arbitrary floating-point number format is a
challenging exercise. We start by repeating the expression for a number system’s dynamic range from
Eq. (12-6) as

(12-35)

When we attempt to determine the largest and smallest possible values for a floating-point number
format, we quickly see that they depend on such factors as

• the position of the binary point
• whether a hidden bit is used or not (If used, its position relative to the binary point is important.)
• the base value of the floating-point number format
• the signed binary format used for the exponent and the fraction (For example, recall from Table
12-2 that the binary two’s complement format can represent larger negative numbers than the sign-
magnitude format.)

• how unnormalized fractions are handled, if at all (Unnormalized, also called gradual underflow,
means a nonzero number that’s less than the minimum normalized format but can still be
represented when the exponent and hidden bit are both zero.)

• how exponents are handled when they’re either all ones or all zeros. (For example, the IEEE P754
format treats a number having an all-ones exponent and a nonzero fraction as an invalid number,
whereas the DEC format handles a number having a sign = 1 and a zero exponent as a special
instruction instead of a valid number.)

Trying to develop a dynamic range expression that accounts for all the possible combinations of the
above factors is impractical. What we can do is derive a rule-of-thumb expression for dynamic range
that’s often used in practice[8,22,24].
Let’s assume the following for our derivation: the exponent is a be-bit offset binary number, the



fraction is a normalized sign-magnitude number having a sign bit and bm magnitude bits, and a hidden
bit is used just left of the binary point. Our hypothetical floating-point word takes the following form:

First we’ll determine what the largest value can be for our floating-point word. The largest fraction is
a one in the hidden bit, and the remaining bm fraction bits are all ones. This would make fraction f =
[1 + (1 − 2−bm)]. The first 1 in this expression is the hidden bit to the left of the binary point, and the
value in parentheses is all bm bits equal to ones to the right of the binary point. The greatest positive

value we can have for the be-bit offset binary exponent is 2(2be−1−1). So the largest value that can be
represented with the floating-point number is the largest fraction raised to the largest positive
exponent, or

(12-36)

The smallest value we can represent with our floating-point word is a one in the hidden bit times two
raised to the exponent’s most negative value, 2−(2be−1), or

(12-37)

Plugging Eqs. (12-36) and (12-37) into Eq. (12-35),
(12-38)

Now here’s where the thumb comes in—when bm is large, say over seven, the 2−bm value approaches
zero; that is, as bm increases, the all-ones fraction (1 − 2−bm) value in the numerator approaches 1.
Assuming this, Eq. (12-38) becomes

(12-39)

Using Eq. (12-39), we can estimate, for example, the dynamic range of the single-precision IEEE



P754 standard floating-point format with its eight-bit exponent:
(12-40)

Although we’ve introduced the major features of the most common floating-point formats, there are
still more details to learn about floating-point numbers. For the interested reader, the references given
in this section provide a good place to start.

12.5 Block Floating-Point Binary Format
A marriage of fixed-point and floating-point binary formats is known as block floating point. This
scheme is used, particularly in dedicated FFT integrated circuits, when large arrays, or blocks, of
associated data are to be manipulated mathematically. Block floating-point schemes begin by
examining all the words in a block of data, normalizing the largest-valued word’s fraction, and
establishing the correct exponent. This normalization takes advantage of the fraction’s full dynamic
range. Next, the fractions of the remaining data words are shifted appropriately, so that they can use
the exponent of the largest word. In this way, all of the data words use the same exponent value to
conserve hardware memory.
In FFT implementations, the arithmetic is performed treating the block normalized data values as
fixed-point binary. However, when an addition causes an overflow condition, all of the data words
are shifted one bit to the right (division by two), and the exponent is incremented by one. As the
reader may have guessed, block floating-point formats have increased dynamic range and avoid the
overflow problems inherent in fixed-point formats but do not reach the performance level of true
floating-point formats[8,25,26].
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Chapter 12 Problems
12.1 Given their specified format, convert the following integer binary numbers to decimal format:

(a) 1100 0111, unsigned,



(b) 1100 0111, sign magnitude,
(c) 1100 0111, two’s complement,
(d) 1100 0111, offset binary.

12.2 Convert the following unsigned integer binary numbers, given here in hexadecimal format, to
decimal:
(a) $A231,
(b) 0x71F.

12.3 Given the hexadecimal integer numbers $07 and $E2 in two’s complement format, what is the
decimal value of $07 minus $E2? Show your work.

12.4 Sign-extend the following two’s complement integer numbers, given in hexadecimal format, to
16 bits and express the results in hexadecimal format:
(a) $45,
(b) $B3.

12.5 Show that the binary addition operation

gives the correct decimal results when the two binary addends and the sum are in the following
two’s complement fractional formats:
(a) 7.1 (7 integer bits and 1 fractional bit),
(b) 6.2 (6 integer bits and 2 fractional bits),
(c) 4.4 (4 integer bits and 4 fractional bits).

12.6 Microchip Technology Inc. produces a microcontroller chip (Part #PIC24F) that accommodates
16-bit data words. When using a two’s complement integer number format, what are the most
positive and most negative decimal numbers that can be represented by the microcontroller’s data
word?

12.7 Consider four-bit unsigned binary words using a 2.2 (“two dot two”) “integer plus fraction”
format. List all 16 possible binary words in this format and give their decimal equivalents.

12.8 The annual residential property tax in California is 0.0165 times the assessed dollar value of the
property. What is this 0.0165 tax rate factor in a two’s complement 1.15 format? Give the answer
in both binary and hexadecimal representations. Show how you arrived at your solution.

12.9 The decimal number 1/3 cannot be represented exactly with a finite number of decimal digits,
nor with a finite number of binary bits. What would be the base of a number system that would
allow decimal 1/3 to be exactly represented with a finite number of digits?

12.10 If the number 42736 is in a base 6 numbering system, what would be its decimal value?

12.11 Think about a 32-bit two’s complement fixed-point binary number having 31 fractional bits (a
“1.31” two’s complement number). This number format is very common in today’s high-



performance programmable DSP chips.
(a) What is the most positive decimal value that can be represented by such a binary number?

Show how you arrived at your solution.
(b) What is the most negative decimal value?

12.12 As of this writing, Analog Devices Inc. produces an integrated circuit (Part #AD9958), called
a direct digital synthesizer, that generates high-precision analog sinewaves. The AD9958 uses a
31-bit binary word to control the device’s output frequency. When the control word is at its
minimum value, the device’s output frequency is zero Hz. When the control word is at its
maximum value, the output frequency is 250 MHz. What is the frequency resolution (the frequency
step size) of this sinusoidal signal generator in Hz?

12.13 The first commercial audio compact disc (CD) players used 16-bit samples to represent an
analog audio signal. Their sample rate was fs = 44.1 kHz. Those 16-bit samples were applied to a
digital-to-analog (D/A) converter whose analog output was routed to a speaker. What is the
combined data output rate of the digital portion, measured in bytes (8-bit binary words) per
second, of a stereo CD player?

12.14 When implementing a digital filter using a fixed-point binary number format, care must be taken
to avoid arithmetic overflow errors. With that notion in mind, if the x(n) input samples in Figure
P12-14 are eight-bit binary words, how many bits are needed to represent the y(n) output
sequence to avoid any data overflow errors? Show how you arrived at your answer.

Figure P12-14

Hint: Review the last portion of the text’s Section 12.3.2.
12.15 Review the brief description of allpass filters in Appendix F. One form of an allpass filter is

shown in Figure P12-15(a). For the filter to have the desired constant magnitude response over its
full operating frequency, coefficient A must be equal to

Figure P12-15



If the filter is designed such that B = 2.5, show why we cannot achieve the desired constant
frequency magnitude response when coefficients A and B are quantized using four-bit unsigned
binary words in a 2.2 (“two dot two”) “integer plus fraction” format, where AQ and BQ are the
quantized coefficients as shown in Figure P12-15(b).

12.16 National Semiconductors Inc. produces a digital tuner chip (Part #CLC5903), used for building
digital receivers, that has the capability to amplify its output signal by shifting its binary signal
sample values to the left by as few as one bit to as many as seven bits. What is the maximum gain,
measured in dB (decibels), of this tuner’s bit-shifting amplification capability?

12.17 Figure P12-17 shows an algorithm that approximates the operation of dividing a sign-
magnitude binary number x(n) by an integer value K. (A block containing the “—> 2” symbol
means truncation by way of a binary right shift by two bits.) What is the value of integer K? Show
your work.

Figure P12-17

12.18 When using programmable DSP chips, multiplication is a simple straightforward operation.
However, when using field-programmable gate arrays (FPGAs), multiplier hardware is typically
difficult to implement and should be avoided whenever possible. Figure P12-18 shows how we
can multiply a binary x(n) input sequence by 54, without the need for multiplier hardware. What
are the values for A and B in Figure P12-18 so that y(n) equals 54 times x(n)?

Figure P12-18

12.19 Consider the network shown in Figure P12-19 which approximates a 2nd-order differentiation



operation. In many DSP implementations (using field-programmable gate arrays, for example) it is
advantageous to minimize the number of multiplications. Assuming that all the sequences in Figure
P12-19 use a binary two’s complement integer number format, what data bit manipulations must
be implemented to eliminate the two multipliers?

Figure P12-19

12.20 Agilent Inc. produces an A/D converter (Model #DP1400) whose sample rate is 2×109

samples/second (fs = 2 GHz). This digitizer provides super-fine time resolution samples of analog
signals whose durations are T = 5×10−6 seconds (5 microseconds) as shown in Figure P12-20. If
each converter output sample is stored in one memory location of a computer, how many memory
locations are required to store the converter’s x(n) output sequence representing the 5-
microsecond-duration x(t) signal?

Figure P12-20

12.21 Here is a problem often encountered by DSP engineers. Assume we sample exactly three cycles
of a continuous x(t) sinewave resulting in a block of 1024 x(n) time samples and compute a 1024-
point fast Fourier transform (FFT) to obtain the FFT magnitude samples. Also assume that we
repeat the sampling and FFT magnitude computations many times and average the FFT magnitude
sequences to produce the average magnitude samples, |Xave(m)|, shown in Figure P12-21. (We
averaged multiple FFT magnitude sequences to increase the accuracy, by reducing the variance, of
our final |Xave(m)| sequence.) If the A/D converter produces ten-bit binary words in sign-
magnitude format and has an input full-scale bipolar voltage range of ±5 volts, what is the peak
value of the continuous x(t) sinewave? Justify your answer.

Figure P12-21



12.22 Suppose we have a 12-bit A/D converter that operates over an input voltage range of ±5 volts
(10 volts peak-peak). Assume the A/D converter is ideal in its operation and its transfer function
is that shown in Figure P12-22 where the tick mark spacing of the x(t) and x(n) axes is the
converter’s quantization-level q.

Figure P12-22

(a) What is the A/D converter’s quantization-level q (least significant bit) voltage?
(b) What are the A/D converter’s maximum positive and maximum negative quantization error

voltages?
(c) If we apply a 7-volt peak-peak sinusoidal voltage to the converter’s analog input, what A/D

output signal-to-quantization noise value, SNRA/D in dB, should we expect? Show how you
arrived at your answer.

12.23 Suppose an A/D converter manufacturer applies a 10-volt peak-peak sinusoidal voltage to their
12-bit converter’s analog input, conducts careful testing, and measures the converter’s overall
signal-to-noise level to be 67 dB. What is the effective number of bits value, beff, for their A/D
converter?

12.24 Let’s reinforce our understanding of the quantization errors induced by typical A/D converters.
(a) Figure P12-24 shows the quantized x(n) output integer values of truncating and rounding A/D

converters as a function of their continuous x(t) input voltage. It’s sensible to call those bold
stair-step curves the “transfer functions” of the A/D converters. The curves are normalized to
the A/D converter’s quantization-level voltage q, such that an x(t) value of 2 represents a
voltage of 2q volts. Draw the curves of the quantization error as a function of the continuous
x(t) input for both truncating and rounding A/D converters.

Figure P12-24



(b) Fill in the following table of important A/D converter quantization error properties in terms of
the A/D converters’ quantization-level voltage q.

12.25 Assume we want to digitize the output voltage of a temperature measurement system,
monitoring the internal temperature of an automobile radiator, as shown in Figure P12-25. The
system’s manufacturer states that its output voltage v(t) will represent the thermocouple’s junction
temperature with an accuracy of 2 degrees Fahrenheit (1.1 degrees Celsius), and its operating
range covers temperatures as low as just-freezing water to twice the temperature of boiling water.
To accommodate the precision and operating range of the temperature measurement system, how
many bits, b, do we need for our A/D converter? Show your work.

Figure P12-25

12.26 One useful way to test the performance of A/D converters is to apply a specific analog signal to
the A/D converter’s analog input and perform a histogram of the converter’s output samples. For
example, if an analog squarewave-like signal is applied to an A/D converter, the converter’s
output sequence might be that shown in the left panel of Figure P12-26(a), and the histogram of the
converter’s output samples is shown in the right panel of Figure P12-26(a). That histogram shows
that there are many converter output samples whose values are −0.2, and many converter output
samples whose values are 0.5, and no sample values other than −0.2 and 0.5. The shape of the
histogram curve will indicate any severe defects in the converter’s performance.

Figure P12-26



If a triangular analog signal is applied to an A/D converter, the converter’s output sequence would
be that shown in the left panel of Figure P12-26(b) and the histogram of the converter’s output
samples is shown in the right panel of Figure P12-26(b). This histogram shows that there are
(ideally) an equal number of samples at all amplitudes between −1 and +1, which happens to
indicate correct converter behavior.
In the testing of high-frequency A/D converters, high-frequency analog square and triangular
waves are difficult to generate, so A/D converter engineers use high-frequency analog sinewaves
to test their converters. Assuming that an analog sinewave is used as an input for A/D converter
histogram testing and the converter output samples are those shown in the left panel of Figure P12-
26(c), draw a rough sketch of the histogram of converter output samples.

12.27 In the text we discussed how to use the concept of a uniform probability density function
(PDF), described in Section D.3 of Appendix D, to help us determine the variance (a measure of
power) of random A/D-converter quantization noise. Sometimes we want to generate random
noise samples, for testing purposes, that have a uniform PDF such as that shown in Figure P12-27.
What is the value of A for a uniform PDF random sequence whose variance is equal to 2?

Figure P12-27

12.28 Assume we have a single numerical data sample value in floating-point binary format. What
two bit manipulation methods exist to multiply that sample by 4 without using any multiplier
hardware circuitry?



12.29 Convert the following IEEE P754 floating-point number, given here in hexadecimal format, to a
decimal number:
$C2ED0000
Show your work.
Hint: Don’t forget to account for the hidden one in the IEEE P754 format.





Chapter Thirteen. Digital Signal Processing Tricks

As we study the literature of digital signal processing, we’ll encounter some creative techniques that
professionals use to make their algorithms more efficient. These practical techniques are
straightforward examples of the philosophy “Don’t work hard, work smart,” and studying them will
give us a deeper understanding of the underlying mathematical subtleties of DSP. In this chapter, we
present a collection of these tricks of the trade, in no particular order, and explore several of them in
detail because doing so reinforces the lessons we’ve learned in previous chapters.

13.1 Frequency Translation without Multiplication
Frequency translation is often called for in digital signal processing algorithms. There are simple
schemes for inducing frequency translation by 1/2 and 1/4 of the signal sequence sample rate. Let’s
take a look at these mixing schemes.

13.1.1 Frequency Translation by fs/2

First we’ll consider a technique for frequency translating an input sequence by fs/2 by merely
multiplying a sequence by (−1)n = 1,−1,1,−1, ..., etc., where fs is the signal sample rate in Hz. This
process may seem a bit mysterious at first, but it can be explained in a straightforward way if we
review Figure 13-1(a). There we see that multiplying a time-domain signal sequence by the (−1)n

mixing sequence is equivalent to multiplying the signal sequence by a sampled cosinusoid where the
mixing sequence samples are shown as the dots in Figure 13-1(a). Because the mixing sequence’s
cosine repeats every two sample values, its frequency is fs/2. Figures 13-1(b) and 13-1(c) show the
discrete Fourier transform (DFT) magnitude and phase of a 32-sample (−1)n sequence. As such, the
right half of those figures represents the negative frequency range.

Figure 13-1 Mixing sequence comprising (−1)n = 1,−1,1,−1, etc.: (a) time-domain sequence; (b)
frequency-domain magnitudes for 32 samples; (c) frequency-domain phase.



Let’s demonstrate this (−1)n mixing with an example. Consider a real x(n) signal sequence having 32
samples of the sum of three sinusoids whose |X(m)| frequency magnitude and ϕ(m) phase spectra are
as shown in Figures 13-2(a) and 13-2(b). If we multiply that time signal sequence by (−1)n, the
resulting x1,−1(n) time sequence will have the magnitude and phase spectra that are shown in Figures
13-2(c) and 13-2(d). Multiplying a time signal by our (−1)n cosine shifts half its spectral energy up
by fs/2 and half its spectral energy down by −fs/2. Notice in these non-circular frequency depictions
that as we count up, or down, in frequency, we wrap around the end points.
Figure 13-2 A signal and its frequency translation by fs/2: (a) original signal magnitude spectrum; (b)

original phase; (c) the magnitude spectrum of the translated signal; (d) translated phase.



Here’s a terrific opportunity for the DSP novice to convolve the (−1)n spectrum in Figure 13-1 with
the X(m) spectrum to obtain the frequency-translated X1,−1(m) signal spectrum. Please do so; that
exercise will help you comprehend the nature of discrete sequences and their time- and frequency-
domain relationships by way of the convolution theorem.
Remember, now, we didn’t really perform any explicit multiplications—the whole idea here is to
avoid multiplications; we merely changed the sign of alternating x(n) samples to get x1,−1(n). One way
to look at the X1,−1(m) magnitudes in Figure 13-2(c) is to see that multiplication by the (−1)n mixing
sequence flips the positive-frequency band of X(m) (X(0) to X(16)) about the fs/4 Hz point and flips
the negative-frequency band of X(m) (X(17) to X(31)) about the −fs/4 Hz sample. This process can be
used to invert the spectra of real signals when bandpass sampling is used as described in Section 2.4.
By the way, in the DSP literature be aware that some clever authors may represent the (−1)n sequence
with its equivalent expressions of

(13-1)

13.1.2 Frequency Translation by −fs/4

Two other simple mixing sequences form the real and imaginary parts of a complex −fs/4 oscillator
used for frequency down-conversion to obtain a quadrature version (complex and centered at 0 Hz) of
a real bandpass signal originally centered at fs/4. The real (in-phase) mixing sequence is cos(πn/2) =
1,0,−1,0, etc., shown in Figure 13-3(a). That mixing sequence’s quadrature companion is −sin(πn/2)
= 0,−1,0,1, etc., as shown in Figure 13-3(b). The spectral magnitudes of those two sequences are



identical as shown in Figure 13-3(c), but their phase spectrum has a 90-degree shift relationship
(what we call quadrature).

Figure 13-3 Quadrature mixing sequences for down-conversion by fs/4: (a) in-phase mixing
sequence; (b) quadrature-phase mixing sequence; (c) the frequency magnitudes of both sequences for

N = 32 samples; (d) the phase of the cosine sequence; (e) phase of the sine sequence.

If we multiply the x(n) sequence whose spectrum is that shown in Figures 13-2(a) and 13-2(b) by the
in-phase (cosine) mixing sequence, the product will have the I(m) spectrum shown in Figures 13-4(a)
and 13-4(b). Again, X(m)’s spectral energy is translated up and down in frequency, only this time the
translation is by ±fs/4. Multiplying x(n) by the quadrature-phase (sine) sequence yields the Q(m)
spectrum in Figures 13-4(a) and 13-4(c).
Figure 13-4 Spectra after translation down by fs/4: (a) I(m) and Q(m) spectral magnitudes; (b) phase

of I(m) ; (c) phase of Q(m).



Because their time sample values are merely 1, −1, and 0, the quadrature mixing sequences are useful
because down-conversion by fs/4 can be implemented without multiplication. That’s why these
mixing sequences are of so much interest: down-conversion of an input time sequence is
accomplished merely with data assignment, or signal routing.
To down-convert a general x(n) = xreal(n) + jximag(n) sequence by fs/4, the value assignments are

(13-2)

If your implementation is hardwired gates, the above data assignments are performed by means of
routing signals (and their negatives). Although we’ve focused on down-conversion so far, it’s worth
mentioning that up-conversion of a general x(n) sequence by fs/4 can be performed with the following
data assignments:

(13-3)

We notify the reader, at this point, that Section 13.29 presents an interesting trick for performing
frequency translation using decimation rather than multiplication.

13.1.3 Filtering and Decimation after fs/4 Down-Conversion

There’s an efficient way to perform the complex down-conversion, by fs/4, and filtering of a real
signal process that we discussed for the quadrature sampling scheme in Section 8.9. We can use a



novel technique to greatly reduce the computational workload of the linear-phase lowpass
filters[1–3]. In addition, decimation of the complex down-converted sequence by a factor of two is
inherent, with no effort on our part, in this process.
Considering Figure 13-5(a), notice that if an original x(n) sequence was real-only, and its spectrum is
centered at fs/4, multiplying x(n) by cos(πn/2) = 1,0,−1,0, for the in-phase path and −sin(πn/2) =
0,−1,0,1, for the quadrature-phase path to down-convert x(n)’s spectrum to 0 Hz yields the new
complex sequence xnew(n) = xi(n) + xq(n), or

(13-4)

Figure 13-5 Complex down-conversion by fs/4 and filtering by a 5-tap LPF: (a) the process; (b) in-
phase filter data; (c) quadrature-phase filter data.

Next, we want to lowpass filter (LPF) both the xi(n) and xq(n) sequences followed by decimation by a
factor of two.
Here’s the trick. Let’s say we’re using 5-tap FIR filters and at the n = 4 time index the data residing in
the two lowpass filters would be that shown in Figures 13-5(b) and 13-5(c). Due to the alternating



zero-valued samples in the xi(n) and xq(n) sequences, we see that only five nonzero multiplies are
being performed at this time instant. Those computations, at time index n = 4, are shown in the third
row of the rightmost column in Table 13-1. Because we’re decimating by two, we ignore the time
index n = 5 computations. The necessary computations during the next time index (n = 6) are given in
the fourth row of Table 13-1, where again only five nonzero multiplies are computed.

Table 13-1 Filter Data and Necessary Computations after Decimation by Two

A review of Table 13-1 tells us we can multiplex the real-valued x(n) sequence, multiply the
multiplexed sequences by the repeating mixing sequence 1,−1, ..., etc., and apply the resulting xi(n)
and xq(n) sequences to two filters, as shown in Figure 13-6(a). Those two filters have decimated
coefficients in the sense that their coefficients are the alternating h(k) coefficients from the original
lowpass filter in Figure 13-5. The two new filters are depicted in Figure 13-6(b), showing the
necessary computations at time index n = 4. Using this new process, we’ve reduced our
multiplication workload by a factor of two. The original data multiplexing in Figure 13-6(a) is what
implemented our desired decimation by two.
Figure 13-6 Efficient down-conversion, filtering by a 5-tap LPF, and decimation: (a) process block
diagram; (b) the modified filters and data at time n = 4; (c) process when a half-band filter is used.



Here’s another feature of this efficient down-conversion structure. If half-band filters are used in
Figure 13-5(a), then only one of the coefficients in the modified quadrature lowpass filter is nonzero.
This means we can implement the quadrature-path filtering as K unit delays, a single multiply by the
original half-band filter’s center coefficient, followed by another K delay as depicted in Figure 13-
6(c). For an original N-tap half-band filter, K is the integer part of N/4. If the original half-band
filter’s h(N−1)/2 center coefficient is 0.5, as is often the case, we can implement its multiply by an
arithmetic right shift of the delayed xq(n).
This down-conversion process is indeed slick. Here’s another attribute. If the original lowpass filter
in Figure 13-5(a) has an odd number of taps, the coefficients of the modified filters in Figure 13-6(b)
will be symmetrical, and we can use the folded FIR filter scheme (Section 13.7) to reduce the number
of multipliers by almost another factor of two!
Finally, if we need to invert the output xc(n′) spectrum, there are two ways to do so. We can negate the
1,−1, sequence driving the mixer in the quadrature path, or we can swap the order of the single unit
delay and the mixer in the quadrature path.

13.2 High-Speed Vector Magnitude Approximation
The quadrature processing techniques employed in spectrum analysis, computer graphics, and digital
communications routinely require high-speed determination of the magnitude of a complex number
(vector V) given its real and imaginary parts, i.e., the in-phase part I and the quadrature-phase part Q.
This magnitude calculation requires a square root operation because the magnitude of V is

(13-5)



Assuming that the sum I2 + Q2 is available, the problem is to efficiently perform the square root
computation.
There are several ways to obtain square roots, but the optimum technique depends on the capabilities
of the available hardware and software. For example, when performing a square root using a high-
level software language, we employ whatever software square root function is available. Accurate
software square root routines, however, require many floating-point arithmetic computations. In
contrast, if a system must accomplish a square root operation in just a few system clock cycles, high-
speed magnitude approximations are required[4,5]. Let’s look at a neat magnitude approximation
scheme that avoids the dreaded square root operation.
There is a technique called the αMax+βMin (read as “alpha max plus beta min”) algorithm for
estimating the magnitude of a complex vector.† It’s a linear approximation to the vector magnitude
problem that requires the determination of which orthogonal vector, I or Q, has the greater absolute
value. If the maximum absolute value of I or Q is designated by Max, and the minimum absolute value
of either I or Q is Min, an approximation of |V| using the αMax+βMin algorithm is expressed as
†A “Max+βMin” algorithm had been in use, but in 1988 this author suggested expanding it to the αMax+βMin form where α could be a
value other than unity[6].

(13-6)

There are several pairs for the α and β constants that provide varying degrees of vector magnitude
approximation accuracy to within 0.1 dB[4,7]. The αMax+βMin algorithms in reference [8] determine
a vector magnitude at whatever speed it takes a system to perform a magnitude comparison, two
multiplications, and one addition. But those algorithms require, as a minimum, a 16-bit multiplier to
achieve reasonably accurate results. If, however, hardware multipliers are not available, all is not
lost. By restricting the α and β constants to reciprocals of integer powers of two, Eq. (13-6) lends
itself well to implementation in binary integer arithmetic. A prevailing application of the αMax+βMin
algorithm uses α = 1.0 and β = 0.5. The 0.5 multiplication operation is performed by shifting the value
Min to the right by one bit. We can gauge the accuracy of any vector magnitude estimation algorithm
by plotting its |V| as a function of vector phase angle. Let’s do that. The Max + 0.5Min estimate for a
complex vector of unity magnitude, over the vector angular range of 0 to 90 degrees, is shown as the
solid curve in Figure 13-7. (The curves in Figure 13-7 repeat every 90 degrees.)

Figure 13-7 αMax+βMin estimation performance.

An ideal estimation curve for a unity magnitude vector would have a value of one, and we’ll use this



ideal curve as a yardstick to measure the merit of various αMax+βMin algorithms. Let’s make sure
we know what the solid curve in Figure 13-7 is telling us. That curve indicates that a unity magnitude
vector oriented at an angle of approximately 26 degrees will be estimated by Eq. (13-6) to have a
magnitude of 1.118 instead of the correct magnitude of one. The error then, at 26 degrees, is 11.8
percent. For comparison, two other magnitude approximation curves for various values of α and β are
shown in Figure 13-7.
Although the values for α and β in Figure 13-7 yield somewhat accurate vector magnitude estimates,
there are other values for α and β that deserve our attention because they result in smaller magnitude
estimation errors. The α = 15/16 and β = 15/32 solid curve in Figure 13-8 is an example of a
reduced-error algorithm. Multiplications by those values of α and β can be performed by multiplying
by 15 and using binary right shifts to implement the divisions by 16 and 32. A mathematically simple,
single-multiply, α = 1 and β = 0.4 algorithm is also shown as the dashed curve[9]. For the interested
reader, the performance of the optimum values for α and β is shown as the dotted curve in Figure 13-
8. (The word optimum, as used here, means minimizing the magnitude estimation error fluctuations
both above and below the ideal unity line.)

Figure 13-8 Alternate αMax+βMin algorithm performance.

To add to our catalog of magnitude estimation algorithms, at the expense of an additional
multiply/shift and a compare operation, an accurate magnitude estimation scheme is that defined by
Eq. (13-7)[10]:

(13-7)

Again, the divisions in Eq. (13-7) are implemented as binary right shifts. In a similar vein we mention
an algorithm that exhibits a maximum error of a mere 1 percent, when floating-point arithmetic is
used, as defined by Eq. (13-7′)[11]:

(13-7′)

The performance curves of the last two magnitude estimation algorithms are shown in Figure 13-9.
Figure 13-9 Additional αMax+βMin algorithm performance.



To summarize the behavior of the magnitude estimation algorithms we just covered so far, the relative
performances of the various algorithms are shown in Table 13-2. The table lists the magnitude of the
algorithms’ maximum error in both percent and decibels. The rightmost column of Table 13-2 is the
mean squared error (MSE) of the algorithms. That MSE value indicates how much the algorithms’
results fluctuate about the ideal result of one, and we’d like to have that MSE value be as close to
zero (a flat line) as possible.

Table 13-2 αMax+βMin Algorithm Performance Comparisons

So, the αMax+βMin algorithms enable high-speed vector magnitude computation without the need for
performing square root operations. Of course, with the availability of floating-point multiplier
integrated circuits—with their ability to multiply in one or two clock cycles—the α and β coefficients
need not always be restricted to multiples of reciprocals of integer powers of two.

13.3 Frequency-Domain Windowing
There’s an interesting technique for minimizing the calculations necessary to implement windowing of
FFT input data to reduce spectral leakage. There are times when we need the FFT of unwindowed
time-domain data, while at the same time we also want the FFT of that same time-domain data with a
window function applied. In this situation, we don’t have to perform two separate FFTs. We can
perform the FFT of the unwindowed data, and then we can perform frequency-domain windowing on
that FFT result to reduce leakage. Let’s see how.
Recall from Section 3.9 that the expressions for the Hanning and the Hamming windows were
wHan(n) = 0.5 −0.5cos(2πn/N) and wHam(n) = 0.54 −0.46cos(2πn/N), respectively, where N is a



window sequence length. They both have the general cosine function form of
(13-8)

for n = 0, 1, 2, ..., N−1. Looking at the frequency response of the general cosine window function,
using the definition of the DFT, the transform of Eq. (13-8) is

(13-9)

Because , Eq. (13-9) can be written as
(13-10)

Equation (13-10) looks pretty complicated, but using the derivation from Section 3.13 for expressions
like those summations, we find that Eq. (13-10) merely results in the superposition of three sin(x)/x
functions in the frequency domain. Their amplitudes are shown in Figure 13-10.

Figure 13-10 General cosine window frequency response amplitude.

Notice that the two translated sin(x)/x functions have sidelobes with opposite phase from that of the
center sin(x)/x function. This means that Nα times the mth bin output, minus Nβ/2 times the (m−1)th
bin output, minus β/2 times the (m+1)th bin output will minimize the sidelobes of the mth bin. This
frequency-domain convolution process is equivalent to multiplying the input time data sequence by
the N-valued window function w(n) in Eq. (13-8)[12–14].
For example, let’s say the output of the mth FFT bin is X(m) = am + jbm, and the outputs of its two
neighboring bins are X(m−1) = a−1 + jb−1 and X(m+1) = a+1 + jb+1. Then frequency-domain
windowing for the mth bin of the unwindowed X(m) is as follows:

(13-11)



To compute a windowed N-point FFT, Xthree-term(m), we can apply Eq. (13-11), requiring 4N
additions and 3N multiplications, to the unwindowed N-point FFT result X(m) and avoid having to
perform the N multiplications of time-domain windowing and a second FFT with its Nlog2(N)
additions and 2Nlog2(N) multiplications. (In this case, we called our windowed results Xthree-term(m)
because we’re performing a convolution of a three-term W(m) sequence with the X(m) sequence.)
To accommodate the m = 0 beginning and the m = N−1 end of our N-point FFT, we effectively wrap
the FFT samples back on themselves. That is, due to the circular nature of FFT samples based on
real-valued time sequences, we use

(13-11′)

and
(13-11″)

Now if the FFT’s x(n) input sequence is real-only, then X(0) = a0, and Eq. (13-11′) simplifies to a
real-only Xthree-term (0) = αa0 − βa1.

The neat situation here is the frequency-domain coefficients, values, α and β, for the Hanning window.
They’re both 0.5, and the multiplications in Eq. (13-11) can be performed in hardware with two
binary right shifts by a single bit for α = 0.5 and two shifts for each of the two β/2 = 0.25 factors, for
a total of six binary shifts. If a gain of four is acceptable, we can get away with only two left shifts
(one for the real and one for the imaginary parts of X(m)) using

(13-12)

In application-specific integrated circuit (ASIC) and field-programmable gate array (FPGA)
hardware implementations, where multiplies are to be avoided, the binary shifts can be eliminated
through hardwired data routing. Thus only additions are necessary to implement frequency-domain
Hanning windowing. The issues we need to consider are which window function is best for the
application, and the efficiency of available hardware in performing the frequency-domain
multiplications. Frequency-domain Hamming windowing can be implemented but, unfortunately, not
with simple binary shifts.
Along with the Hanning and Hamming windows, reference [14] describes a family of windows
known as Blackman windows that provide further FFT spectral leakage reduction when performing
frequency-domain windowing. (Note: Reference [14] reportedly has two typographical errors in the
4-Term (−74 dB) window coefficients column on its page 65. Reference [15] specifies those
coefficients to be 0.40217, 0.49703, 0.09892, and 0.00188.) Blackman windows have five nonzero
frequency-domain coefficients, and their use requires the following five-term convolution:

(13-13)

Table 13-3 provides the frequency-domain coefficients for several common window functions.



Table 13-3 Frequency-Domain Windowing Coefficients

Let’s end our discussion of the frequency-domain windowing trick by saying this scheme can be
efficient because we don’t have to window the entire set of FFT data; windowing need only be
performed on those FFT bin outputs of interest to us. An application of frequency-domain windowing
is presented in Section 13.18.

13.4 Fast Multiplication of Complex Numbers
The multiplication of two complex numbers is one of the most common functions performed in digital
signal processing. It’s mandatory in all discrete and fast Fourier transformation algorithms, necessary
for graphics transformations, and used in processing digital communications signals. Be it in
hardware or software, it’s always to our benefit to streamline the processing necessary to perform a
complex multiply whenever we can. If the available hardware can perform three additions faster than
a single multiplication, there’s a way to speed up a complex multiply operation[16].
The multiplication of two complex numbers, a + jb and c + jd, results in the complex product

(13-14)

We can see that Eq. (13-14) requires four multiplications and two additions. (From a computational
standpoint we’ll assume a subtraction is equivalent to an addition.) Instead of using Eq. (13-14), we
can calculate the following intermediate values:

(13-15)

We then perform the following operations to get the final R and I:
(13-16)

The reader is invited to plug the k values from Eq. (13-15) into Eq. (13-16) to verify that the
expressions in Eq. (13-16) are equivalent to Eq. (13-14). The intermediate values in Eq. (13-15)
required three additions and three multiplications, while the results in Eq. (13-16) required two more
additions. So we traded one of the multiplications required in Eq. (13-14) for three addition
operations needed by Eqs. (13-15) and (13-16). If our hardware uses fewer clock cycles to perform
three additions than a single multiplication, we may well gain overall processing speed by using Eqs.
(13-15) and (13-16) instead of Eq. (13-14) for complex multiplication.



13.5 Efficiently Performing the FFT of Real Sequences
Upon recognizing its linearity property and understanding the odd and even symmetries of the
transform’s output, the early investigators of the fast Fourier transform (FFT) realized that two
separate, real N-point input data sequences could be transformed using a single N-point complex FFT.
They also developed a technique using a single N-point complex FFT to transform a 2N-point real
input sequence. Let’s see how these two techniques work.

13.5.1 Performing Two N-Point Real FFTs
The standard FFT algorithms were developed to accept complex inputs; that is, the FFT’s normal
input x(n) sequence is assumed to comprise real and imaginary parts, such as

(13-17)

In typical signal processing schemes, FFT input data sequences are usually real. The most common
example of this is the FFT input samples coming from an A/D converter that provides real integer
values of some continuous (analog) signal. In this case the FFT’s imaginary xi(n)’s inputs are all zero.
So initial FFT computations performed on the xi(n) inputs represent wasted operations. Early FFT
pioneers recognized this inefficiency, studied the problem, and developed a technique where two
independent N-point, real input data sequences could be transformed by a single N-point complex
FFT. We call this scheme the Two N-Point Real FFTs algorithm. The derivation of this technique is
straightforward and described in the literature[17–19]. If two N-point, real input sequences are a(n)
and b(n), they’ll have discrete Fourier transforms represented by Xa(m) and Xb(m). If we treat the
a(n) sequence as the real part of an FFT input and the b(n) sequence as the imaginary part of the FFT
input, then

(13-18)

Applying the x(n) values from Eq. (13-18) to the standard DFT,
(13-19)

we’ll get a DFT output X(m) where m goes from 0 to N−1. (We’re assuming, of course, that the DFT
is implemented by way of an FFT algorithm.) Using the superscript “*” symbol to represent the
complex conjugate, we can extract the two desired FFT outputs Xa(m) and Xb(m) from X(m) by using
the following:

(13-20)



and
(13-21)

Let’s break Eqs. (13-20) and (13-21) into their real and imaginary parts to get expressions for Xa(m)
and Xb(m) that are easier to understand and implement. Using the notation showing X(m)’s real and
imaginary parts, where X(m) = Xr(m) + jXi(m), we can rewrite Eq. (13-20) as

(13-22)

where m = 1, 2, 3, . . ., N−1. What about the first Xa(m), when m = 0? Well, this is where we run into
a bind if we actually try to implement Eq. (13-20) directly. Letting m = 0 in Eq. (13-20), we quickly
realize that the first term in the numerator, X*(N−0) = X*(N), isn’t available because the X(N) sample
does not exist in the output of an N-point FFT! We resolve this problem by remembering that X(m) is
periodic with a period N, so X(N) = X(0).† When m = 0, Eq. (13-20) becomes
† This fact is illustrated in Section 3.8 during the discussion of spectral leakage in DFTs.

(13-23)

Next, simplifying Eq. (13-21),
(13-24)

where, again, m = 1, 2, 3, . . ., N−1. By the same argument used for Eq. (13-23), when m = 0, Xb(0) in
Eq. (13-24) becomes

(13-25)

This discussion brings up a good point for beginners to keep in mind. In the literature Eqs. (13-20)
and (13-21) are often presented without any discussion of the m = 0 problem. So, whenever you’re
grinding through an algebraic derivation or have some equations tossed out at you, be a little
skeptical. Try the equations out on an example—see if they’re true. (After all, both authors and book
typesetters are human and sometimes make mistakes. We had an old saying in Ohio for this situation:
“Trust everybody, but cut the cards.”) Following this advice, let’s prove that this Two N-Point Real
FFTs algorithm really does work by applying the 8-point data sequences from Chapter 3’s DFT
examples to Eqs. (13-22) through (13-25). Taking the 8-point input data sequence from Section 3.1’s
DFT Example 1 and denoting it a(n),

(13-26)



Taking the 8-point input data sequence from Section 3.6’s DFT Example 2 and calling it b(n),
(13-27)

Combining the sequences in Eqs. (13-26) and (13-27) into a single complex sequence x(n),
(13-28)

Now, taking the 8-point FFT of the complex sequence in Eq. (13-28), we get
(13-29)

So from Eq. (13-23),
Xa(0) = Xr(0) = 0.

To get the rest of Xa(m), we have to plug the FFT output’s X(m) and X(N−m) values into Eq. (13-22).†

Doing so,
† Remember, when the FFT’s input is complex, the FFT outputs may not be conjugate symmetric; that is, we can’t assume that F(m) is
equal to F*(N−m) when the FFT input sequence’s real and imaginary parts are both nonzero.



So Eq. (13-22) really does extract Xa(m) from the X(m) sequence in Eq. (13-29). We can see that we
need not solve Eq. (13-22) when m is greater than 4 (or N/2) because Xa(m) will always be conjugate
symmetric. Because Xa(7) = Xa(1), Xa(6) = Xa(2), etc., only the first N/2 elements in Xa(m) are
independent and need be calculated.
OK, let’s keep going and use Eqs. (13-24) and (13-25) to extract Xb(m) from the FFT output. From
Eq. (13-25),

Xb(0) = Xi(0) = 0.

Plugging the FFT’s output values into Eq. (13-24) to get the next four Xb(m)s, we have



The question arises “With the additional processing required by Eqs. (13-22) and (13-24) after the
initial FFT, how much computational saving (or loss) is to be had by this Two N-Point Real FFTs
algorithm?” We can estimate the efficiency of this algorithm by considering the number of arithmetic
operations required relative to two separate N-point radix-2 FFTs. First, we estimate the number of
arithmetic operations in two separate N-point complex FFTs.
From Section 4.6, we know that a standard radix-2 N-point complex FFT comprises (N/2) · log2N
butterfly operations. If we use the optimized butterfly structure, each butterfly requires one complex
multiplication and two complex additions. Now, one complex multiplication requires two real
additions and four real multiplications, and one complex addition requires two real additions.† So a
single FFT butterfly operation comprises four real multiplications and six real additions. This means
that a single N-point complex FFT requires (4N/2) · log2N real multiplications, and (6N/2) · log2N
real additions. Finally, we can say that two separate N-point complex radix-2 FFTs require
† The complex addition (a+jb) + (c+jd) = (a+c) + j(b+d) requires two real additions. A complex multiplication (a+jb) · (c+jd) = ac−bd
+ j(ad+bc) requires two real additions and four real multiplications.

(13-30)

(13-30′)

Next, we need to determine the computational workload of the Two N-Point Real FFTs algorithm. If
we add up the number of real multiplications and real additions required by the algorithm’s N-point
complex FFT, plus those required by Eq. (13-22) to get Xa(m), and those required by Eq. (13-24) to
get Xb(m), the Two N-Point Real FFTs algorithm requires

(13-31)

(13-31′)

Equations (13-31) and (13-31′) assume that we’re calculating only the first N/2 independent elements



of Xa(m) and Xb(m). The single N term in Eq. (13-31) accounts for the N/2 divide by 2 operations in
Eq. (13-22) and the N/2 divide by 2 operations in Eq. (13-24).
OK, now we can find out how efficient the Two N-Point Real FFTs algorithm is compared to two
separate complex N-point radix-2 FFTs. This comparison, however, depends on the hardware used
for the calculations. If our arithmetic hardware takes many more clock cycles to perform a
multiplication than an addition, then the difference between multiplications in Eqs. (13-30) and (13-
31) is the most important comparison. In this case, the percentage gain in computational saving of the
Two N-Point Real FFTs algorithm relative to two separate N-point complex FFTs is the difference in
their necessary multiplications over the number of multiplications needed for two separate N-point
complex FFTs, or

(13-32)

The computational (multiplications only) saving from Eq. (13-32) is plotted as the top curve of Figure
13-11. In terms of multiplications, for N≥32, the Two N-Point Real FFTs algorithm saves us over 45
percent in computational workload compared to two separate N-point complex FFTs.

Figure 13-11 Computational saving of the Two N-Point Real FFTs algorithm over that of two
separate N-point complex FFTs. The top curve indicates the saving when only multiplications are

considered. The bottom curve is the saving when both additions and multiplications are used in the
comparison.

For hardware using high-speed multiplier integrated circuits, multiplication and addition can take
roughly equivalent clock cycles. This makes addition operations just as important and time consuming
as multiplications. Thus the difference between those combined arithmetic operations in Eqs. (13-30)
plus (13-30′) and Eqs. (13-31) plus (13-31′) is the appropriate comparison. In this case, the
percentage gain in computational saving of our algorithm over two FFTs is their total arithmetic
operational difference over the total arithmetic operations in two separate N-point complex FFTs, or

(13-33)



The full computational (multiplications and additions) saving from Eq. (13-33) is plotted as the
bottom curve of Figure 13-11. This concludes our discussion and illustration of how a single N-point
complex FFT can be used to transform two separate N-point real input data sequences.

13.5.2 Performing a 2N-Point Real FFT
Similar to the scheme above where two separate N-point real data sequences are transformed using a
single N-point FFT, a technique exists where a 2N-point real sequence can be transformed with a
single complex N-point FFT. This 2N-Point Real FFT algorithm, whose derivation is also described
in the literature, requires that the 2N-sample real input sequence be separated into two parts[19,20]—
not broken in two, but unzipped—separating the even and odd sequence samples. The N even-indexed
input samples are loaded into the real part of a complex N-point input sequence x(n). Likewise, the
input’s N odd-indexed samples are loaded into x(n)’s imaginary parts. To illustrate this process, let’s
say we have a 2N-sample real input data sequence a(n) where 0 ≤ n ≤ 2N−1. We want a(n)’s 2N-
point transform Xa(m). Loading a(n)’s odd/even sequence values appropriately into an N-point
complex FFT’s input sequence, x(n),

(13-34)

Applying the N complex values in Eq. (13-34) to an N-point complex FFT, we’ll get an FFT output
X(m) = Xr(m) + jXi(m), where m goes from 0 to N−1. To extract the desired 2N-Point Real FFT
algorithm output Xa(m) = Xa,real(m) + jXa,imag(m) from X(m), let’s define the following relationships:

(13-35)

(13-36)

(13-37)

(13-38)

For the reasons presented following Eq. (13-22) in the last section, in the above expressions recall
that Xr(N) = Xr(0), and Xi(N) = Xi(0). The values resulting from Eqs. (13-35) through (13-38) are,
then, used as factors in the following expressions to obtain the real and imaginary parts of our final



Xa(m):
(13-39)

and
(13-40)

Remember, now, the original a(n) input index n goes from 0 to 2N−1, and our N-point FFT output
index m goes from 0 to N−1. We apply 2N real input time-domain samples to this algorithm and get
back N complex frequency-domain samples representing the first half of the equivalent 2N-point
complex FFT, Xa(0) through Xa(N−1). Because this algorithm’s a(n) input is constrained to be real,
Xa(N+1) through Xa(2N−1) are merely the complex conjugates of their Xa(1) through Xa(N−1)
counterparts and need not be calculated.
The above process does not compute the Xa(N) sample. The Xa(N) sample, which is real-only, is

(13-40′)

To help us keep all of this straight, Figure 13-12 depicts the computational steps of the 2N-Point Real
FFT algorithm.

Figure 13-12 Computational flow of the 2N-Point Real FFT algorithm.

To demonstrate this process by way of example, let’s apply the 8-point data sequence from Eq. (13-
26) to the 2N-Point Real FFT algorithm. Partitioning those Eq. (13-26), samples as dictated by Eq.
(13-34), we have our new FFT input sequence:

(13-41)

With N = 4 in this example, taking the 4-point FFT of the complex sequence in Eq. (13-41), we get
(13-42)

Using these values, we now get the intermediate factors from Eqs. (13-35) through (13-38).



Calculating our first Xr
+(0) value, again we’re reminded that X(m) is periodic with a period N, so

X(4) = X(0), and Xr
+(0) = [Xr (0) + Xr (0)]/2 = 0. Continuing to use Eqs. (13-35) through (13-38),

(13-43)

Using the intermediate values from Eq. (13-43) in Eqs. (13-39) and (13-40),
(13-44)

Evaluating the sine and cosine terms in Eq. (13-44),
(13-45)

Combining the results of the terms in Eq. (13-45), we have our final correct answer of
(13-46)

After going through all the steps required by Eqs. (13-35) through (13-40), the reader might question
the efficiency of this 2N-Point Real FFT algorithm. Using the same process as the above Two N-Point
Real FFTs algorithm analysis, let’s show that the 2N-Point Real FFT algorithm does provide some



modest computational saving. First, we know that a single 2N-point radix-2 FFT has (2N/2) · log22N
= N · (log2N+1) butterflies and requires

(13-47)

and
(13-47′)

If we add up the number of real multiplications and real additions required by the algorithm’s N-point
complex FFT, plus those required by Eqs. (13-35) through (13-38) and those required by Eqs. (13-
39) and (13-40), the complete 2N-Point Real FFT algorithm requires

(13-48)

and
(13-48′)

OK, using the same hardware considerations (multiplications only) we used to arrive at Eq. (13-32),
the percentage gain in multiplication saving of the 2N-Point Real FFT algorithm relative to a 2N-point
complex FFT is

(13-49)

The computational (multiplications only) saving from Eq. (13-49) is plotted as the bottom curve of
Figure 13-13. In terms of multiplications, the 2N-Point Real FFT algorithm provides a saving of >30
percent when N ≥ 128 or whenever we transform input data sequences whose lengths are ≥256.

Figure 13-13 Computational saving of the 2N-Point Real FFT algorithm over that of a single 2N-
point complex FFT. The top curve is the saving when both additions and multiplications are used in
the comparison. The bottom curve indicates the saving when only multiplications are considered.



Again, for hardware using high-speed multipliers, we consider both multiplication and addition
operations. The difference between those combined arithmetic operations in Eqs. (13-47) plus (13-
47′) and Eqs. (13-48) plus (13-48′) is the appropriate comparison. In this case, the percentage gain in
computational saving of our algorithm is

(13-50)

The full computational (multiplications and additions) saving from Eq. (13-50) is plotted as a
function of N in the top curve of Figure 13-13.

13.6 Computing the Inverse FFT Using the Forward FFT
There are many signal processing applications where the capability to perform the inverse FFT is
necessary. This can be a problem if available hardware, or software routines, have only the
capability to perform the forward FFT. Fortunately, there are two slick ways to perform the inverse
FFT using the forward FFT algorithm.

13.6.1 Inverse FFT Method 1
The first inverse FFT calculation scheme is implemented following the processes shown in Figure
13-14.

Figure 13-14 Processing for first inverse FFT calculation method.

To see how this works, consider the expressions for the forward and inverse DFTs. They are
(13-51)



(13-52)

To reiterate our goal, we want to use the process in Eq. (13-51) to implement Eq. (13-52). The first
step of our approach is to use complex conjugation. Remember, conjugation (represented by the
superscript “*” symbol) is the reversal of the sign of a complex number’s imaginary exponent—if x =
ejø, then x* = e−jø. So, as a first step we take the complex conjugate of both sides of Eq. (13-52) to
give us

(13-53)

One of the properties of complex numbers, discussed in Appendix A, is that the conjugate of a
product is equal to the product of the conjugates. That is, if c = ab, then c* = (ab)* = a*b*. Using this,
we can show the conjugate of the right side of Eq. (13-53) to be

(13-54)

Hold on; we’re almost there. Notice the similarity of Eq. (13-54) to our original forward DFT
expression, Eq. (13-51). If we perform a forward DFT on the conjugate of the X(m) in Eq. (13-54),
and divide the results by N, we get the conjugate of our desired time samples x(n). Taking the
conjugate of both sides of Eq. (13-54), we get a more straightforward expression for x(n):

(13-55)

13.6.2 Inverse FFT Method 2
The second inverse FFT calculation technique is implemented following the interesting data flow
shown in Figure 13-15.

Figure 13-15 Processing for second inverse FFT calculation method.

In this clever inverse FFT scheme we don’t bother with conjugation. Instead, we merely swap the
real and imaginary parts of sequences of complex data[21]. To see why this process works, let’s look
at the inverse DFT equation again while separating the input X(m) term into its real and imaginary
parts and remembering that ejø = cos(ø) + jsin(ø).

(13-56)



Multiplying the complex terms in Eq. (13-56) gives us
(13-57)

Equation (13-57) is the general expression for the inverse DFT, and we’ll now quickly show that the
process in Figure 13-15 implements this equation. With X(m) = Xreal(m) + jXimag(m), then swapping
these terms gives us

(13-58)

The forward DFT of our Xswap(m) is
(13-59)

Multiplying the complex terms in Eq. (13-59) gives us
(13-60)

Swapping the real and imaginary parts of the results of this forward DFT gives us what we’re after:
(13-61)

If we divided Eq. (13-61) by N, it would be exactly equal to the inverse DFT expression in Eq. (13-
57), and that’s what we set out to show.

13.7 Simplified FIR Filter Structure
If we implement a linear-phase FIR digital filter using the standard structure in Figure 13-16(a),
there’s a way to reduce the number of multipliers when the filter has an odd number of taps. Let’s
look at the top of Figure 13-16(a) where the 5-tap FIR filter coefficients are h(0) through h(4) and the
y(n) output is

(13-62)



Figure 13-16 Conventional and simplified structures of an FIR filter: (a) with an odd number of taps;
(b) with an even number of taps.

If the FIR filter’s coefficients are symmetrical, we can reduce the number of necessary multipliers.
That is, if h(4) = h(0), and h(3) = h(1), we can implement Eq. (13-62) by

(13-63)

where only three multiplications are necessary as shown at the bottom of Figure 13-16(a). In our 5-
tap filter case, we’ve eliminated two multipliers. This minimum-multiplier structure is called a
folded FIR filter.
So in the case of an odd number of taps, we need only perform (S−1)/2 + 1 multiplications for each
filter output sample. For an even number of symmetrical taps as shown in Figure 13-16(b), the saving
afforded by this technique reduces the necessary number of multiplications to S/2. Some commercial
programmable DSP chips have specialized instructions, and dual multiply-and-accumulate (MAC)



units, that take advantage of the folded FIR filter implementation.

13.8 Reducing A/D Converter Quantization Noise
In Section 12.3 we discussed the mathematical details, and ill effects, of quantization noise in analog-
to-digital (A/D) converters. DSP practitioners commonly use two tricks to reduce converter
quantization noise. Those schemes are called oversampling and dithering.

13.8.1 Oversampling
The process of oversampling to reduce A/D converter quantization noise is straightforward. We
merely sample an analog signal at an fs sample rate higher than the minimum rate needed to satisfy the
Nyquist criterion (twice the analog signal’s bandwidth), and then lowpass filter. What could be
simpler? The theory behind oversampling is based on the assumption that an A/D converter’s total
quantization noise power (variance) is the converter’s least significant bit (lsb) value squared over
12, or

(13-64)

We derived that expression in Section 12.3. The next assumptions are: The quantization noise values
are truly random, and in the frequency domain the quantization noise has a flat spectrum. (These
assumptions are valid if the A/D converter is being driven by an analog signal that covers most of the
converter’s analog input voltage range and is not highly periodic.) Next we consider the notion of
quantization noise power spectral density (PSD), a frequency-domain characterization of quantization
noise measured in noise power per hertz as shown in Figure 13-17. Thus we can consider the idea
that quantization noise can be represented as a certain amount of power (watts, if we wish) per unit
bandwidth.

Figure 13-17 Frequency-domain power spectral density of an ideal A/D converter.

In our world of discrete systems, the flat noise spectrum assumption results in the total quantization
noise (a fixed value based on the converter’s lsb voltage) being distributed equally in the frequency
domain, from −fs/2 to +fs/2 as indicated in Figure 13-17. The amplitude of this quantization noise
PSD is the rectangle area (total quantization noise power) divided by the rectangle width (fs), or

(13-65)

measured in watts/Hz.
The next question is: “How can we reduce the PSDnoise level defined by Eq. (13-65)?” We could
reduce the lsb value (volts) in the numerator by using an A/D converter with additional bits. That



would make the lsb value smaller and certainly reduce PSDnoise, but that’s an expensive solution.
Extra converter bits cost money. Better yet, let’s increase the denominator of Eq. (13-65) by
increasing the sample rate fs.

Consider a low-level discrete signal of interest whose spectrum is depicted in Figure 13-18(a). By
increasing the fs,old sample rate to some larger value fs,new (oversampling), we spread the total noise
power (a fixed value) over a wider frequency range as shown in Figure 13-18(b). The areas under the
shaded curves in Figures 13-18(a) and 13-18(b) are equal. Next we lowpass filter the converter’s
output samples. At the output of the filter, the quantization noise level contaminating our signal will be
reduced from that at the input of the filter.

Figure 13-18 Oversampling example: (a) noise PSD at an fs,old samples rate; (b) noise PSD at the
higher fs,new samples rate; (c) processing steps.

The improvement in signal-to-quantization-noise ratio, measured in dB, achieved by oversampling is
(13-66)

For example, if fs,old = 100 kHz, and fs,new = 400 kHz, the SNRA/D-gain = 10log10(4) = 6.02 dB. Thus
oversampling by a factor of four (and filtering), we gain a single bit’s worth of quantization noise
reduction. Consequently we can achieve N+1-bit performance from an N-bit A/D converter, because
we gain signal amplitude resolution at the expense of higher sampling speed. After digital filtering,
we can decimate to the lower fs,old without degrading the improved SNR. Of course, the number of
bits used for the lowpass filter’s coefficients and registers must exceed the original number of A/D
converter bits, or this oversampling scheme doesn’t work.
With the use of a digital lowpass filter, depending on the interfering analog noise in x(t), it’s possible
to use a lower-performance (simpler) analog anti-aliasing filter relative to the analog filter necessary
at the lower sampling rate.

13.8.2 Dithering



Dithering, another technique used to minimize the effects of A/D quantization noise, is the process of
adding noise to our analog signal prior to A/D conversion. This scheme, which doesn’t seem at all
like a good idea, can indeed be useful and is easily illustrated with an example. Consider digitizing
the low-level analog sinusoid shown in Figure 13-19(a), whose peak voltage just exceeds a single
A/D converter least significant bit (lsb) voltage level, yielding the converter output x1(n) samples in
Figure 13-19(b). The x1(n) output sequence is clipped. This generates all sorts of spectral harmonics.
Another way to explain the spectral harmonics is to recognize the periodicity of the quantization noise
in Figure 13-19(c).
Figure 13-19 Dithering: (a) a low-level analog signal; (b) the A/D converter output sequence; (c) the

quantization error in the converter’s output.

We show the spectrum of x1(n) in Figure 13-20(a) where the spurious quantization noise harmonics
are apparent. It’s worthwhile to note that averaging multiple spectra will not enable us to pull some
spectral component of interest up above those spurious harmonics in Figure 13-20(a). Because the
quantization noise is highly correlated with our input sinewave—the quantization noise has the same
time period as the input sinewave—spectral averaging will also raise the noise harmonic levels.
Dithering to the rescue.

Figure 13-20 Spectra of a low-level discrete sinusoid: (a) with no dithering; (b) with dithering.



Dithering is the technique where random analog noise is added to the analog input sinusoid before it
is digitized. This technique results in a noisy analog signal that crosses additional converter lsb
boundaries and yields a quantization noise that’s much more random, with a reduced level of
undesirable spectral harmonics as shown in Figure 13-20(b). Dithering raises the average spectral
noise floor but increases our signal-to-noise ratio SNR2. Dithering forces the quantization noise to
lose its coherence with the original input signal, and we could then perform signal averaging if
desired.
Dithering is indeed useful when we’re digitizing

• low-amplitude analog signals,
• highly periodic analog signals (like a sinewave with an even number of cycles in the sample time
interval), and

• slowly varying (very low frequency, including DC) analog signals.
The standard implementation of dithering is shown in Figure 13-21(a). The typical amount of random
wideband analog noise used in this process, provided by a noise diode or noise generator ICs, has an
rms (root mean squared) level equivalent to 1/3 to 1 lsb voltage level. The system-level effect of
adding the analog dithering signal is to linearize the undithered stair-step transfer function of an A/D
converter as shown in Figure 13-21(c).
Figure 13-21 Dithering implementations: (a) standard dithering process; (b) advanced dithering with

noise subtraction; (c) improved transfer function due to dithering.



For high-performance audio applications, engineers have found that adding dither noise from two
separate noise generators improves background audio low-level noise suppression. The probability
density function (PDF) of the sum of two noise sources (having rectangular PDFs) is the convolution
of their individual PDFs. Because the convolution of two rectangular functions is triangular, this dual-
noise-source dithering scheme is called triangular dither. Typical triangular dither noise has rms
levels equivalent to, roughly, 2 lsb voltage levels.
In the situation where our signal of interest occupies some well-defined portion of the full frequency
band, injecting narrowband dither noise having an rms level equivalent to 4 to 6 lsb voltage levels,
whose spectral energy is outside that signal band, would be advantageous. (Remember, though: the
dither signal can’t be too narrowband, like a sinewave. Quantization noise from a sinewave signal
would generate more spurious harmonics!) That narrowband dither noise can then be removed by
follow-on digital filtering.
One last note about dithering: To improve our ability to detect low-level signals, we could add the
analog dither noise and then subtract that noise from the digitized data, as shown in Figure 13-21(b).
This way, we randomize the quantization noise but reduce the amount of total noise power injected in
the analog signal. This scheme is used in commercial analog test equipment[22,23].

13.9 A/D Converter Testing Techniques
We can take advantage of digital signal processing techniques to facilitate the testing of A/D
converters. In this section we present two schemes for measuring converter performance: first, a
technique using the FFT to estimate overall converter noise, and second, a histogram analysis scheme
to detect missing converter output codes.

13.9.1 Estimating A/D Quantization Noise with the FFT
The combination of A/D converter quantization noise, missing bits, harmonic distortion, and other
nonlinearities can be characterized by analyzing the spectral content of the converter’s output.
Converter performance degradation caused by these nonlinearities is not difficult to recognize
because they show up as spurious spectral components and increased background noise levels in the



A/D converter’s output samples. The traditional test method involves applying a sinusoidal analog
voltage to an A/D converter’s input and examining the spectrum of the converter’s digitized time-
domain output samples. We can use the FFT to compute the spectrum of an A/D converter’s output
samples, but we have to minimize FFT spectral leakage to improve the sensitivity of our spectral
measurements. Traditional time-domain windowing, however, often provides insufficient FFT
leakage reduction for high-performance A/D converter testing.
The trick to circumvent this FFT leakage problem is to use a sinusoidal analog input voltage whose
frequency is a rational factor of the A/D converter’s clock frequency as shown in Figure 13-22(a).
That frequency is mfs/N where m is an integer, fs is the clock frequency (sample rate), and N is the
FFT size. Figure 13-22(a) shows the x(n) time-domain output of an ideal 5-bit A/D converter when
its analog input is a sinewave having exactly m = 4 cycles over N = 64 converter output samples. In
this case, the analog input frequency is 4fs/64 Hz. Recall from Chapter 3 that the expression mfs/N
defined the analysis frequencies, or bin centers, of the DFT, and a DFT input sinusoid whose
frequency is at a bin center causes no spectral leakage.
Figure 13-22 A/D converter (5-bit) output with an analog 4fs/64 Hz sinewave input: (a) m = 4-cycle

sinusoidal time samples; (b) spectral magnitude in dB.

The magnitudes of the first half of an N = 64-point FFT of x(n) are shown in the logarithmic plot in
Figure 13-22(b) where the analog input spectral component lies exactly at the m = 4 bin center. (The
additional nonzero spectral samples are not due to FFT leakage; they represent A/D converter
quantization noise.) Specifically, if the sample rate were 1 MHz, then the A/D’s input analog
sinewave’s frequency is 4(106/64) = 62.5 kHz. In order to implement this A/D testing scheme we
must ensure that the analog test-signal generator is synchronized, exactly, with the A/D converter’s
clock frequency of fs Hz. Achieving this synchronization is why this A/D converter testing procedure
is referred to as coherent sampling[24–26]. That is, the analog signal generator and the A/D clock
generator providing fs must not drift in frequency relative to each other—they must remain coherent.
(Here we must take care from a semantic viewpoint because the quadrature sampling schemes
described in Chapter 8 are also sometimes called coherent sampling, and they are unrelated to this



A/D converter testing procedure.)
As it turns out, some values of m are more advantageous than others. Notice in Figure 13-22(a), that
when m = 4, only ten different binary output values, output codes, are output by the A/D converter.
Those values are repeated over and over, and the quantization noise is far from being random. As
shown in Figure 13-23(a), when m = 5, we exercise more than ten different A/D output codes, and the
quantization noise in Figure 13-23(b) is much more random than when m = 4.
Figure 13-23 A/D converter (5-bit) output with an analog 5fs/64 Hz sinewave input: (a) m = 5-cycle

time samples; (b) spectral magnitude in dB; (c) FFT results interpretation.

Because it’s best to test as many A/D output codes as possible, while keeping the quantization noise
sufficiently random, users of this A/D testing scheme have discovered another trick; they found
making m an odd prime number (3, 5, 7, 11, etc.) minimizes the number of redundant A/D output code
values and makes the quantization noise more random, which is what we want. The larger m is, the
more codes that are exercised. (We can use histogram testing, discussed in the next section, to
determine how many of a b-bit A/D converter’s 2b possible output codes have been exercised.)
While examining the quantization noise level in Figure 13-23(b), we might be tempted to say the A/D
converter has a signal-to-quantization-noise ratio of 40 to 50 dB. As it turns out, the true A/D
converter noise levels will be higher than those indicated by Figure 13-23(b). That’s because the
inherent processing gain of the FFT (discussed in Section 3.12.1) will pull the high-level m = 5
signal spectral component up out of the background converter noise, making that m = 5 spectral



magnitude sample appear higher above the background noise than is correct. Consequently, when
viewing Figure 13-23(b), we must keep in mind an N = 64-point FFT’s processing gain of
10log10(64/2). Our interpretation of A/D performance based on the FFT magnitude results is given in
Figure 13-23(c).
There is a technique used to characterize an A/D converter’s true signal-to-noise ratio (including
quantization noise, harmonic distortion, and other nonlinearities). That testing technique measures
what is commonly called an A/D converter’s SINAD—for signal-to-noise-and-distortion—and does
not require us to consider FFT processing gain. The SINAD value for an A/D converter, based on
spectral power samples, is

(13-66′)

The SINAD value for an A/D converter is a good quantitative indicator of a converter’s overall
dynamic performance. The steps to compute SINAD are:

1. Compute an N-point FFT of an A/D converter’s output sequence. Discard the negative-frequency
samples of the FFT results.

2. Over the positive-frequency range of the FFT results, compute the total signal spectral power by
summing the squares of all signal-only spectral magnitude samples. For our Figure 13-23 example
that’s simply squaring the FFT’s |X(5)| magnitude value. (We square the linear |X(5)| value and not
the value of |X(5)| in dB!)

3. Over the positive-frequency range of the FFT results, sum the squares of all noise-only spectral
magnitude samples, including any signal harmonics, but excluding the zero-Hz X(0) sample. This
summation result represents total noise power, which includes harmonic distortion.

4. Perform the computation given in Eq. (13-66′).
Performing those steps on the spectrum in Figure 13-23(b) yields a SINAD value of 31.6 dB. This
result is reasonable for our simulated 5-bit A/D converter because its signal-to-quantization-noise
ratio would ideally be 6·5 + 1.7 = 31.7 dB.
Figure 13-24(a) illustrates an extreme example of nonlinear A/D converter operation with several
binary output codes (words) having dropped bits in the time-domain x(n) sequence with m = 5. The
FFT magnitudes, provided in Figure 13-24(b), indicate severe A/D converter nonlinear distortion
because we can see the increased background noise level compared to Figure 13-23(b). Performing
Eq. (13-66′) for this noisy A/D gives us a measured SINAD value of 15.2 dB, which is drastically
smaller than the ideal 5-bit A/D converter’s SINAD = 31.6 dB. The point here is that we can quickly
measure an A/D converter’s performance using FFTs and Eq. (13-66′).

Figure 13-24 Nonideal A/D converter output showing several dropped bits: (a) time samples; (b)
spectral magnitude in dB.



To fully characterize the dynamic performance of an A/D converter we’d need to perform this SINAD
testing technique at many different input frequencies and amplitudes. (The analog sinewave applied to
an A/D converter must, of course, be as pure as possible. Any distortion inherent in the analog signal
will show up in the final FFT output and could be mistaken for A/D nonlinearity.) The key issue here
is that when any input frequency is mfs/N, where m is less than N/2 to satisfy the Nyquist sampling
criterion, we can take full advantage of the FFT’s processing capability while minimizing spectral
leakage.
For completeness, we mention that what we called SINAD in Eq. (13-66′) is sometimes called
SNDR. In addition, there is a measurement scheme called SINAD used by RF engineers to quantify
the sensitivity of radio receivers. That receiver SINAD concept is quite different from our Eq. (13-
66′) A/D converter SINAD estimation process and will not be discussed here.

13.9.2 Estimating A/D Dynamic Range
In this section we describe a technique of applying the sum of two analog sinewaves to an A/D
converter’s input to quantify the intermodulation distortion performance of a converter, which in turn
measures the converter’s dynamic range. That dynamic range is called the converter’s spurious free
dynamic range (SFDR). In this testing scheme both input sinewaves must comply with the mfs/N
restriction. Figure 13-25(a) shows the test configuration.
Figure 13-25 A/D converter SFDR testing: (a) hardware test configuration; (b) example test results.



The SFDR test starts by applying the sum of two equal-amplitude analog sinewaves to an A/D
converter and monitoring the spectrum of the converter’s output samples. Next we increase both
analog sinewaves’ amplitudes until we see a spurious spectral component rising above the
converter’s background spectral noise as shown in Figure 13-25(b). Finally we measure the
converter’s SFDR as the dB difference between a high-level signal spectral magnitude sample and
the spurious signal’s spectral magnitude.
For this SFDR testing it’s prudent to use bandpass filters (BPFs) to improve the spectral purity of the
sinewave generators’ outputs, and small-valued fixed attenuators (pads) are used to keep the
generators from adversely interacting with each other. (I recommend 3 dB fixed attenuators for this.)
The power combiner is typically an analog power splitter driven backward, and the A/D clock
generator output is a squarewave. The dashed lines in Figure 13-25(a) indicate that all three
generators are synchronized to the same reference frequency source.

13.9.3 Detecting Missing Codes
One problem that can plague A/D converters is missing codes. This defect occurs when a converter
is incapable of outputting a specific binary word (a code). Think about driving an eight-bit converter
with an analog sinusoid and the effect when its output should be the binary word 00100001 (decimal
33); its output is actually the word 00100000 (decimal 32) as shown in Figure 13-26(a). The binary
word representing decimal 33 is a missing code. This subtle nonlinearity is very difficult to detect by
examining time-domain samples or performing spectrum analysis. Fortunately there is a simple,
reliable way to detect the missing 33 using histogram analysis.

Figure 13-26 Eight-bit converter missing codes: (a) missing code of binary 00100001, decimal 33;
(b) histogram plot.



The histogram testing technique merely involves collecting many A/D converter output samples and
plotting the number of occurrences of each sample value versus that sample value as shown in Figure
13-26(b). Any missing code (like our missing 33) would show up in the histogram as a zero value.
That is, there were zero occurrences of the binary code representing a decimal 33.
Additional useful information can be obtained from our histogram results. That is, counting the
number of nonzero samples in Figure 13-26(b) tells us how many actual different A/D converter
output codes (out of a possible 2b codes) have been exercised.
In practice, the input analog sinewave must have an amplitude that’s somewhat greater than the analog
signal that we intend to digitize in an actual application, and a frequency that is unrelated to
(incoherent with) the fs sampling rate. In an effort to exercise (test) all of the converter’s output
codes, we digitize as many cycles of the input sinewave as possible for our histogram test.

13.10 Fast FIR Filtering Using the FFT
In the late 1960s, while contemplating the notion of time-domain convolution, DSP pioneer Thomas
Stockham (digital audio expert and inventor of the compact disc) realized that time-domain
convolution could sometimes be performed much more efficiently using fast Fourier transform (FFT)
algorithms rather than using the direct convolution implemented with tapped-delay line FIR filters.
The principle behind this FFT-based convolution scheme, called fast convolution (also called block
convolution or FFT convolution), is diagrammed in Figure 13-27(a). In that figure x(n) is an input
signal sequence and h(k) is the Q-length impulse response (coefficients) of a tapped-delay line FIR
filter. Figure 13-27(a) is a graphical depiction of one form of the convolution theorem: Multiplication
in the frequency domain is equivalent to convolution in the time domain.
Figure 13-27 Fast convolution: (a) basic process; (b) computational workloads for various FIR filter

tap lengths Q.



The standard convolution equation, for a Q-tap FIR filter, given in Eq. (5-6) is repeated here for
reference as

(13-67)

where the symbol “*” means convolution. When the filter’s h(k) impulse response has a length greater
than 40 to 80 (depending on the hardware and software being used), the process in Figure 13-27(a)
requires fewer computations than directly implementing the convolution expression in Eq. (13-67).
Consequently, this fast convolution technique is a computationally efficient signal processing tool,
particularly when used for digital filtering. Fast convolution’s gain in computational efficiency
becomes quite significant when the lengths of h(k) and x(n) are large.
Figure 13-27(b) indicates the reduction in the fast convolution algorithm’s computational workload
relative to the standard (tapped-delay line) time-domain convolution method, Eq. (13-67), versus the
length of the x(n) sequence for various filter impulse response lengths Q. (Please do not view Figure
13-27(b) as any sort of gospel truth. That figure is merely an indicator of fast convolution’s
computational efficiency.)
The necessary forward and inverse FFT sizes, N, in Figure 13-27(a) must of course be equal and are
dependent upon the length of the original h(k) and x(n) sequences. Recall from Eq. (5-29) that if h(k)
is of length Q and x(n) is of length P, the length of the final y(n) sequence will be L where

(13-67′)



For this fast convolution technique to yield valid results, the forward and inverse FFT sizes must be
equal to or greater than L. So, to implement fast convolution we must choose an N-point FFT size
such that N ≥ L, and zero-pad h(k) and x(n) so they have new lengths equal to N. The desired y(n)
output is the real part of the first L samples of the inverse FFT. Note that the H(m) sequence, the FFT
of the FIR filter’s h(k) impulse response, need only be computed once and stored in memory.
Now if the x(n) input sequence length P is so large that FFT processing becomes impractical, or your
hardware memory buffer can only hold small segments of the x(n) time samples, then x(n) must be
partitioned into multiple blocks of samples and each sample block processed individually. If the
partitioned-x(n) block lengths are N, a straightforward implementation of Figure 13-27(a) leads to
time-domain aliasing errors in y(n) due to the circular nature (spectral wraparound) of the discrete
Fourier transform (and the FFT). Two techniques are used to avoid that time-domain aliasing
problem, the overlap-and-save method and the overlap-and-add method. Of these two methods, let’s
first have a look at the overlap-and-save fast convolution filtering technique shown in Figure 13-
28(a).

Figure 13-28 Fast convolution block processing (continues).



Given that the desired FIR filter’s h(k) impulse response length is Q and the x(n) filter input sequence
is of length P, the steps to perform overlap-and-save fast convolution filtering are as follows:

1. Choose an FFT size of N, where N is an integer power of two equal to roughly four times Q.
2. Append (N−Q) zero-valued samples to the end of the h(k) impulse response and perform an N-

point FFT on the extended sequence, producing the complex H(m) sequence.
3. Compute integer M using M = N−(Q−1).
4. Insert (Q−1) zero-valued samples prior to the first M samples of x(n), creating the first N-point

FFT input sequence x1(n).

5. Perform an N-point FFT on x1(n), multiply that FFT result by the H(m) sequence, and perform an
N-point inverse FFT on the product. Discard the first (Q−1) samples of the inverse FFT results to
generate the first M-point output block of data y1(n).

6. Attach the last (Q−1) samples of x1(n) to the beginning of the second M-length block of the
original x(n) sequence, creating the second N-point FFT input sequence x2(n) as shown in Figure
13-28(a).

7. Perform an N-point FFT on x2(n), multiply that FFT result by the H(m) sequence, and perform an
N-point inverse FFT on the product. Discard the first (Q−1) samples of the inverse FFT results to
generate the second M-point output block of data y2(n).

8. Repeat Steps 6 and 7 until we have gone through the entire original x(n) filter input sequence.
Depending on the length P of the original x(n) input sequence and the chosen value for N, we must



append anywhere from Q−1 to N−1 zero-valued samples to the end of the original x(n) input
samples in order to accommodate the final block of forward and inverse FFT processing.

9. Concatenate the y1(n), y2(n), y3(n), . . . sequences shown in Figure 13-28(a), discarding any
unnecessary trailing zero-valued samples, to generate your final linear-convolution filter output
y(n) sequence.

10. Finally, experiment with different values of N to see if there exists an optimum N that minimizes
the computational workload for your hardware and software implementation. In any case, N must
not be less than (M+Q−1). (Smaller N means many small-sized FFTs are needed, and large N
means fewer, but larger-sized, FFTs are necessary. Pick your poison.)

The second fast convolution method, the overlap-and-add technique, is shown in Figure 13-28(b). In
this method, the x(n) input sequence is partitioned (segmented) into data blocks of length M, and our
data overlapping takes place in the inverse FFT time-domain sequences. Given that the desired FIR
filter’s h(k) impulse response length is Q and the x(n) filter input sequence is of length P, the steps to
perform overlap-and-add fast convolution filtering are as follows:

1. Choose an FFT size of N, where N is an integer power of two equal to roughly two times Q.
2. Append (N−Q) zero-valued samples to the end of the h(k) impulse response and perform an N-

point FFT on the extended sequence, producing the complex H(m) sequence.
3. Compute integer M using M = N−(Q−1).
4. Append (Q−1) zero-valued samples to the end of the first M samples, x1(n), of the original x(n)

sequence, creating the first N-point FFT input sequence.
5. Perform an N-point FFT on the first N-point FFT input sequence, multiply that FFT result by the

H(m) sequence, and perform an N-point inverse FFT on the product. Retain the first M samples of
the inverse FFT sequence, generating the first M-point output block of data y1(n).

6. Append (Q−1) zero-valued samples to the end of the second M samples, x2(n), of the original
x(n) sequence, creating the second N-point FFT input sequence.

7. Perform an N-point FFT on the second N-point FFT input sequence, multiply that FFT result by
the H(m) sequence, and perform an N-point inverse FFT on the product. Add the last (Q−1)
samples from the previous inverse FFT to the first (Q−1) samples of the current inverse FFT
sequence. Retain the first M samples of the sequence resulting from the (Q−1)-element addition
process, generating the second M-point output block of data y2(n).

8. Repeat Steps 6 and 7 until we have gone through the entire original x(n) filter input sequence.
Depending on the length P of the original x(n) input sequence and the chosen value for N, we must
append anywhere from Q−1 to N−1 zero-valued samples to the end of the original x(n) input
samples in order to accommodate the final block of forward and inverse FFT processing.

9. Concatenate the y1(n), y2(n), y3(n), . . . sequences shown in Figure 13-28(b), discarding any
unnecessary trailing zero-valued samples, to generate your final linear-convolution filter output
y(n) sequence.

10. Finally, experiment with different values of N to see if there exists an optimum N that minimizes
the computational workload for your hardware and software implementation. N must not be less



than (M+Q−1). (Again, smaller N means many small-sized FFTs are needed, and large N means
fewer, but larger-sized, FFTs are necessary.)

It’s useful to realize that the computational workload of these fast convolution filtering schemes does
not change as Q increases in length up to a value of N. Another interesting aspect of fast convolution,
from a hardware standpoint, is that the FFT indexing bit-reversal problem discussed in Sections 4.5
and 4.6 is not an issue here. If the FFTs result in X(m) and H(m) having bit-reversed output sample
indices, the multiplication can still be performed directly on the scrambled H(m) and X(m)
sequences. Then an appropriate inverse FFT structure can be used that expects bit-reversed input
data. That inverse FFT then provides an output sequence whose time-domain indexing is in the
correct order. Neat!
By the way, it’s worth knowing that there are no restrictions on the filter’s finite-length h(k) impulse
response—h(k) is not limited to being real-valued and symmetrical as is traditional with tapped-
delay line FIR filters. Sequence h(k) can be complex-valued, asymmetrical (to achieve nonlinear-
phase filtering), or whatever you choose.
One last issue to bear in mind: the complex amplitudes of the standard radix-2 FFT’s output samples
are proportional to the FFT sizes, N, so the product of two FFT outputs will have a gain proportional
to N2. The inverse FFT has a normalizing gain reduction of only 1/N. As such, our fast convolution
filtering methods will have an overall gain that is not unity. We suggest that practitioners give this
gain normalization topic some thought during the design of their fast convolution system.
To summarize this frequency-domain filtering discussion, the two fast convolution filtering schemes
can be computationally efficient, compared to standard tapped-delay line FIR convolution filtering,
particularly when the x(n) input sequence is large and high-performance filtering is needed (requiring
many filter taps, i.e., Q = 40 to 80). As for which method, overlap-and-save or overlap-and-add,
should be used in any given situation, there is no simple answer. Choosing a fast convolution method
depends on many factors: the fixed/floating-point arithmetic used, memory size and access latency,
computational hardware architecture, and specialized built-in filtering instructions, etc.

13.11 Generating Normally Distributed Random Data
Section D.7 in Appendix D discusses the normal distribution curve as it relates to random data. A
problem we may encounter is how actually to generate random data samples whose distribution
follows that normal (Gaussian) curve. There’s a straightforward way to solve this problem using any
software package that can generate uniformly distributed random data, as most of them do[27]. Figure
13-29 shows our situation pictorially where we require random data that’s distributed normally with
a mean (average) of μ′ and a standard deviation of σ′, as in Figure 13-29(a), and all we have
available is a software routine that generates random data that’s uniformly distributed between zero
and one as in Figure 13-29(b).
Figure 13-29 Probability distribution functions: (a) normal distribution with mean = μ′ and standard

deviation σ′; (b) uniform distribution between zero and one.



As it turns out, there’s a principle in advanced probability theory, known as the Central Limit
Theorem, that says when random data from an arbitrary distribution is summed over M samples, the
probability distribution of the sum begins to approach a normal distribution as M increases[28–30].
In other words, if we generate a set of N random samples that are uniformly distributed between zero
and one, we can begin adding other sets of N samples to the first set. As we continue summing
additional sets, the distribution of the N-element set of sums becomes more and more normal. We can
sound impressive and state that “the sum becomes asymptotically normal.” Experience has shown that
for practical purposes, if we sum M ≥ 30 times, the summed data distribution is essentially normal.
With this rule in mind, we’re halfway to solving our problem.
After summing M sets of uniformly distributed samples, the summed set ysum will have a distribution
as shown in Figure 13-30.

Figure 13-30 Probability distribution of the summed set of random data derived from uniformly
distributed data.

Because we’ve summed M data sets whose mean values were all 0.5, the mean of ysum is the sum of
those M means, or μ = M/2. From Section D.6 of Appendix D we know the variance of a single data
sample set, having the probability distribution in Figure 13-29(b), is 1/12. Because the variance of
the sum of M data sets is equal to the sum of their individual variances, we can say

(13-68)

and
(13-69)

So, here’s the trick: To convert the ysum data set to our desired data set having a mean of μ′ and a
standard deviation of σ′, we

1. subtract M/2 from each element of ysum to shift its mean to zero;

2. scale ysum so that its standard deviation is the desired σ′, by multiplying each sample in the
shifted data set by σ′/σ; and

3. finally, center the new data set at the desired μ′ value by adding μ′ to each sample of the scaled
data set.



If we call our desired normally distributed random data set ydesired, then the nth element of that set is
described mathematically as

(13-70)

Our discussion thus far has had a decidedly software algorithm flavor, but hardware designers also
occasionally need to generate normally distributed random data at high speeds in their designs. For
you hardware designers, reference [30] presents an efficient hardware design technique to generate
normally distributed random data using fixed-point arithmetic integrated circuits.
The above method for generating normally distributed random numbers works reasonably well, but its
results are not perfect because the tails of the probability distribution curve in Figure 13-30 are not
perfectly Gaussian.† An advanced, and more statistically correct (improved randomness), technique
that you may want to explore is called the Ziggurat method[31–33].
† I thank my DSP pal Dr. Peter Kootsookos, of UTC Fire and Security, Farmington, Connecticut, for his advice on this issue.

13.12 Zero-Phase Filtering
You can cancel the nonlinear phase effects of an IIR filter by following the process shown in Figure
13-31(a). The y(n) output will be a filtered version of x(n) with no filter-induced phase distortion.
The same IIR filter is used twice in this scheme, and the time reversal step is a straight left-right
flipping of a time-domain sequence. Consider the following. If some spectral component in x(n) has
an arbitrary phase of α degrees, and the first filter induces a phase shift of −β degrees, that spectral
component’s phase at node A will be α−β degrees. The first time reversal step will conjugate that
phase and induce an additional phase shift of −θ degrees. (Appendix C explains this effect.)
Consequently, the component’s phase at node B will be −α+β−θ degrees. The second filter’s phase
shift of −β degrees yields a phase of −α−θ degrees at node C. The final time reversal step (often
omitted in literary descriptions of this zero-phase filtering process) will conjugate that phase and
again induce an additional phase shift of −θ degrees. Thankfully, the spectral component’s phase in
y(n) will be α+θ−θ = α degrees, the same phase as in x(n). This property yields an overall filter
whose phase response is zero degrees over the entire frequency range.

Figure 13-31 Two equivalent zero-phase filtering techniques.

An equivalent zero-phase filter is presented in Figure 13-31(b). Of course, these methods of zero-
phase filtering cannot be performed in real time because we can’t reverse the flow of time (at least
not in our universe). This filtering is a block processing, or off-line, process, such as filtering an
audio file stored in a computer. We must have all the time samples available before we start
processing. The initial time reversal in Figure 13-31(b) illustrates this restriction.
There will be filter transient effects at the beginning and end of the filtered sequences. If transient



effects are bothersome in a given application, consider discarding L samples from the beginning and
end of the final y(n) time sequence, where L is four (or five) times the order of the IIR filter.
By the way, the final peak-to-peak passband ripple (in dB) of this zero-phase filtering process will be
twice the peak-to-peak passband ripple of the single IIR filter. The final stopband attenuation will
also be double that of the single filter.

13.13 Sharpened FIR Filters
Here’s an interesting technique for improving the stopband attenuation of a digital filter under the
condition that we’re unable, for whatever reason, to modify that filter’s coefficients. Actually, we can
double a filter’s stopband attenuation by cascading the filter with itself. This works, as shown in
Figure 13-32(a), where the frequency magnitude response of a single filter is a dashed curve |H(m)|
and the response of the filter cascaded with itself is represented by the solid curve |H2(m)|. The
problem with this simple cascade idea is that it also doubles the passband peak-to-peak ripple as
shown in Figure 13-32(b). The frequency axis in Figure 13-32 is normalized such that a value of 0.5
represents half the signal sample rate.
Figure 13-32 Frequency magnitude responses of a single filter and that filter cascaded with itself: (a)

full response; (b) passband detail.

Well, there’s a better scheme for improving the stopband attenuation performance of a filter and
avoiding passband ripple degradation without actually changing the filter’s coefficients. The
technique is called filter sharpening[34] and is shown as Hs in Figure 13-33.

Figure 13-33 Filter sharpening process.

The delay element in Figure 13-33 is equal to (N−1)/2 samples where N is the number of h(k)
coefficients, the unit-impulse response length, in the original H(m) FIR filter. Using the sharpening
process results in the improved |Hs(m)| filter performance shown as the solid curve in Figure 13-34,
where we see the increased stopband attenuation and reduced passband ripple beyond that afforded
by the original H(m) filter. Because of the delayed time-alignment constraint, filter sharpening is not
applicable to filters having non-constant group delay, such as minimum-phase FIR filters or IIR



filters.
Figure 13-34 |H(m)| and |Hs(m)| performance: (a) full frequency response; (b) passband detail.

If need be, we can eliminate the multipliers shown in Figure 13-33. The multiply by two operation
can be implemented with an arithmetic left shift by one binary bit. The multiply by three operation can
be implemented by adding the Delay output sample to a shifted-left-by-one-bit version of itself.
Be aware that the gain factors in Figure 13-33 are based on the assumption that the original h(k) filter
to be sharpened has a passband gain of one. If the h(k) filter has a non-unity passband gain of G ≠ 1,
then the network in Figure 13-35(a) should be used, where the alternate constant gain factors provide
optimum filter sharpening. On the other hand, the Figure 13-35(a) gain factors can be modified to
some extent if doing so simplifies the filter implementation. For example, if 2/G2 = 1.7, for ease of
implementation, the practitioner should try using a factor of 2 in place of the factor 1.7. Using a gain
factor of 2 will not be optimum but it may well be acceptable, depending on the characteristics of the
filter to be sharpened. Software modeling will resolve this issue.
Figure 13-35 Non-unity gain filter sharpening: (a) low-order sharpening; (b) higher-order sharpening

for increased stopband attenuation.

If additional stopband attenuation is needed, then the process shown in Figure 13-35(b) can be used,
where again the Delay element is equal to (N-1)/2 unit delays.
In real-time applications, the filter sharpening networks we presented are straightforward and
applicable to linear-phase lowpass, bandpass, and highpass FIR filters, just so long as the original
filter’s H(f) has an integer group delay. (That restriction is necessary because the number of unit
delays of the Delay element, needed for time synchronization in real-time systems, in the parallel path



must be an integer.) This sharpening procedure is particularly useful if the original filter hardware is
constrained to have some fixed number of bits to represent its coefficients. If an FIR filter’s
coefficient bit width is b bits, the filter sharpening process in Figure 13-33 can, luckily for us,
achieve the performance of filters having (b + 4)-bit coefficients. So, if our hardware forces us to
use, say, 8-bit coefficients, we can achieve roughly 12-bit-coefficient filter performance.
Filter sharpening can be used whenever a given filter response cannot be modified, such as an
unchangeable software subroutine, and can even be applied to cascaded integrator-comb (CIC) filters
to flatten their passband responses, as well as FIR fixed-point multiplierless filters where the
coefficients are constrained to be powers of two[35,36].
As a historical aside, filter sharpening is a process refined and expanded by the accomplished R.
Hamming (of Hamming window fame) based on an idea originally proposed by the great American
mathematician John Tukey, the inventor of the radix-2 fast Fourier transform (FFT).

13.14 Interpolating a Bandpass Signal
There are many digital communications applications where a real signal is centered at one-fourth the
sample rate, or fs/4. This condition makes quadrature down-conversion particularly simple. (See
Sections 8.9 and 13.1.) In the event that you’d like to generate an interpolated (increased sample rate)
version of the bandpass signal but maintain its fs/4 center frequency, there’s an efficient way to do
so[37]. Suppose we want to interpolate by a factor of two so the output sample rate is twice the input
sample rate, fs-out = 2fs-in. In this case the process is: quadrature down-conversion by fs-in/4,
interpolation factor of two, quadrature up-conversion by fs-out/4, and then take only the real part of the
complex upconverted sequence. The implementation of this scheme is shown at the top of Figure 13-
36.

Figure 13-36 Bandpass signal interpolation scheme, and spectra.



The sequences applied to the first multiplier in the top signal path are the real x(n) input and the
repeating mixing sequence 1,0,−1,0. That mixing sequence is the real (or in-phase) part of the
complex exponential

(13-71)

needed for quadrature down-conversion by fs/4. Likewise, the repeating mixing sequence 0,−1,0,1
applied to the first multiplier in the bottom path is the imaginary (or quadrature phase) part of the
complex down-conversion exponential e−j2π(fs-in/4)ts-in. The “↑2” symbol means insert one zero-valued
sample between each sample at the A nodes. The final subtraction to obtain y(n) is how we extract the
real part of the complex sequence at Node D. (That is, we’re extracting the real part of the product of
the complex signal at Node C times ej2π(1/4).) The spectra at various nodes of this process are shown
at the bottom of Figure 13-35. The shaded spectra indicate true spectral components, while the white
spectra represent spectral replications. Of course, the same lowpass filter must be used in both
processing paths to maintain the proper time delay and orthogonal phase relationships.
There are several additional issues worth considering regarding this interpolation process[38]. If the
amplitude loss, inherent in interpolation, of a factor of two is bothersome, we can make the final
mixing sequences 2,0,−2,0 and 0,2,0,−2 to compensate for that loss. Because there are so many zeros
in the sequences at Node B (three-fourths of the samples), we should consider those efficient
polyphase filters for the lowpass filtering. Finally, if it’s sensible in your implementation, consider
replacing the final adder with a multiplexer (because alternate samples of the sequences at Node D



are zeros). In this case, the mixing sequence in the bottom path would be changed to 0,−1,0,1.

13.15 Spectral Peak Location Algorithm
In the practical world of discrete spectrum analysis, we often want to estimate the frequency of a
sinusoid (or the center frequency of a very narrowband signal of interest). Upon applying the radix-2
fast Fourier transform (FFT), our narrowband signals of interest rarely reside exactly on an FFT bin
center whose frequency is exactly known. As such, due to the FFT’s leakage properties, the discrete
spectrum of a sinusoid having N time-domain samples may look like the magnitude samples shown in
Figure 13-37(a). There we see the sinusoid’s spectral peak residing between the FFT’s m = 5 and m
= 6 bin centers. (Variable m is an N-point FFT’s frequency-domain index. The FFT bin spacing is
fs/N where, as always, fs is the sample rate.) Close examination of Figure 13-37(a) allows us to say
the sinusoid lies in the range of m = 5 and m = 5.5, because we see that the maximum spectral sample
is closer to the m = 5 bin center than the m = 6 bin center. The real-valued sinusoidal time signal has,
in this example, a frequency of 5.25fs/N Hz. In this situation, our frequency estimation resolution is
half the FFT bin spacing. We often need better frequency estimation resolution, and there are indeed
several ways to improve that resolution.

Figure 13-37 Spectral magnitudes: (a) N-point FFT; (b) 4N-point FFT.

We could collect, say, 4N time-domain signal samples and perform a 4N-point FFT, yielding a
reduced bin spacing of fs/4N. Or we could pad (append to the end of the original time samples) the
original N time samples with 3N zero-valued samples and perform a 4N-point FFT on the lengthened
time sequence. That would also provide an improved spectral peak estimation granularity of fs/4N, as
shown in Figure 13-37(b). With the spectral peak located at bin mpeak = 21, we estimate the signal’s
center frequency, in Hz, using fpeak = mpeakfs/4N.

Both schemes, collect more data and zero padding, are computationally expensive. Many other
techniques for enhanced-precision tone frequency measurement have been described in the scientific
literature—from the close-to-home field of geophysics to the lofty studies of astrophysics—but most



of those schemes seek precision without regard to computational complexity. Here we describe
several computationally simple frequency estimation schemes.
Assume we have the X(m) spectral samples from an N-point FFT of a sinusoidal time signal, whose
magnitudes are shown in Figure 13-38(a). (The vertical magnitude axis is linear, not logarithmic.)
The notation in the figure is that mk is the integer index of the largest magnitude sample |X(mk)|. The
value mpeak, which in general will not be an integer, is the value we wish to estimate and use in
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Figure 13-38 Spectral peak detection: (a) FFT magnitudes; (b) mpeak error by naive assignment; (c)
mpeak algorithm error performance.

to accurately estimate the sinusoid’s center frequency in Hz.
Next, let’s say the FFT’s input sinusoid sweeps in frequency starting at the FFT’s mk bin center
frequency to the center frequency of the mk+1 bin and we assign mpeak to be equal to the index value
(either mk or mk+1) of the highest spectral magnitude sample. The error in that mpeak value will be that
shown in Figure 13-38(b). The maximum error in that naive mpeak assignment scheme is 0.5 FFT bins
(half the FFT bin spacing). Happily for us, there are more accurate methods for estimating mpeak.

As it turns out, we can estimate the signal’s index-based center frequency, mpeak, using
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where Ci is a scalar correction factor in the range of −0.5 ≤ Ci ≤ 0.5. There are many algorithms,
based on fitting a generic parabolic curve to the |X(m)| samples, floating around in the literature of
DSP for estimating Ci. Those algorithms have varying degrees of accuracy depending on the window
function applied to the FFT’s input samples.
A noteworthy correction factor expression is

(13-74)

This complex-valued spectral peak location estimation algorithm is quite accurate for its
simplicity[3]. Its maximum frequency estimation error is roughly 0.06, 0.04, and 0.03 bin widths for
signal-to-noise ratios of 3, 6, and 9 dB respectively. Not bad at all! The nice features of the algorithm
are that it does not require the original time samples to be windowed, as do some other spectral peak
location algorithms; and it does not require computation of FFT magnitude samples.
If a time-domain window sequence has been applied to the FFT’s input samples, then other Ci
correction factor expressions should be used in place of Eq. (13-74). Three notable candidate
expressions for Ci are

(13-75)

(13-75′)

(13-75″)

where again we use subscripts on C merely to identify the different expressions for the correction
factor Ci. The above window-dependent P and Q factors, determined empirically, are

• Hamming, P = 1.22, Q = 0.60;
• Hanning, P = 1.36, Q = 0.55;
• Blackman, P = 1.75, Q = 0.55; and
• Blackman-Harris (3-term), P = 1.72, Q = 0.56.

Equation (13-75) is the best known peak location algorithm and has been used in the DSP business for
decades. The lesser-known Eq. (13-75′) provides a more accurate windowed-FFT peak location
estimate than Eq. (13-75)[39]. Inspired by Eqs. (13-74) and (13-75′), the author has developed Eq.
(13-75″) which can be used in case the FFT magnitude samples are unavailable for use in Eq. (13-
75′). Equation (13-75″) is also more accurate than the better-known Eq. (13-75).
The solid curve in Figure 13-38(c) shows the mpeak error in using Eq. (13-75′) with Blackman-



windowed time-domain samples whose signal-to-noise ratio is 9 dB. For comparison, the dashed
curve is the mpeak error when using Eq. (13-75). Equation (13-75″)’s accuracy is very similar to that
of Eq. (13-75′).
Equations (13-74) and (13-75″) have the advantage that FFT magnitude calculations, with their
computationally costly square root operations, are not required as is necessary with other spectral
peak location algorithms described above. However, the question naturally arises, “How do we
determine the index mk of the largest-magnitude FFT sample, |X(mk)|, in Figure 13-38(a) without
computing square roots to obtain FFT magnitudes?” The answer is that we can use the complex
vector-magnitude approximations, requiring no square root computations, described in Section 13.2.
Be aware that the above spectral peak location methods are only applicable when the majority of the
signal’s spectral energy lies within a single FFT bin width (fs/N), and the FFT spectral samples are
not substantially contaminated by leakage from another spectral component.

13.16 Computing FFT Twiddle Factors
Typical applications using an N-point radix-2 FFT accept N x(n) input time samples and compute N
X(m) frequency-domain samples. However, there are non-standard FFT applications (for example,
specialized harmonic analysis, or perhaps using an FFT to implement a bank of filters) where only a
subset of the full X(m) results is required. Consider Figure 13-39 which shows the butterfly
operations for an 8-point radix-2 decimation-in-frequency FFT. Notice that the FFT butterflies in
Figure 13-39 are the optimized butterflies introduced in Figure 4-14. Assuming we are only interested
in the X(3) and X(7) output samples, rather than compute the entire FFT we perform only the
computations indicated by the bold lines in the figure.

Figure 13-39 Eight-point decimation-in-frequency FFT signal-flow diagram.

Reduced-computation FFTs are often called pruned FFTs[40-43]. To implement pruned FFTs we
need to know the twiddle phase angles associated with each necessary butterfly computation in the
paths of any bold signal-flow line in Figure 13-39. (As we did in Chapter 4 for simplicity, the
butterflies in Figure 13-39 only show the twiddle phase-angle factors and not the entire complex-
valued twiddle factors.) Here we show how to compute those individual twiddle phase angles.



13.16.1 Decimation-in-Frequency FFT Twiddle Factors
For the decimation-in-frequency (DIF) radix-2 FFT using the optimized butterflies:

• The N-point DIF FFT has log2(N) stages, numbered P = 1, 2, ..., log2(N).

• Each stage comprises N/2 butterflies.

• Not counting the −1 twiddle factors, the Pth stage has N/2P unique twiddle factors, numbered k =
0, 1, 2, ... , N/2P−1 as indicated by the upward arrows at the bottom of Figure 13-39.

Given those characteristics, the kth unique twiddle factor phase angle for the Pth stage is computed
using

(13-76)

where 0 ≤ k ≤ N/2P−1. For example, for the second stage (P = 2) of an N = 8-point DIF FFT, the
unique twiddle factor angles are

k = 0, angle = 0·2P/2 = 0·4/2 = 0
k = 1, angle = 1·2P/2 = 1·4/2 = 2.

13.16.2 Decimation-in-Time FFT Twiddle Factors
Here we present an interesting algorithm for computing the individual twiddle factor angles of a
radix-2 decimation-in-time (DIT) FFT[44]. Consider Figure 13-40 showing the butterfly signal flow
of an 8-point DIT FFT.

Figure 13-40 Eight-point decimation-in-time FFT signal-flow diagram.

For the decimation-in-time (DIT) FFT using the optimized butterflies:
• The N-point DIT FFT has log2(N) stages, numbered P = 1, 2, . . ., log2(N).

• Each stage comprises N/2 butterflies.
• Not counting the −1 twiddle factors, the Pth stage has N/2 twiddle factors, numbered k = 0, 1, 2, ...
, N/2−1 as indicated by the upward arrows at the bottom of Figure 13-40.



Given those characteristics, the kth twiddle factor phase angle for the Pth stage is computed using
(13-76′)

where 0 ≤ k ≤ N/2−1. The  operation means the integer part of q. The [z]bit-rev function represents
the three-step operation of: convert decimal integer z to a binary number represented by log2(N)−1
binary bits, perform bit reversal on the binary number as discussed in Section 4.5, and convert the
bit-reversed number back to a decimal integer.
As an example of using Eq. (13-76′), for the second stage (P = 2) of an N = 8-point DIT FFT, the k =
3 twiddle factor angle is

The above [1]bit-rev operation is: Take the decimal number 1 and represent it with log2(N)−1 = 2 bits,
i.e., as 012. Next, reverse those bits to a binary 102 and convert that binary number to our desired
decimal result of 2.

13.17 Single Tone Detection
In this section we present an IIR filter structure used to perform spectrum analysis in the detection and
measurement of single sinusoidal tones. The standard method for spectral energy is the discrete
Fourier transform (DFT), typically implemented using a fast Fourier transform (FFT) algorithm.
However, there are applications that require spectrum analysis only over a subset of the N bin-center
frequencies of an N-point DFT. A popular, as well as efficient, technique for computing sparse FFT
results is the Goertzel algorithm, using an IIR filter implementation to compute a single complex DFT
spectral bin value based upon N input time samples. The most common application of this process is
to detect the presence of a single continuous-wave sinusoidal tone. With that in mind, let’s look
briefly at tone detection.
It’s certainly possible to use the FFT to detect the presence of a single sinusoidal tone in a time-
domain sequence x(n). For example, if we wanted to detect a 30 kHz tone in a time-domain sequence
whose sample rate was fs = 128 kHz, we could start by performing a 64-point FFT as shown in
Figure 13-41. Then we would examine the magnitude of the X(15) complex sample to see if it
exceeds some predefined threshold.

Figure 13-41 DFT method, using an FFT algorithm, to detect a 30 kHz tone.

This FFT method is very inefficient. In our example, we’d be performing 192, (64/2)(log264),



complex multiplies to obtain the 64-point complex X(m) in order to compute the one X(15) in which
we’re interested. We discarded 98 percent of our computation results! We could be more efficient and
calculate our desired X(15) using the single-point discrete Fourier transform (DFT) in Eq. (13-77),
which requires N = 64 complex multiplies using

(13-77)

That would be an improvement but, happily, there’s a better way. It’s called the Goertzel algorithm
(pronounced ‘girt-zel).

13.17.1 Goertzel Algorithm
The Goertzel algorithm is implemented in the form of a 2nd-order IIR filter, with two real feedback
coefficients and a single complex feedforward coefficient, as shown in Figure 13-42. (Although we
don’t use this process as a traditional filter, common terminology refers to the structure as a filter.)
This filter computes a single-bin DFT output (the mth bin of an N-point DFT) defined by

(13-78)

Figure 13-42 IIR filter implementation of the Goertzel algorithm.

The filter’s y(n) output is equal to the DFT output frequency coefficient, X(m), at the time index n =
N, where the first time index value is n = 0. For emphasis, we remind the reader that the filter’s y(n)
output is not equal to X(m) at any time index when n ≠ N. To be equivalent to the DFT, the frequency-
domain index m must an integer in the range 0 ≤ m ≤ N−1. You’re welcome to think of the Goertzel
algorithm as a single-bin DFT. The derivation of this filter (this algorithm) structure is readily
available in the literature[45–47].
The z-domain transfer function of the Goertzel filter is

(13-79)

with a single z-domain zero located at z = e−j2πm/N and conjugate poles at z = e±j2πm/N as shown in
Figure 13-43(a). The pole/zero pair at z = e−j2πm/N cancel each other. Having a filter pole on the unit
circle is typically a risky thing to do for stability reasons, but not so with the Goertzel algorithm.
Because it processes N+1-length blocks of time samples (where N is usually in the hundreds), the



filter remains stable for such short time sequences because its internal data storage registers, w(n−1)
and w(n−2), are reset to zero at the beginning of each new block of input data. The filter’s frequency
magnitude response, provided in Figure 13-43(b), shows resonance centered at a normalized
frequency of 2πm/N, corresponding to a cyclic frequency of mfs/N Hz (where fs is the signal sample
rate).

Figure 13-43 Goertzel filter: (a) z-domain pole/zero locations; (b) frequency magnitude response.

The Goertzel algorithm is implemented with a complex resonator having an infinite-length unit
impulse response, h(n) = ej2πnm/N, and that’s why its frequency magnitude response is so narrow. The
time-domain difference equations for the Goertzel filter are

(13-80)

(13-81)

An advantage of the Goertzel filter in computing an N-point X(m) DFT bin value is that Eq. (13-80) is
implemented N times while Eq. (13-81), the feedforward path in Figure 13-42, need only be
computed once after the arrival of the Nth input sample. Thus for real x(n) inputs the filter requires
N+2 real multiplies and 2N+1 real adds to compute an N-point X(m). However, when modeling the
Goertzel filter, if the time index begins at n = 0, the filter must process N+1 time samples with x(N) =
0 to compute X(m).
In typical applications, to minimize spectral leakage, we choose N so there’s an integer number of
cycles in our input sequence of the tone we’re trying to detect. N can be any integer, and the larger N
is, the better the frequency resolution and noise immunity. However, larger N means more
computations.
It’s worth noting that while the typical Goertzel algorithm description in the literature specifies the
frequency resonance variable m to be an integer (making the Goertzel filter’s output equivalent to an
N-point DFT bin output), the m in Figure 13-42 and Eq. (13-79) can in fact be any value between 0
and N−1, giving us full flexibility in specifying our filter’s resonant frequency.

13.17.2 Goertzel Example
Let’s use Goertzel to calculate the spectral magnitude of that ftone = 30 kHz tone from the Figure 13-41
example. When fs = 128 kHz and N = 64, our resonant frequency integer m is

(13-82)



The Goertzel filter and the necessary computations for our 30 kHz detection example are provided in
Figure 13-44.

Figure 13-44 Filter, coefficients, and computations to detect the 30 kHz tone.

It’s useful to know that if we want to compute the power of X(15), |X(15)2|, the final feedforward
complex calculations can be avoided by computing

(13-83)

In our example, Eq. (13-83) becomes
(13-84)

13.17.3 Goertzel Advantages over the FFT
Here are some implementation advantages of the Goertzel algorithm over the standard radix-2 FFT
for single tone detection:

• N does not need to be an integer power of two.
• The resonant frequency can be any value between zero and fs Hz.

• The amount of filter coefficient (versus FFT twiddle factor) storage is reduced. If Eq. (13-83) is
used, only one coefficient need be stored.

• No storing a block of input data is needed before processing can begin (as with the FFT).
Processing can begin with the first input time sample.

• No data bit reversal is needed for Goertzel.
• If you implement the Goertzel algorithm M times to detect M different tones, Goertzel is more
efficient (fewer multiplies) than the FFT when M < log2N.

• Computational requirements to detect a single tone (assuming real-only x(n) input) are given in



Table 13-4.
Table 13-4 Single-Bin DFT Computational Comparisons

As a final note, although the Goertzel algorithm is implemented with a complex resonating filter
structure, it’s not used as a typical filter where we retain each output sample. For the Goertzel
algorithm we retain only every Nth, or (N+1)th, output sample. As such, the frequency magnitude
response of the Goertzel algorithm when treated as a black-box process is equivalent to the |sin(x)/x|-
like magnitude response of a single bin of an N-point DFT, a portion of which is shown in Figure 13-
45.

Figure 13-45 Goertzel algorithm frequency magnitude response.

13.18 The Sliding DFT
The above Goertzel algorithm computes a single complex DFT spectral bin value for every N input
time samples. Here we describe a sliding DFT process whose spectral bin output rate is equal to the
input data rate, on a sample-by-sample basis, with the advantage that it requires fewer computations
than the Goertzel algorithm for real-time spectral analysis. In applications where a new DFT output
spectrum is desired every sample, or every few samples, the sliding DFT is computationally simpler
than the traditional radix-2 FFT.

13.18.1 The Sliding DFT Algorithm
The sliding DFT (SDFT) algorithm computes a single bin result of an N-point DFT on time samples
within a sliding window. That is, for the mth bin of an N-point DFT, the SDFT computes

(13-85)

Let’s take care to understand the notation of Xm(q). Typically, as in Chapter 3, the index of a DFT
result value was the frequency-domain index m. In Eq. (13-85) the index of the DFT result is a time-
domain index q = 0, 1, 2, 3, ..., such that our first mth-bin SDFT is Xm(0), our second SDFT is Xm(1),
and so on.
An example SDFT analysis time window is shown in Figure 13-46(a) where Xm(0) is computed for
the N = 16 time samples x(0) to x(15). The time window is then advanced one sample, as in Figure



13-46(b), and the new Xm(1) is calculated. The value of this process is that each new DFT result is
efficiently computed directly from the result of the previous DFT. The incremental advance of the
time window for each output computation leads to the name sliding DFT or sliding-window DFT.
Figure 13-46 Analysis window for two 16-point DFTs: (a) data samples in the first computation; (b)

second computation samples.

We can develop the mathematical expression for the SDFT as follows: the standard N-point DFT
equation, of the mth DFT bin, for the qth DFT of the time sequence x(q), x(q+1), ..., x(q+N−1) is

(13-86)

(Variable m is the frequency-domain index, where m = 0, 1, 2, ..., N−1.) Likewise, the expression for
the next DFT, the (q+1)th DFT performed on time samples x(q+1), x(q+2), ..., x(q+N), is

(13-87)

Letting p = n+1 in Eq. (13-87), we can write
(13-88)

Shifting the limits of summation in Eq. (13-88), and including the appropriate terms (subtract the p =
0 term and add the p = N term) to compensate for the shifted limits, we write

(13-89)

Factoring the common exponential term (ej2πm/N), we write
(13-90)



Recognizing the summation in the brackets being equal to the previous Xm(q) in Eq. (13-86), and e
−j2πm = 1, we write the desired recursive expression for the sliding N-point DFT as

(13-91)

where Xm(q+1) is the new single-bin DFT result and Xm(q) is the previous single-bin DFT value. The
superscript m reminds us that the Xm(q) spectral samples are those associated with the mth DFT bin.
Let’s plug some numbers into Eq. (13-91) to reveal the nature of its time indexing. If N = 20, then 20
time samples (x(0) to x(19)) are needed to compute the first result Xm(0). The computation of Xm(1) is
then

(13-92)

Due to our derivation method’s time indexing, Eq. (13-92) appears compelled to look into the future
for x(20) to compute Xm(1). With no loss in generality, we can modify Eq. (13-91)’s time indexing so
that the x(n) input samples and the Xm(q) output samples use the same time index n. That modification
yields our SDFT time-domain difference equation of

(13-93)

Equation (13-93) reveals the value of this process in computing real-time spectra. We compute Xm(n)
by subtracting the x(n−N) sample and adding the current x(n) sample to the previous Xm(n−1), and
phase shifting the result. Thus the SDFT requires only two real additions and one complex multiply
per output sample. Not bad at all! Equation (13-93) leads to the single-bin SDFT filter
implementation shown in Figure 13-47.

Figure 13-47 Single-bin sliding DFT filter structure.

The single-bin SDFT algorithm is implemented as an IIR filter with a comb filter followed by a
complex resonator. (If you need to compute all N DFT spectral components, N resonators with m = 0
to N−1 will be needed, all driven by a single comb filter.) The comb filter delay of N samples forces
the SDFT filter’s transient response to be N samples in length, so the output will not reach steady
state until the Xm(N−1) sample. The output will not be valid, or equivalent to Eq. (13-86)’s Xm(q),
until N input samples have been processed. The z-transform of Eq. (13-93) is

(13-94)



where factors of Xm(z) and X(z) are collected, yielding the z-domain transfer function for the mth bin
of the SDFT filter as

(13-95)

This complex filter has N zeros equally spaced around the z-domain’s unit circle, due to the N-delay
comb filter, as well as a single pole canceling the zero at z = ej2πm/N. The SDFT filter’s complex unit
impulse response h(n) and pole/zero locations are shown in Figure 13-48 for the example where m =
2 and N = 20.

Figure 13-48 Sliding DFT characteristics for m = 2 and N = 20: (a) complex impulse response; (b)
pole/zero locations.

Because of the comb subfilter, the SDFT filter’s complex sinusoidal unit impulse response is finite in
length—truncated in time to N samples—and that property makes the frequency magnitude response of
the SDFT filter identical to the sin(Nx)/sin(x) response of a single DFT bin centered at a frequency of
2πm/N.
One of the attributes of the SDFT is that once an Xm(n) is obtained, the number of computations to
compute Xm(n+1) is fixed and independent of N. A computational workload comparison between the
Goertzel and SDFT filters is provided later in this section. Unlike the radix-2 FFT, the SDFT’s N can
be any positive integer, giving us greater flexibility to tune the SDFT’s center frequency by defining
integer m such that m = Nfi/fs, when fi is a frequency of interest in Hz and fs is the signal sample rate in
Hz. In addition, the SDFT requires no bit-reversal processing as does the FFT. Like the Goertzel
algorithm, the SDFT is especially efficient for narrowband spectrum analysis.
For completeness, we mention that a radix-2 sliding FFT technique exists for computing all N bins of
Xm(q) in Eq. (13-85)[48,49]. That technique is computationally attractive because it requires only N
complex multiplies to update the N-point FFT for all N bins; however, it requires 3N memory
locations (2N for data and N for twiddle coefficients). Unlike the SDFT, the radix-2 sliding FFT
scheme requires address bit-reversal processing and restricts N to be an integer power of two.

13.18.2 SDFT Stability
The SDFT filter is only marginally stable because its pole resides on the z-domain’s unit circle. If
filter coefficient numerical rounding error is not severe, the SDFT is bounded-input-bounded-output
stable. Filter instability can be a problem, however, if numerical coefficient rounding causes the



filter’s pole to move outside the unit circle. We can use a damping factor r to force the pole and zeros
in Figure 13-48(b) to be at a radius of r just slightly inside the unit circle and guarantee stability using
a transfer function of

(13-96)

with the subscript “gs” meaning guaranteed-stable. (Section 7.5.3 provides the mathematical details
of moving a filter’s poles and zeros inside the unit circle.) The stabilized feedforward and feedback
coefficients become −rN and rej2πm/N, respectively. The difference equation for the stable SDFT filter
becomes

(13-97)

with the stabilized-filter structure shown in Figure 13-49. In this case, we perform five real
multiplies and four real additions per output sample.

Figure 13-49 Guaranteed-stable sliding DFT filter structure.

Using a damping factor as in Figure 13-49 guarantees stability, but the Xm(q) output, defined by
(13-98)

is no longer exactly equal to the mth bin of an N-point DFT in Eq. (13-85). While the error is reduced
by making r very close to (but less than) unity, a scheme does exist for eliminating that error
completely once every N output samples at the expense of additional conditional logic
operations[50]. Determining if the damping factor r is necessary for a particular SDFT application
requires careful empirical investigation. As is so often the case in the world of DSP, this means you
have to test your SDFT implementation very thoroughly and carefully!
Another stabilization method worth consideration is decrementing the largest component (either real
or imaginary) of the filter’s ej2πm/N feedback coefficient by one least significant bit. This technique
can be applied selectively to problematic output bins and is effective in combating instability due to
rounding errors that result in finite-precision ej2πm/N coefficients having magnitudes greater than unity.
Like the DFT, the SDFT’s output is proportional to N, so in fixed-point binary implementations the
designer must allocate sufficiently wide registers to hold the computed results.

13.18.3 SDFT Leakage Reduction
Being equivalent to the DFT, the SDFT also suffers from spectral leakage effects. As with the DFT,
SDFT leakage can be reduced by the standard concept of windowing the x(n) input time samples as
discussed in Section 3.9. However, windowing by time-domain multiplication would ruin the real-



time computational simplicity of the SDFT. Thanks to the convolution theorem properties of discrete
systems, we can implement time-domain windowing by means of frequency-domain convolution, as
discussed in Section 13.3.
Spectral leakage reduction performed in the frequency domain is accomplished by convolving
adjacent Xm(q) values with the DFT of a window function. For example, the DFT of a Hamming
window comprises only three nonzero values, −0.23, 0.54, and −0.23. As such, we can compute a
Hamming-windowed Xm(q) with a three-point convolution using

(13-99)

Figure 13-50 shows this process using three resonators, each tuned to adjacent DFT bins (m−1, m,
and m+1). The comb filter stage need only be implemented once.

Figure 13-50 Three-resonator structure to compute a single Hamming-windowed Xm(q).

Table 13-5 provides a computational workload comparison of various spectrum analysis schemes in
computing an initial Xm(n) value and computing a subsequent Xm(n+1) value.

Table 13-5 Single-Bin DFT Computation Comparison

To compute the initial windowed Xm(n) values in Table 13-5, the three-term frequency-domain
convolution need only be performed once, upon arrival of the Nth time sample. However, the
convolution needs to be performed for all subsequent computations
We remind the reader that Section 13.3 discusses several implementation issues regarding Hanning
windowing in the frequency domain, using binary shifts to eliminate the multiplications in Eq. (13-
99), as well as the use of other window functions.



13.18.4 A Little-Known SDFT Property
The SDFT has a special property that’s not widely known but is very important. If we change the
SDFT’s comb filter feedforward coefficient (in Figure 13-47) from −1 to +1, the comb’s zeros will
be rotated counterclockwise around the unit circle by an angle of π/N radians. This situation, for N =
8, is shown on the right side of Figure 13-51(a). The zeros are located at angles of 2π(m + 1/2)/N
radians. The m = 0 zeros are shown as solid dots. Figure 13-51(b) shows the zeros locations for an N
= 9 SDFT under the two conditions of the comb filter’s feedforward coefficient being −1 and +1.

Figure 13-51 Four possible orientations of comb filter zeros on the unit circle.

This alternate situation is useful: we can now expand our set of spectrum analysis center frequencies
to more than just N angular frequency points around the unit circle. The analysis frequencies can be
either 2πm/N or 2π(m+1/2)/N, where integer m is in the range 0 ≤ m ≤ N−1. Thus we can build an
SDFT analyzer that resonates at any one of 2N frequencies between 0 and fs Hz. Of course, if the
comb filter’s feedforward coefficient is set to +1, the resonator’s feedforward coefficient must be
ej2π(m+1/2)/N to achieve pole/zero cancellation.

13.19 The Zoom FFT
The Zoom FFT is a spectrum analysis method that blends complex down-conversion, lowpass
filtering, and sample rate change by way of decimation. The Zoom FFT scheme (also called the zoom
transform or spectral vernier) is used when fine-grained spectral resolution is needed within a small
portion of a signal’s overall frequency bandwidth range. In some spectrum analysis situations, this
technique can be more efficient than the traditional FFT. The Zoom FFT can also be useful if we’re
constrained, for some reason, to use software that performs N-point FFTs for spectrum analysis of
signal sequences whose lengths are greater than N.
Think of the spectral analysis situation where we require fine frequency resolution, closely spaced
FFT bins, over the frequency range occupied by the signal of interest shown in Figure 13-52(a). (The
other signals are of no interest to us.) We could collect many time samples and perform a large-size



radix-2 FFT to satisfy our fine spectral resolution requirement. This solution is inefficient because
we’d be discarding most of our FFT results. The Zoom FFT can help us improve our computational
efficiency through

Figure 13-52 Zoom FFT spectra: (a) input spectrum; (b) processing scheme; (c) down-converted
spectrum; (d) filtered and decimated spectrum.

• frequency translation by means of complex down-conversion,
• lowpass filtering,
• decimation, and finally
• performing a smaller-size FFT.

The process begins with the continuous x(t) signal being digitized at a sample rate of fs1 by an analog-
to-digital (A/D) converter, yielding the N-point x(n) time sequence whose spectral magnitude is
|X(m)| in Figure 13-52(a). The Zoom FFT technique requires narrowband filtering and decimation in
order to reduce the number of time samples prior to the final FFT, as shown in Figure 13-52(b). The
down-converted signal’s spectrum, centered at zero Hz, is the |Xc(m)| shown in Figure 13-52(c). (The
lowpass filter’s frequency response is the dashed curve.) After lowpass filtering xc(n), the filter’s
output is decimated by an integer factor D, yielding a time sequence x′c(n) whose sample rate is fs2 =
fs1/D prior to the FFT operation. The key here is that the length of x′c(n) is N/D, allowing a reduced-
size FFT. (N/D must be an integer power of two to enable the use of radix-2 FFTs.) We perform the
FFT only over the decimated signal’s bandwidth. It’s of interest to note that, because its input is
complex, the N/D-point FFT has a non-redundant frequency analysis range from −fs2/2 to +fs2/2
(unlike the case of real inputs, where the positive- and negative-frequency ranges are redundant).
The implementation of the Zoom FFT is given in Figure 13-53, where all discrete sequences are real-
valued.

Figure 13-53 Zoom FFT processing details.



Relating the discrete sequences in Figure 13-52(b) and Figure 13-53, the complex time sequence
xc(n) is represented mathematically as

(13-100)

while the complex decimated sequence x′c(n) is
(13-101)

The complex mixing sequence e−j2πfcnts1, where ts1 = 1/fs1, can be represented in the two forms of
(13-102)

Relative to FFT computations, we see that an N/D-point Zoom FFT yields a reduction in
computations compared to a standard N-point FFT for spectrum analysis of a narrowband portion of
some X(m) spectrum—and the computational savings improve as the decimation factor D increases.
Ah, but here’s the rub. As D increases, the lowpass filters must become narrower, which increases
their computational workload, and this is the trade-off we face. What we must ask ourselves is “Does
the Zoom FFT’s reduced FFT size compensate for the additional quadrature mixing and dual filtering
computational workload?” (It certainly would if a large-size FFT is impossible with your available
FFT hardware or software.)
To gain a rough appreciation for the computational savings gained by using an N/D-point Zoom FFT,
compared to a standard N-point FFT, let’s look at Figure 13-54. That figure shows the percent
computational savings of a Zoom FFT versus a standard N-point FFT for various decimation factors
D.

Figure 13-54 Zoom FFT computation reduction.

The curves were computed using the following definition for percent computation reduction



(13-103)

under the assumptions that the time sequences applied to the FFTs were windowed, and the Zoom
FFT’s lowpass filters were 24th-order (25 multiplications per output sample) tapped-delay line FIR
filters using folded FIR structures. In Eq. (13-103) a single real multiply and a single real addition
are both considered as a single computation.
The range where Figure 13-54’s curves have negative values means that the Zoom FFT is less
efficient (more computations) than a standard N-point FFT. As it turns out, the curves in Figure 13-54
quickly move downward in efficiency as the order of the lowpass filters increases. So it’s in our best
interest to make the lowpass filters as computationally efficient as possible. Some ways to do this
are:

• Partition the lowpass filtering/decimation process into multiple stages (multistage decimation) as
discussed in Chapter 10.

• Incorporate cascaded integrator-comb (CIC) filters into the lowpass filtering if the spectrum of
interest is very narrowband relative to the fs1.

• Use interpolated FIR filters as discussed in Chapter 7.
• Use polyphase filters as discussed in Chapter 10.
• Restrict the decimation factor D to be an integer power of two such that efficient half-band filters
can be used.

• Use IIR filters, if spectral phase distortion can be tolerated.

13.20 A Practical Spectrum Analyzer
Here’s a clever trick for implementing a practical spectrum analyzer by modifying the time-domain
data before applying a radix-2 FFT algorithm.
Let’s say we need to build a spectrum analyzer to display, in some manner, the spectral magnitude of a
time-domain sequence. We’d like our spectrum analyzer, a bank of bandpass filters, to have a
frequency magnitude response something like that shown in Figure 13-55(a). For spectrum analysis,
the radix-2 FFT algorithm comes to mind first, as it should. However, the frequency response of
individual FFT bins is that shown in Figure 13-55(b), with their non-flat passbands, unpleasantly high
sidelobes due to spectral leakage, and overlapped main lobes. We can reduce the leakage sidelobe
levels by windowing the time-domain sequence, but that leads to the increased main lobe overlap
shown in Figure 13-55(c) and degraded frequency resolution, and we still have considerable droop in
the passband response.
Figure 13-55 Spectrum analyzer: (a) desired frequency response; (b) frequency response of standard

FFT bins; (c) windowed-data FFT frequency response.



Here’s how we can solve our problem. Consider an x(n) sequence of time samples of length M whose
M-point DFT is

(13-104)

Next, consider partitioning x(n) into P subsequences, each of length N. Thus PN = M. If we add,
element for element, the P subsequences, we’ll obtain a new y(n) sequence of length N whose N-point
DFT is

(13-105)

The good news is that
(13-106)

That is, the DFT magnitudes of sequence y(n) are equal to a subset of the longer DFT magnitudes of
x(n). Y(m) is equal to a decimated-by-P version of X(k). The relationship between |Y(m)| and |X(Pm)|
doesn’t seem too important, but here’s how we’ll take advantage of that equality. We’ll create an M-
point window sequence whose single-bin frequency response, of an M-point FFT, is the bold curve in
Figure 13-56(a). Instead of computing all M FFT outputs, we’ll only compute every Pth output of the
M-point FFT, implementing Eq. (13-105), giving us the decimated FFT bins shown in Figure 13-
56(b). In that figure P = 5.

Figure 13-56 FFT spectrum analyzer frequency responses.



That decimation of the frequency-domain |X(k)| spectrum is accomplished in the time domain by a
time-aliasing operation as shown in Figure 13-57, where again, for example, P = 5. We partition the
M-sample windowed-x(n) time sequence into P = 5 subsequences and sum the subsequences element
for element to obtain the time-aliased N-sample y(n) sequence. Next, the |Y(m)| spectral magnitudes
are computed using the radix-2 FFT.

Figure 13-57 FFT spectrum analyzer process.

This process, sweet in its simplicity, is called the weighted overlap-add structure[51,52] and is
alternatively referred to as the window-presum FFT[53]. The most difficult part of building this
analyzer is designing the M-point window sequence used to window the original x(n) sequence. We
do that by specifying the window’s frequency-domain characteristics, just as if it were a digital filter
frequency response, and using our favorite filter design software to compute the filter’s time-domain
impulse response. That impulse response is the window sequence. With the signal sample rate being
fs, the window’s passband width will be just less than fs/N. This makes the filter’s one-sided
passband width roughly fs/2N.
Figure 13-58 illustrates an example FFT analyzer with fs = 1 MHz, N = 64, with P = 5 making M =
320. The FFT bin spacing is 15.63 kHz, so the window design was set for a passband width of 10
kHz (thus the filter’s one-sided bandwidth was specified as 5 kHz in a Parks-McClellan design
routine). Figure 13-58(a) is the 320-point window sequence, while Figure 13-58(b) shows the FFT
analyzer’s response for the m = 3, 4, and 5 bins, with the |Y(4)| response being the solid curve.
Figure 13-58 FFT analyzer example: (a) window sequence; (b) analyzer response for 64-point FFT

bins |Y(3)|, |Y(4)|, and |Y(5)|.

The width of the spectrum analyzer’s passbands is primarily controlled by the window’s passband
width. The center frequencies of the analyzer’s individual passbands are defined by fs/N. What this
means is that the amount of overlap in the analyzer’s passbands depends on both the window’s



passband width, fs, and N. The dynamic range of the analyzer can be increased by increasing P, which
increases M and lengthens the x(n) sequence. As M is increased, the longer window sequence will
yield analyzer passbands having a more rectangular shape, lower sidelobes, and reduced passband
ripple.
Again, to implement this radix-2 FFT spectrum analyzer, the length of the time-domain sequence (M)
must be an integer multiple (P) of an integer power of two (N).

13.21 An Efficient Arctangent Approximation
Fast and accurate methods for computing the arctangent of a complex number x = I + jQ have been the
subject of extensive study because estimating the angle θ of a complex value has so many applications
in the field of signal processing. The angle of x is defined as θ = tan−1(Q/I).
Practitioners interested in computing high-speed (minimum computations) arctangents typically use
look-up tables where the value Q/I specifies a memory address in read-only memory (ROM)
containing an approximation of angle θ. For high accuracy, though, this method may require very large
ROM tables. Those folk interested in enhanced accuracy implement compute-intensive high-order
algebraic polynomials, where Chebyshev polynomials seem to be more popular than Taylor series, to
approximate angle θ. But this polynomial method requires many computations. Unfortunately, because
it is such a nonlinear function, the arctangent is resistant to accurate reasonable-length polynomial
approximations. There is a processing method called “CORDIC” (an acronym for COordinate
Rotation DIgital Computer) that can compute accurate arctangents using only binary shifts and
additions, but this technique can require long processing times. So, sadly, we end up choosing the
least undesirable method for computing arctangents.
If you want to become famous in the field of signal processing, all you have to do is produce a very
accurate arctangent algorithm that requires very few computations. (After solving that problem, you
can then apply your skills to developing a perpetual-motion machine.)
Here’s another contender in the arctangent approximation race that uses neither look-up tables nor
high-order polynomials. We can estimate the angle θ, in radians, of x = I + jQ using the following
approximation:

(13-107)

where −1 ≤ Q/I ≤ 1. That is, θ is in the range −45 to +45 degrees (−π/4 ≤ θ ≤ +π/4 radians). Equation
(13-107) has surprisingly good performance, particularly for a 90-degree (π/2 radians) angle range.
Figure 13-59 shows the maximum error is 0.28 degrees using Eq. (13-107) when the true angle θ is
within the angular range of −45 to +45 degrees

Figure 13-59 Estimated angle θ’ error in degrees.



A nice feature of this θ’ computation is that it can be written as
(13-108)

eliminating Eq. (13-107)’s Q/I division operation, at the expense of two additional multiplies.
Another attribute of Eq. (13-108) is that a single multiply can be eliminated with binary right shifts.
The product 0.28125Q2 is equal to (1/4+1/32)Q2, so we can implement the product by adding Q2

shifted right by two bits to Q2 shifted right by five bits. This arctangent scheme may be useful in a
digital receiver application where I2 and Q2 have been previously computed in conjunction with an
AM (amplitude modulation) demodulation process or envelope detection associated with automatic
gain control (AGC).
We can extend the angle range over which our approximation operates. If we break up a circle into
eight 45-degree octants, with the first octant being 0 to 45 degrees, we can compute the arctangent of
a complex number residing in any octant. We do this by using the rotational symmetry properties of
the arctangent:

(13-109)

(13-110)

Those properties allow us to create Table 13-6.
Table 13-6 Octant Location versus Arctangent Expressions

So we have to check the signs of Q and I, and see if |Q| > |I|, to determine the octant location, and then
use the appropriate approximation in Table 13-6. Section 13.38 gives a method for determining the



octant of the original θ. The maximum angle approximation error is 0.28 degrees for all octants.

13.22 Frequency Demodulation Algorithms
In Section 9.2 we discussed the notion of measuring the instantaneous frequency of a complex
sinusoidal signal by computing the derivative of the signal’s instantaneous θ(n) phase as shown in
Figure 13-60. This is the traditional discrete-signal FM demodulation method, and it works fine. The
demodulator’s instantaneous output frequency is

(13-111)

Figure 13-60 Frequency demodulator using an arctangent function.

where fs is the sample rate in Hz.
Computing instantaneous phase θ(n) requires an arctangent operation, which is difficult to implement
accurately without considerable computational resources. Here’s a scheme for computing Δθ(n) for
use in Eq. (13-111) without the intermediate θ(n) phase computation (and its pesky arctangent)
[54,55]. We derive the Δθ(n) computation algorithm as follows, initially using continuous-time
variables based on the following definitions:

(13-112)

The following algorithm is based on the assumption that the spectrum of the i(t) + jq(t) signal is
centered at zero Hz. First, we let r(t) = q(t)/i(t) be the signal for which we’re trying to compute the
derivative of its arctangent. The time derivative of tan−1[r(t)], a calculus identity, is

(13-113)

Because d[r(t)]/dt = d[q(t)/i(t)]/dt, we use the calculus identity for the derivative of a ratio to write
(13-114)

Plugging Eq. (13-114)’s result into Eq. (13-113), we have
(13-115)

Replacing r(t) in Eq. (13-115) with q(t)/i(t) yields



(13-116)

We’re getting there. Next we multiply the numerator and denominator of the first ratio in Eq. (13-116)
by i2(t) and replace t with our discrete time variable index n to arrive at our final result of

(13-117)

The implementation of this algorithm, where the derivatives of i(n) and q(n) are i′(n) and q′(n)
respectively, is shown in Figure 13-61(a). The Δϕ(n) output sequence is used in Eq. (13-111) to
compute instantaneous frequency.

Figure 13-61 Frequency demodulator without arctangent: (a) standard process; (b) simplified
process.

The Differentiators are tapped-delay line FIR differentiating filters with an odd number of taps. The z
−D delay elements in Figure 13-61(a) are used to time-align the input i(n) and q(n) sequences with the
outputs of the differentiators. The delay is D = (K−1)/2 samples when a K-tap differentiator is used.
In practice, those z−D delays can be obtained by tapping off the center tap of the differentiating filter
as shown in Figure 13-61(b), where the differentiator is an FIR filter having 1,0,−1 as coefficients,
and D = 1 in this case[55]. Such a differentiator is the simple “central-difference differentiator” we
discussed in Chapter 7, and its optimum performance occurs when the input signal is low frequency
relative to the demodulator’s input fs sample rate. Reference [55] reports acceptable results using the



differentiator in Figure 13-61(b), but that’s only true if the complex input signal has a bandwidth no
greater than fs/10.

If the i(n)+jq(n) signal is purely FM and hard limited such that i2(n)+q2(n) = Constant, the
denominator computations in Eq. (13-117) need not be performed. In this case, using the 1,0,−1
coefficient differentiators, the FM demodulator is simplified to that shown in Figure 13-61(b), where
the Scaling operation is multiplication by the reciprocal of Constant.
Two final things to consider: First, in practice we may want to detect the unusual situation where both
i(n) and q(n) are zero-valued, making the denominator of Eq. (13-117) equal to zero. We should set
Δθ(n) to zero in that case. Second, for real-world noisy signals it may be prudent to apply the Δθ(n)
output to a lowpass filter to reduce unwanted high-frequency noise.

13.23 DC Removal
When we digitize analog signals using an analog-to-digital (A/D) converter, the converter’s output
typically contains some small DC bias; that is, the average of the digitized time samples is not zero.
That DC bias may have come from the original analog signal or from imperfections within the A/D
converter. Another source of DC bias contamination in DSP is when we truncate a discrete sequence
from a B-bit representation to word widths less than B bits. Whatever the source, unwanted DC bias
on a signal can cause problems. When we’re performing spectrum analysis, any DC bias on the signal
shows up in the frequency domain as energy at zero Hz, the X(0) spectral sample. For an N-point FFT
the X(0) spectral value is proportional to N and becomes inconveniently large for large-sized FFTs.
When we plot our spectral magnitudes, the plotting software will accommodate any large X(0) value
and squash down the remainder of the spectrum in which we are more interested.
A nonzero DC bias level in audio signals is particularly troublesome because concatenating two
audio signals, or switching between two audio signals, results in unpleasant audible clicks. In modern
digital communications systems, a DC bias on quadrature signals degrades system performance and
increases bit error rates. With that said, it’s clear that methods for DC removal are of interest to many
DSP practitioners.

13.23.1 Block-Data DC Removal
If you’re processing in non-real time, and the signal data is acquired in blocks (fixed-length
sequences) of block length N, DC removal is straightforward. We merely compute the average of our
N time samples and subtract that average value from each original sample to yield a new time
sequence whose DC bias will be extremely small.
This scheme, although very effective, is not compatible with continuous-throughput (real-time)
systems. For real-time systems we’re forced to use filters for DC removal.

13.23.2 Real-Time DC Removal
The author has encountered three proposed filters for DC removal[56–58]; their structures are shown
in Figures 13-62(a), 13-62(b), and 13-62(c).

Figure 13-62 Filters used for DC bias removal.



Ignoring the constant gains of those DC-removal filters, all three filters have identical performance
with the general DC-removal filter structure in Figure 13-62(d) having a z-domain transfer function
of

(13-118)

(It’s not immediately obvious that the filters in Figures 13-62(c) and 13-62(d) are equivalent. You can
verify that equivalency by writing the time-domain difference equations relating the various nodes in
the feedback path of Figure 13-62(c)’s filter. Next, convert those equations to z-transform expressions
and solve for Y(z)/X(z) to yield Eq. (13-118)).
Because the DC-removal filters can be modeled with the general DC-removal filter in Figure 13-
62(d), we provide the general filter’s frequency magnitude and phase responses in Figures 13-63(a)
and 13-63(b) for α = 0.95. The filter’s pole/zero locations are given in Figure 13-63(c), where a zero
resides at z = 1 providing infinite attenuation at DC (zero Hz) and a pole at z = α making the
magnitude notch at DC very sharp. The closer α is to unity, the narrower the frequency magnitude
notch centered at zero Hz. Figure 13-63(d) shows the general filter’s unit-sample impulse response.
Figure 13-63 DC-removal filter, α = 0.95: (a) magnitude response; (b) phase response; (c) pole/zero

locations; (d) impulse response.



Figure 13-64 shows the time-domain input/output performance of the general DC-removal filter (with
α = 0.95) when its input is a sinusoid suddenly contaminated with a DC bias of 2 beginning at the
100th time sample and disappearing at the 200th sample. The DC-removal filter works well.
Figure 13-64 DC-removal filter performance: (a) filter input with sudden DC bias; (b) filter output.

13.23.3 Real-Time DC Removal with Quantization
Because the general DC-removal filter has feedback, the y(n) output samples may require wider
binary word widths than those used for the x(n) input samples. This could result in overflows in
fixed-point binary implementations. The scaling factors of (1+α)/2 and K, in Figures 13-62(a) and 13-
62(b), are less than one to minimize the chance of y(n) binary overflow.
In fixed-point hardware the y(n) samples are often truncated to the same word width as the input x(n).
This quantization (by means of truncation) will induce a negative DC bias onto the quantized output
samples, degrading our desired DC removal. When we truncate a binary sample value, by discarding
some of its least significant bits, we induce a negative error in the truncated sample. Fortunately, that
error value is available for us to add to the next unquantized signal sample, increasing its positive DC
bias. When that next sample is truncated, the positive error we’ve added minimizes the negative error
induced by truncation of the next sample.
Figure 13-65(a) shows the addition of a quantizing sigma-delta modulator to the feedback path of the
DC-removal filter given in Figure 13-62(c). The positive error induced by truncation quantization
(the Q block) is delayed by one sample time and fed back to the quantizer input. Because the
modulator has a noise shaping property where quantization error noise is shifted up in frequency,



away from zero Hz (DC), the overall DC bias at the output of the filter is minimized[57].
Figure 13-65 Two DC-removal filters using fixed-point quantization to avoid data overflow.

An equivalent quantization noise shaping process can be applied to a Direct Form I version of the
Figure 13-62(d) general DC-removal filter as shown in Figure 13-65(b). Again, the positive
quantization error is delayed by one sample time and added to the quantizer input[59–61]. To
reiterate, the DC-removal filters in Figure 13-65 are used to avoid binary data overflow, by means of
quantization, without the use of scaling multipliers.
Later in this chapter we discuss a DC-removal filter whose frequency response exhibits linear phase.

13.24 Improving Traditional CIC Filters
A major design goal for cascaded integrator-comb (CIC) filters, as introduced in Chapter 10 in
conjunction with sample rate conversion, is to minimize their hardware power consumption by
reducing data word width and reducing data clock rates wherever possible. Here we introduce a
clever trick that reduces CIC filter power consumption using nonrecursive structures, by means of
polynomial factoring, easing the word width growth problem. These nonrecursive structures require
that the sample rate change R be an integer power of two, enhancing computational simplicity through
polyphase decomposition, transposed structures, simplified multiplication, and substructure
sharing[62–64]. (These processes are not complicated; they merely have fancy names.) Next, we’ll
review a nonrecursive scheme that enables sample rate changes other than powers of two. The
following discussion assumes that the reader is familiar with the CIC filter material in Chapter 10.

13.24.1 Nonrecursive CIC Filters
Recall that the structures of 1st-order (M = 1) and 3rd-order (M = 3) CIC decimation filters, having a
comb delay equal to the sample rate change factor R, are those shown in Figure 13-66. As presented
in Chapter 10, the transfer function of an Mth-order decimating CIC filter can be expressed in either a
recursive form or a nonrecursive form, as indicated in Eq. (13-119). (You could, if you wish, use the
geometric series discussion in Appendix B to show the equality of the two forms of the filter’s
transfer function.)

(13-119)



(13-119′)

Figure 13-66 Recursive decimation CIC filters: (a) 1st-order filter; (b) 3rd-order filter.

Now if the sample rate change factor R is an integer power of two, R = 2K where K is some positive
integer, the Eq. (13-119′) Mth-order nonrecursive polynomial form of Hcic(z) can be factored as

(13-120)

The reward for this factorization is that the CIC filter can then be implemented with K nonrecursive
stages as shown in Figure 13-67. This implementation eliminates filter feedback loops with their
unpleasant binary word width growth. The data word width does increase in this nonrecursive
structure by M bits for each stage, but the sampling rate is reduced by a factor of two for each stage.
This nonrecursive structure has been shown to consume less power than the Figure 13-66(b)
recursive implementation for filter orders greater than three and decimation/interpolation factors
larger than eight[64]. Thus the power savings from sample rate reduction are greater than the power
consumption increase due to data word width growth.

Figure 13-67 Multistage Mth-order nonrecursive CIC structure.

Happily, further improvements are possible with each stage of this nonrecursive structure[63]. For
example, assume we desire an M = 5th-order decimating CIC for Stage 1 in Figure 13-67. In that
case, the stage’s transfer function is

(13-121)

The second step in Eq. (13-121), known as polyphase decomposition[65–69], enables a polyphase
implementation having two parallel paths as shown in Figure 13-68. The initial delay element and the
dual decimation-by-two operations are implemented by routing the odd-indexed input samples to FA

′(z), and the even-indexed samples to FB′(z). Because we implement decimation by two before the
filtering, the new polyphase components are FA′(z) = 1 + 10z−1 + 5z−2, and FB′(z) = 5 + 10z−1 + z−2

implemented at half the data rate into the stage. (Reducing data rates as early as possible is a key



design goal in the implementation of CIC decimation filters.)
Figure 13-68 Polyphase structure of a single nonrecursive 5th-order CIC stage.

The FA′(z) and FB′(z) polyphase components are implemented in a tapped-delay line fashion and,
fortunately, further simplifications are possible. Let’s consider the FA′(z) polyphase filter component,
in a tapped-delay line configuration, shown in Figure 13-69(a). The transposed version of this filter
is presented in Figure 13-69(b) with its flipped coefficient sequence. The adder in Figure 13-69(a)
must perform two additions per input data sample, while in the transposed structure no adder need
perform more than one add per data sample. Thus the transposed structure can operate at a higher
speed.

Figure 13-69 Filter component FA′(z): (a) delay line structure; (b) transposed structure; (c)
simplified multiplication; (d) substructure sharing.

The next improvement uses simplified multiplication, as shown in Figure 13-69(c), by means of
arithmetic shifts and adds. Thus a factor of five is implemented as 22 + 1, eliminating all
multiplications. Finally, because of the transposed structure, we can use the technique of substructure
sharing in Figure 13-69(d) to reduce the hardware component count. Pretty slick! By the way, these
nonrecursive filters are still called cascaded integrator-comb filters, even though they have no
integrators. Go figure.
Table 13-7 is provided to help the reader avoid computing the polynomial equivalent of several Mth-
order nonrecursive stages, as was performed in Eq. (13-121).

Table 13-7 Expansions of (1 + z−1)M



13.24.2 Nonrecursive Prime-Factor-R CIC Filters
The nonrecursive CIC decimation filters described above have the restriction that the R decimation
factor must be an integer power of two. That constraint is loosened due to a clever scheme of
factoring R into a product of prime numbers[70]. This multiple prime-factor-R technique is based on
the process of factoring integer R into the form R = 2p3q5r7s11t ..., where 2, 3, 5, 7, 11 are the prime
numbers. (This process is called prime factorization, or prime decomposition, and has been of
interest since the days of Euclid.) Then the appropriate number of CIC subfilters are cascaded as
shown in Figure 13-70(a). The fortunate condition is that those Mth-order CIC filters are described
by

(13-122)

Figure 13-70 Multiple prime-factor nonrecursive CIC example: (a) cascaded-stage structure; (b)
2nd-order, R = 90, nonrecursive CIC example.

and so on, enabling nonrecursive implementations.



Due to space constraints, the elegant and arduous derivation of this technique is not given here; but
this process can be illustrated with an example. Assume we desire a 2nd-order (M = 2) CIC filter
with a decimation factor of R = 90. That decimation rate is factored as 90 = (2)(3)(3)(5), so p = 1, q
= 2, and r = 1. Our composite CIC filter is implemented as H2(z)H3(z)H3(z)H5(z) shown in Figure 13-
70(b).
At first glance the many additions of the Figure 13-70(b) CIC filter appear to aggravate the power
consumption of such a filter, but the reduced sample rates significantly reduce power
requirements[70]. If one addition in Section 1 of Figure 13-70(b) consumes P units of power, then
Section 1 consumes 2P units of power, and each addition in the first portion of Section 2 consumes
P/2 units of power. Each addition in the second portion of Section 2 consumes P/6 of units power,
while each addition in Section 3 consumes P/18 units of power.
We have flexibility here because the subfilters in each section of Figure 13-70(b) can be implemented
recursively or nonrecursively, as indicated in Eq. (13-122). In nonrecursive implementations the
polyphase decomposition, transposed structures, simplified multiplication, and substructure sharing
schemes can be applied. CIC filter design certainly has come a long way since its introduction in the
early 1980s.

13.25 Smoothing Impulsive Noise
In practice we may be required to make precise measurements in the presence of high noise or
interference. Without some sort of analog signal conditioning, or digital signal processing, it can be
difficult to obtain stable and repeatable measurements. This impulsive-noise smoothing trick,
originally developed to detect microampere changes in milliampere signals, describes a smoothing
algorithm that improves the stability of precision measurements in the presence of impulsive
noise[71].
Practical noise-reduction methods often involve multiple-sample averaging (block averaging) of a
sequence of measured values, x(n), to compute a sequence of N-sample arithmetic means, M(q). As
such, the block-averaged sequence M(q) is defined by

(13-123)

where the time index of the averaging process is q = 0, 1, 2, 3, etc. When N = 10, for example, for the
first block of data (q = 0), time samples x(0) through x(9) are averaged to compute M(0). For the
second block of data (q = 1), time samples x(10) through x(19) are averaged to compute M(1), and so
on[72].
The following impulsive-noise smoothing algorithm processes a block of time-domain samples,
obtained through periodic sampling, and the number of samples, N, may be varied according to
individual needs and processing resources. The processing of a single block of N time samples
proceeds as follows: Collect N+2 samples of x(n), discard the maximum (most positive) and
minimum (most negative) samples to obtain an N-sample block of data, and compute the arithmetic
mean, M(q), of the N samples. Each sample in the block is then compared to the mean. The direction
of each sample relative to the mean (greater than, or less than) is accumulated, as well as the
cumulative magnitude of the deviation of the samples in one direction (which, by definition of the



mean, equals that of the other direction). This data is used to compute a correction term that is added
to the mean according to the following formula,

(13-124)

where A(q) is the corrected mean, M(q) is the arithmetic mean (average) from Eq. (13-123), Pos is
the number of samples greater than M(q), Neg is the number of samples less than M(q), and Dtotal is
the sum of deviations from the mean (absolute values and one direction only). Dtotal, then, is the sum
of the differences between the Pos samples and M(q).
For an example, consider a system acquiring ten measured samples of 10, 10, 11, 9, 10, 10, 13, 10,
10, and 10. The mean is M = 10.3, the total number of samples positive is Pos = 2, and the total
number of samples negative is Neg = 8 (so Pos−Neg = −6). The total deviation in either direction from
the mean is 3.4 (using the eight samples less than the mean, (10.3−10) times 7 plus (10.3−9); or using
the two samples greater than the mean, (13−10.3) plus (11−10.3)). With Dtotal = 3.4, Eq. (13-124)
yields an improved result of A = 10.096.
The smoothing algorithm’s performance, relative to traditional block averaging, can be illustrated by
example. Figure 13-71(a) shows a measured 300-sample x(n) signal sequence comprising a step
signal of amplitude one contaminated with random noise (with a variance of 0.1) and two large
impulsive-noise spike samples.
Figure 13-71 Noise smoothing for N = 10: (a) input x(n) signal; (b) block average output (white) and

impulsive-noise smoothing algorithm output (solid).

A few meaningful issues regarding this noise smoothing process are:
• The block size (N) used in the smoothing algorithm can be any integer, but for real-time fixed
binary-point implementations it’s beneficial to set N equal to an integer power of two. In that case
the compute-intensive division operations in Eqs. (13-123) and (13-124) can be accomplished by
binary arithmetic right shifts to reduce the computational workload.

• If there’s a possibility that more than two large noise spikes are contained in a block of input
samples, then we collect more than N+2 samples of x(n) and discard the appropriate number of
maximum and minimum samples to eliminate the large impulsive noise samples.

• We could forgo the Eq. (13-124) processing and merely perform Eq. (13-123) to compute the
mean M(q). In that case, for a given N, the standard deviation of M(q) would be roughly 15 to 20



percent greater than A(q).
As pointed out by M. Givens, impulsive noise can also be reduced by a class of filters known as
median filters[73]. Median filters, not covered in this text, are typically used in noise reduction of
two-dimensional signals (images). However, median filters can also be implemented to process one-
dimensional signals, such as our x(n) signal here, and should be considered in any impulsive-noise
reduction application.

13.26 Efficient Polynomial Evaluation
On the off chance that you didn’t know, there are two popular tricks used to speed up polynomial
evaluations (computations), known as Horner’s Rule and Estrin’s Method. We illustrate those two
techniques below.

13.26.1 Floating-Point Horner’s Rule
Horner’s Rule uses nested operations to reduce the number of multiply operations needed to compute
polynomials. An example of a polynomial computation is, for example, using the following
expression to compute the arctangent of x:

(13-125)

To see how the computational workload of polynomial evaluations can be reduced, consider the
following kth-order polynomial:

(13-126)

It can be rewritten as
(13-127)

where the “H” subscript means Horner. Using this method to compute polynomials
• reduces the number of necessary multiply operations, and
• is straightforward to implement using programmable DSP chips with their multiply and
accumulate (MAC) architectures.

For example, consider the 5th-order polynomial
(13-128)

Evaluated in the standard way, Eq. (13-128) would require nine multiplies and five additions,
whereas the Horner version

(13-128′)

requires only five multiplies and five adds when the computations begin with the innermost multiply
and add operations (c5x + c4).

Here are a few examples of polynomials in the Horner format:



(13-129)

(13-130)

(13-131)

By the way, the multiplications and additions cannot be performed in parallel. Because Horner’s Rule
is inherently serial, we need the result of the last multiplication before we can start the next addition,
and that addition result is needed before the follow-on multiplication.
Horner’s Rule is another of those handy computer techniques we use whose origins are very old.
Chinese mathematicians described it in the 1200s. European mathematicians (including William
Horner) rediscovered and publicized it in the early 1800s. However, it seems Sir Isaac Newton also
invented and used it in the 1600s.

13.26.2 Horner’s Rule in Binary Shift Multiplication/Division
The Horner’s Rule method of nested multiplications has special significance for us when we evaluate
polynomials using fixed-point number formats. Using Horner’s Rule enables us to minimize the
truncation quantization error when we use binary right shifts to implement fractional multiplications.
For example, if we are using fractional fixed-point numbers in the 1.15 format, as described in
Section 12.1.6, and we want to multiply an x(n) sample by 0.3125, we can perform that multiplication
as

(13-132)

Those scaling factors on the right side of Eq. (13-132) can be implemented using binary right shifts by
two and four bits. The larger the right shifts, however, the greater the truncation quantization errors in
this type of fractional multiplication. Using Horner’s Rule, we can implement Eq. (13-132) as

(13-132′)

where the maximum binary right shift is by two bits, reducing the resultant truncation quantization
error.

13.26.3 Estrin’s Method
If your computing hardware is able to perform multiple parallel (simultaneous) multiply and
accumulate (MAC) operations, we can increase the computational speed of Horner’s Rule by using
parallel processing in a technique called Estrin’s Method.
Here’s how Estrin’s Method works: Various kth-order polynomials, such as that in Eq. (13-126), can
be evaluated using



The above expressions look complicated, but they’re really not. The terms inside parentheses,
brackets, and curly brackets are nested sub-expressions of the form axq + b—precisely what we need
for MAC operations. For example, the sub-expressions within parentheses can be computed
simultaneously with a DSP processor’s parallel MAC operations.
To illustrate Estrin’s Method, if your processing hardware can perform four simultaneous MAC
operations, and assuming value x2 has been previously computed, we can evaluate polynomial f7(x) in
the following three steps:

1. U = (c7x +c6), V = (c5x +c4), W = (c3x +c2), and X = (c1x +c0)

2. Y = (Ux2 +V), Z = (Wx2 +X), x4 = (x2x2 +0)

3. f7(x) = (Yx4 +Z)

The four computations in Step 1 are performed simultaneously. Likewise, the three computations in
Step 2 are performed simultaneously. The final Step 3 is a single MAC operation.
Yes, Estrin’s Method requires multiple processing steps, but this method is able to avoid much of the
inherent (slow) serial processing dictated by Horner’s Rule. The bottom line here is that while
Estrin’s Method does not reduce the computational workload (number of multiplies and additions) of
Horner’s Rule, it does increase the computational speed of polynomial evaluations by taking
advantage of modern-day parallel processing hardware architectures.

13.27 Designing Very High-Order FIR Filters
There are linear-phase filtering applications wherein we’re interested in designing very high-
performance (very narrow passband widths, and/or very high attenuation) nonrecursive FIR filters.
Consider the possibility that you’ve used Eq. (7-34), or some other algorithm, to determine that you
need to implement a 2000-tap linear-phase FIR filter. Then when you try to design such a filter using
your trusty Parks-McClellan Exchange-based (Remez) filter design software, you obtain unusable
design results. It happens that some software incarnations of the Parks-McClellan Exchange algorithm
have convergence problems (inaccurate results) when the number of filter taps, or filter order,
exceeds 400 to 500. There’s a slick way around this high-order FIR filter design problem using a
frequency-domain zero-stuffing technique.†
† I thank my DSP pal Eric Jacobsen, Minister of Algorithms at Abineau Communications, for publicizing this technique.

If our FIR filter design software cannot generate FIR coefficient sets whose lengths are in the
thousands, then we can design a shorter-length set of coefficients and interpolate those coefficients
(time-domain impulse response) to whatever length we desire. Rather than use time-domain
interpolation schemes and account for their inaccuracies, we can simplify the process by performing



time-domain interpolation by means of frequency-domain zero stuffing.
An example of the process is as follows: Assume that we have a signal sampled at a rate of fs = 1000
Hz. We want a lowpass filter whose cutoff frequency is 20 Hz with 60 dB of stopband attenuation.
Compounding the problem are the requirements for linear phase and removal of any DC (zero Hz)
component from the signal. (Those last two requirements preclude using the DC-removal schemes in
Section 13.23.) First, we design a prototype nonrecursive FIR filter having, say, N = 168 coefficients
whose desired frequency response magnitude is shown in Figure 13-72(a); its hp(k) coefficients are
depicted in Figure 13-72(b). Next, we compute a 168-point DFT of the coefficients to obtain the
frequency-domain samples Hp(m) whose magnitudes are shown in Figure 13-72(c).

Figure 13-72 Prototype FIR filter: (a) magnitude response; (b) hp(k) coefficients; (c) |Hp(m)|
magnitudes of the 168-point DFT of hp(k).

Under the assumption that our final desired filter requires roughly 1600 taps, we’ll interpolate the
hp(k) prototype impulse response by a factor of M = 10. We perform the interpolation by inserting (M
−1)N zeros in the center of the Hp(m) frequency-domain samples, yielding a 1680-point H(m)
frequency-domain sequence whose magnitudes are shown in Figure 13-73(a). Finally, we perform a
1680-point inverse DFT on H(m) to obtain the interpolated h(k) impulse response (coefficients),
shown in Figure 13-73(b), for our desired filter. (The ten-fold compression of the Hp(m) passband
samples results in a ten-fold expansion of the hp(k) impulse response samples.) The frequency
magnitude response of our final very high-order FIR filter, over the frequency range of −30 to 30 Hz,
is provided in Figure 13-73(c).

Figure 13-73 Desired FIR filter: (a) magnitude of zero-stuffed Hp(m); (b) interpolated h(k)
coefficients; (c) magnitude of desired frequency response.



With this process, the prototype filter’s hp(k) coefficients are preserved within the interpolated
filter’s coefficients if the Hp(N/2) sample (fs/2) is zero. That condition ensures that H(m) exhibits
conjugate symmetry and forces the h(k) coefficients to be real-only.
The design steps for this high-order filter design scheme are:

• With the desired filter requiring MN taps, set the number of prototype filter coefficients, N, to an
integer value small enough so your FIR filter design software provides usable results. The integer
interpolation factor M equals the number of desired taps divided by N.

• Design the N-tap prototype FIR filter accounting for the M-fold frequency compression in the final
filter. (That is, cutoff frequencies for the prototype filter are M times the desired final cutoff
frequencies.)

• Perform an N-point DFT on the prototype filter’s hp(k) coefficients to obtain Hp(m).

• Insert M−1 zero-valued samples just before the Hp(N/2) sample of Hp(m) to obtain the new MN-
point H(m) frequency response.

• Compute the MN-point inverse DFT of H(m), yielding an MN-length interpolated h(k) coefficient
set. (Due to computational errors, discard the imaginary part of h(k), making it real-only.)

• Multiply h(k) by M to compensate for the 1/M amplitude loss induced by interpolation.
• Test the h(k) coefficient set to determine its actual frequency response using standard filter
analysis methods. (One method: append thousands of zeros to h(k) and perform a very large FFT
on the expanded sequence.)

An example application of this filter design is when you’re building a high-performance lowpass
polyphase filter, as discussed in Chapter 10. (The structures of the high-performance interpolated
FIR and frequency sampling lowpass filters don’t permit their decomposition into polyphase
subfilters for such an application.)



13.28 Time-Domain Interpolation Using the FFT
The thoughtful reader may have looked at the above Section 13.27 FIR filter impulse response
interpolation scheme and wondered, “If we can interpolate time-domain impulse responses, we
should be able to interpolate time-domain signals using the same frequency-domain zero-stuffing
method.” To quote Rocky Balboa, “This is very true.” In fact, the Section 13.27 interpolation-by-M
process applied to time signals is sometimes called exact interpolation because its performance is
equivalent to using an ideal, infinite-stopband attenuation, time-domain interpolation filter. Let’s see
how this interpolation scheme works.
To establish our notation, let’s say we compute the FFT of an N-point x(n) time sequence to produce
its X(m) frequency-domain samples. Next we stuff (M-1)N zeros in the middle of X(m) to yield the
MN-length Xint(m) frequency samples, where MN is an integer power of two. Then we perform an
MN-point inverse FFT on Xint(m) to obtain the interpolated-by-M xint(n) times samples. Using this
frequency-domain zero stuffing to implement time-domain signal interpolation involves two important
issues upon which we now focus.

13.28.1 Computing Interpolated Real Signals
The first issue: to ensure the interpolated xint(n) time sequence is real-only, conjugate symmetry must
be maintained in the zero-stuffed Xint(m) frequency samples. If the X(m) sequence has a nonzero
sample at Xint(N/2), the fs/2 frequency component, we must use the following steps in computing
Xint(m) to guarantee conjugate symmetry:

• Perform an N-point FFT on an N-point x(n) time sequence, yielding N frequency samples, X(m).
• Create an MN-point spectral sequence Xint(m) initially set to all zeros.

• Assign Xint(m) = X(m), for 0 ≤ m ≤ (N/2)−1.

• Assign both Xint(N/2) and Xint(MN−N/2) equal to X(N/2)/2. (This step, to maintain conjugate
symmetry and improve interpolation accuracy, is not so well known[74].)

• Assign Xint(m) = X(q), where MN−(N/2)+1 ≤ m ≤ MN−1, and (N/2)+1 ≤ q ≤ N−1.

• Compute the real part of the MN-point inverse FFT of Xint(m), yielding the desired MN-length
interpolated xint(n) sequence.

• Finally, if desired, multiply xint(n) by M to compensate for the 1/M amplitude loss induced by
interpolation.

Whew! Our mathematical notation makes this signal interpolation scheme look complicated, but it’s
really not so bad. Table 13-8 shows the frequency-domain Xint(m) sample assignments, where 0 ≤ m ≤
15, to interpolate an N = 8-point x(n) sequence by a factor of M = 2.

Table 13-8 Xint(m) Assignments for Interpolation by Two



One of the nice properties of the above algorithm is that every Mth xint(n) sample coincides with the
original x(n) samples. In practice, due to our finite-precision computing, the imaginary parts of our
final xint(n) may have small nonzero values. As such, we take xint(n) to be the real part of the inverse
FFT of Xint(m).
Here’s the second issue regarding time-domain real signal interpolation. This technique of
interpolation using FFT zero stuffing only provides acceptable results when the original x(n) time
sequence has a spectrum having negligible spectral energy in the vicinity of ±fs/2, as shown in Figure
13-74 for lowpass and bandpass signals. By negligible we mean spectral magnitudes that are, say,
below a discrete signal’s quantization noise background spectral level.

Figure 13-74 Spectral restrictions for interpolation using the FFT: (a) lowpass signal case; (b)
bandpass signal case.

An example of violating the above spectral restriction is when x(n) is a sinusoidal sequence
containing a noninteger number of cycles. That signal’s positive-frequency spectrum will have
nonzero spectral energy extending from zero Hz to fs/2 Hz caused by spectral leakage. Trying to
interpolate such an x(n) using this FFT zero-stuffing scheme will yield an interpolated time sequence
with unacceptably high amplitude errors at the beginning and end of the interpolated sequence.
With the advent of fast hardware DSP chips and pipelined FFT techniques, the above time-domain
interpolation algorithm may be viable for a number of applications, such as computing selectable
sample rate time sequences of a test signal that has a fixed spectral envelope shape; providing
interpolation, by selectable factors, of signals that were filtered in the frequency domain using the fast
convolution method (Section 13.10); or digital image resampling. One scenario to consider is using
the efficient 2N-Point Real FFT technique, described in Section 13.5.2, to compute the forward FFT
of the real-valued x(n). Of course, the prudent engineer would conduct a literature search to see what
algorithms are available for efficiently performing inverse FFTs when many of the frequency-domain
samples are zeros.

13.28.2 Computing Interpolated Analytic Signals



We can use the frequency-domain zero-stuffing scheme to generate an interpolated-by-M analytic
(complex-valued) time signal based upon the real N-point time sequence x(n), if N is even[75]. The
process is as follows:

• Perform an N-point FFT on an N-point real xr(n) time sequence, yielding N frequency samples,
Xr(m).

• Create an MN-point spectral sequence Xint(m) initially set to all zeros, where MN is an integer
power of two.

• Assign Xint(0) = Xr(0), and Xint(N/2) = Xr(N/2).

• Assign Xint(m) = 2Xr(m), for 1 ≤ m ≤ = (N/2)−1.

• Compute the MN-point inverse FFT of Xint(m), yielding the desired MN-length interpolated
analytic (complex) xc,int(n) sequence.

• Finally, if desired, multiply xc,int(n) by M to compensate for the 1/M amplitude loss induced by
interpolation.

To minimize the interpolation error in the complex xc,int(n) sequence, the original xr(n) sequence must
have negligible spectral energy in the vicinity of ±fs/2, as described earlier for real-valued
interpolation.

13.29 Frequency Translation Using Decimation
In this section we show tricks for implementing multiplierless frequency translation of both real and
complex signals using simple decimation.

13.29.1 Translation of Real Signals Using Decimation
We can frequency translate a real bandpass signal toward zero Hz, converting it to a lowpass signal,
without the need for mixing multipliers. We do this by performing decimation by an integer factor D
as shown in Figure 13-75(a). If the bandpass filter provides an output signal of bandwidth B Hz,
located as shown in Figures 13-75(b) and 13-75(d) where k is a positive integer, decimation by D
will yield lowpass signals whose spectra are shown in Figures 13-75(c) and 13-75(e), depending on
whether integer k is odd or even. Take care to notice the inverted spectra in Figure 13-75(e). To
avoid decimated-output aliasing errors, we must satisfy the Nyquist criterion and ensure that xBP(n)’s
bandwidth B is not greater than fs/(2D).

Figure 13-75 Real and complex bandpass signal translation using decimation by D.



13.29.2 Translation of Complex Signals Using Decimation
It’s possible to frequency translate a complex bandpass signal, without the need for mixing
multipliers, so that a spectral replication is centered at zero Hz. The process we’re describing here is
called complex down-conversion. The left side of Figure 13-75(f) shows the spectrum of a complex
baseband signal whose |XCB(m)| spectral magnitude contains only positive-frequency spectral
components.
If we individually decimate the real and imaginary parts of the complex time sequence xCB(n), whose
spectrum is XCB(m), by D, the resulting complex sequence will have a spectral image centered
exactly at zero Hz as shown by |X′CB(m)| in Figure 13-75(f). The key stipulation here, as you may
have guessed, is that the original pre-decimated |XCB(m)| spectral energy must be centered at an
integer multiple of fs/D.

13.30 Automatic Gain Control (AGC)



Since the early days of vacuum tube radios, circuits were needed to automatically adjust a receiver’s
gain, as an input signal varied in amplitude, to maintain a (relatively) constant output signal level.
These feedback mechanisms, called automatic gain control (AGC) circuits, are an important
component of modern analog and digital communications receivers. Figure 13-76(a) illustrates a
simple digital AGC process[76,77]. Its operation is straightforward: The output signal power is
sampled and compared to a reference level R (the desired output amplitude rms level). If the output
signal level is too high (low), a negative (positive) signal is fed back, reducing (increasing) the gain.
The control parameter α regulates the amplitude of the feedback signal and is used to control the
AGC’s time constant (how rapidly gain changes take effect).

Figure 13-76 AGC process: (a) linear AGC circuit; (b) example input x(n) with amplitude
fluctuations; (c) y(n) output for α = 0.01 and R = 1.

Given an input signal x(n) in Figure 13-76(b) whose amplitude envelope is fluctuating, the AGC
structure provides the relatively constant amplitude y(n) output shown in Figure 13-76(c).
We called Figure 13-76(a) a “simple AGC process,” but AGC is not all that simple. The process is a
nonlinear, time-varying, signal-dependent feedback system. As such, it’s highly resistant to normal
time-domain or z-domain analysis. This is why AGC analysis is empirical rather than mathematical
and explains why there’s so little discussion of AGC in the DSP literature.
Depending on the nature of x(n), the feedback signal may fluctuate rapidly and the feedback loop will
attempt to adjust the system gain too often. This will cause a mild AM modulation effect, inducing
low-level harmonics in the y(n) output. That problem can be minimized by inserting a simple lowpass
filter in the feedback loop just before, or just after, the R adder. But such filtering does not remedy the
circuit’s main drawback. The time constant (attack time) of this AGC scheme is input signal level
dependent and is different depending on whether the x(n) is increasing or decreasing. These



properties drastically reduce our desired control over the system’s time constant. To solve this
problem, we follow the lead of venerable radio AGC designs and enter the logarithmic domain.
We can obtain complete control of the AGC’s time constant, and increase our AGC’s dynamic range,
by using logarithms as shown in Figure 13-77(a). As is typical in practice, this log AGC process has
a lowpass filter (LPF) to eliminate too-rapid gain changes[78]. That filter can be a simple moving
average filter, a cascaded integrator-comb (CIC) filter, or a more traditional lowpass filter having a
sin(x)/x impulse response.

Figure 13-77 AGC process: (a) logarithmic AGC circuit; (b) y(n) output for α = 0.01 and R = 1.

For the logarithmic AGC scheme, the feedback loop’s time constant is dependent solely on α and
independent of the input signal level, as can be seen in Figure 13-77(b) when the x(n) input is that in
Figure 13-76(b). The Log and Antilog operations can be implemented as log2(x) and 2x, respectively.

13.31 Approximate Envelope Detection
In this section, we present a crude (but simple to implement) complex signal envelope detection
scheme. By “envelope detection” we mean estimating the instantaneous magnitude of a complex
signal xc(n). The process is straightforward: we sum the absolute values of a complex signal’s real
and imaginary parts and apply that sum to a simple 1st-order lowpass IIR filter to obtain an envelope
signal E(n) as shown in Figure 13-78(a). The filter’s feedback coefficient α is in the range of 0 to 1.
(That lowpass filter is our exponential averager discussed in Section 11.6, which some DSP folks
call a leaky integrator.) The E(n) sequence is proportional to the desired instantaneous magnitude of
xc(n), or

(13-133)

Figure 13-78 Envelope detection: (a) block diagram; (b) |xr(n)|+|xi(n)| adder output, and E(n) for α =
0.4; (c) E(n) for α = 0.2 and α = 0.05.



To gauge the envelope detector’s performance, consider a sampled version of an amplitude-
modulated sinusoid such as the xr(n) in Figure 9-7(a) from which a sampled analytic (complex) xc(n)
can be generated. If xc(n) is applied to our envelope detection process, the processing results are
shown in Figures 13-78(b) and 13-78(c), where the solid curves represent E(n) and the dashed
curves are the true magnitude of xc(n). Notice how the amount of smoothing of the E(n) fluctuations
depends on the value of α.
If the scaling coefficient α/2 can take the form

(13-133′)

where K is a positive integer, then we can eliminate the multipliers in Figure 13-78(a). If we satisfy
Eq. (13-133′), the multiply by α/2 can be replaced by two binary right shifts and a subtract operation,
and the multiply by (1−α) can be replaced by a single binary right-shift operation. This situation gives
us a multiplierless envelope detector.
Sequence xr(n) must be used to generate a complex analytic xc(n) sequence (using one of the methods
discussed in Sections 9.4 and 9.5) upon which this envelope detector scheme can be applied. The
advantage of this envelope detection process is that, of course, no squaring or square root
computations in Eq. (13-133), nor the |xr(n)| and |xi(n)| comparisons in the vector magnitude
approximations in Section 13.2, need be performed.
Whether this envelope approximation technique yields sufficiently accurate results is for the user to
decide. Its accuracy may be below the requirements of most AM (amplitude modulation) detection
requirements, but the process may well be useful for estimating signal magnitude in automatic gain
control (AGC) or energy detection applications.

13.32 A Quadrature Oscillator



Here we present a well-behaved digital quadrature oscillator, whose output is yi(n) + jyq(n), having
the structure shown in Figure 13-79(a). If you’re new to digital oscillators, that structure looks a little
complicated but it’s really not so bad. If you look carefully, you see the computations are

Figure 13-79 Quadrature oscillators: (a) standard structure; (b) structure with AGC.

(13-134)

and
(13-134′)

Those computations are merely the rectangular form of multiplying the previous complex output by a
complex exponential ejθ as

(13-135)

So the theory of operation is simple. Each new complex output sample is the previous output sample
rotated by θ radians, where θ is 2πft/fs with ft and fs being the oscillator tuning frequency and the
sample rate, respectively, in Hz.
To start the oscillator, we set the initial conditions of yi(n−1) = 1 and yq(n−1) = 0 and repeatedly
compute new outputs, as time index n advances, using Eq. (13-134). This oscillator is called a
coupled quadrature oscillator because both of its previous outputs are used to compute each new in-
phase and each new quadrature output. It’s a useful oscillator because the full range of tuning
frequencies is available (from nearly zero Hz up to roughly fs/2), and its outputs are equal in
amplitude, unlike some other quadrature oscillator structures[79]. The tough part, however, is making
this oscillator stable in fixed-point arithmetic implementations.
Depending on the binary word widths, and the value θ, the output amplitudes can either grow or
decay as time increases because it’s not possible to represent ejθ having a magnitude of exactly one,
over the full range of θ, using fixed-point number formats. The solution to amplitude variations is to
compute yi′(n−1) and yq′(n−1) and multiply those samples by an instantaneous gain factor G(n) as
shown in Figure 13-79(b). The trick here is how to compute the gain samples G(n).



We can use a linear automatic gain control (AGC) method, described in Section 13.30, as shown in
Figure 13-80(a) where α is a small value, say, α = 0.01. The value R is the desired rms value of the
oscillator outputs. This AGC method greatly enhances the stability of our oscillator. However, there’s
a computationally simpler AGC scheme for our oscillator that can be developed using the Taylor
series approximation we learned in school. Here’s how.

Figure 13-80 AGC schemes: (a) linear AGC; (b) simplified AGC.

Using an approach similar to reference [80], we can define the desired gain as
(13-136)

This is the desired output signal magnitude Mdes over the actual output magnitude Mact. We can also
represent the gain using power as

(13-137)

where the constant Pdes is the desired output signal power and Pact is the actual output power. The
right side of Eq. (13-137) shows Pact replaced by the desired power Pdes plus an error component E,
and that’s the ratio we’ll compute. To avoid square root computations and because the error E will be
small, we’ll approximate that ratio with a two-term Taylor series expansion about E = 0 using

(13-138)

Computing the Taylor series’ coefficients to be a0 = 1 and a1 = −1/2Pdes, and recalling that E = Pact
−Pdes, we estimate the instantaneous gain as

(13-139)

If we let the quadrature output peak amplitudes equal , Pdes equals 1/2 and we eliminate the
division in Eq. (13-139), obtaining

(13-140)

The simplified structure of the G(n) computation is shown in Figure 13-80(b).
As for practical issues, to avoid gain values greater than one (for those fixed-point fractional number
systems that don’t allow numbers ≥1), we use the clever recommendation from reference [79] of



multiplying by G(n)/2 and doubling the products in Figure 13-79(b). Reference [80] recommends
using rounding, instead of truncation, for all intermediate computations to improve output spectral
purity. Rounding also provides a slight improvement in tuning frequency control. Because this
oscillator is guaranteed stable, and can be dynamically tuned, it’s definitely worth considering for
real-valued as well as quadrature oscillator applications[79].

13.33 Specialized Exponential Averaging
In Chapter 11 we discussed the behavior and utility of using an exponential averaging lowpass filter,
also called a leaky integrator, to reduce noise fluctuations that contaminate constant-amplitude signal
measurements. In this section we present three specialized exponential averaging techniques in the
form of

• single-multiply averaging,
• multiplier-free averaging, and
• dual-mode averaging.

13.33.1 Single-Multiply Exponential Averaging
This DSP trick shows how to reduce the computational workload of the standard exponential
averager[81]. An exponential averager’s difference equation is

(13-141)

where α is a constant called the averager’s weighting factor, in the range 0 < α < 1. The process
requires two multiplies per y(n) output sample as shown in Figure 13-81(a).

Figure 13-81 Exponential averaging: (a) standard network; (b) single-multiply network; (c)
multiplierless network; (d) possible values for α; (e) dual-mode averaging.



We can rearrange Eq. (13-141) to the form
(13-141′)

which eliminates one of the averager’s multiplies, at the expense of an additional adder, giving us a
single-multiply exponential averager shown in Figure 13-81(b). This neat single-multiply exponential
averager maintains the DC (zero Hz) gain of unity exhibited by the traditional two-multiply
exponential averager in Figure 13-81(a).

13.33.2 Multiplier-Free Exponential Averaging
It is possible to eliminate the multiplier in Figure 13-81(b) if we place restrictions on the permissible
values of α. For example, if α = 0.125 = 1/8, then the output of the multiplier is merely the
multiplier’s input sample shifted right by three bits.
On the other hand, if α takes the form

(13-142)

where L = 0, 1, 2, 3, ... , and M = 1, 2, 3, ... , we can replace the multiplication by α in Figure 13-
81(b) with two binary right shifts and a subtract operation as shown in Figure 13-81(c). In that figure
the “BRS,L” block means an arithmetic, or hardwired, Binary Right Shift by L bits.
For example, if L = 2 and M = 5, then from Eq. (13-142), α = 0.2188. The sequence w(n) =



0.2188u(n) = (1/4 − 1/32)u(n) is computed by subtracting u(n) shifted right by M = 5 bits from u(n)
shifted right by L = 2 bits.
The tick marks in Figure 13-81(d) show the possible values for the weighting factor α over the range
of 0 ″ L ″ 5, where for each L, M is in the range L+1 ″ M ″ 6 in Eq. (13-142). That figure tells us that
we have a reasonable selection of α values for our noise-reduction filtering applications.
The point is, for fixed-point implementation of exponential averaging, check to see if your desired α
weighting factor can be represented by the difference of various reciprocals of integer powers of two.
If so, then binary word shifting enables us to implement a multiplierless exponential averager.

13.33.3 Dual-Mode Averaging
Here’s a clever exponential averaging scheme that blends both the quick time response of a moving
averager and the noise-reduction control of an exponential averager.† The structure of this dual-mode
averager is depicted in Figure 13-81(e). The averager operates as follows: The switch remains open
for K input samples after which the y(n) output is equal to the K-point average of the x(n) input. Just
prior to the arrival of the K+1 input sample the switch closes, converting the moving average filter to
an exponential averager, giving us control over the filter’s noise-reduction properties as described in
Section 11.6.
† We thank DSP guru Fred Harris for recommending this dual-mode averager.

Of course, K does not have to be an integer. In this case we can still implement dual-mode averaging
by closing the switch just prior to the arrival of the x( ) input sample, where  means the integer
part of K. After the Kth input sample has arrived, the averager’s gain at zero Hz (DC gain) is unity. As
discussed in the previous section, if the weighting factor 1/K can be represented by the difference of
various reciprocals of integer powers of two, then we can implement a multiplierless dual-mode
noise-reduction filter.



13.34 Filtering Narrowband Noise Using Filter Nulls
Here we present two filter design tricks that take advantage of the frequency-domain magnitude nulls
of simple FIR filters. These schemes are particularly useful when used in AM and FM demodulation
systems.
The first example uses a simple 3-tap nonrecursive FIR filter. Such a filter can be both
computationally efficient, and useful, for narrowband-noise reduction. Here’s how. Think about the
x(n) time-domain signal, contaminated with high-frequency noise, shown in Figure 13-82(a) with its
spectrum provided in Figure 13-82(b). The sample rate of the signal is 10 kHz. Let’s assume we want
to recover the low-frequency signal of interest (centered at zero Hz) without inducing phase
distortion, and we need to attenuate the narrowband high-frequency noise, centered at 4.1 kHz, by at
least 50 dB. Our solution, of course, is to pass our noisy signal through a linear-phase lowpass FIR
filter whose frequency magnitude response is indicated as the dashed curve in Figure 13-82(b).

Figure 13-82 A noisy x(n): (a) time signal; (b) its X(f) spectral magnitude.

Seeking the most computationally efficient filter possible, let’s say we’re clever and recall the
special characteristic of a half-band FIR filter in which roughly half its coefficients are zero-valued.
So we could design a 9-tap half-band FIR filter, having only five nonzero-valued coefficients, and
that solution would be acceptable. Here’s where our trick comes in; we decide to use the linear-
phase 3-tap FIR filter shown in Figure 13-83(a) with its single non-unity coefficient h1.

Figure 13-83 A 3-tap FIR filter: (a) filter structure; (b) pole locations; (c) frequency magnitude
response.



If |h1| ≤ 2, the 3-tap FIR filter’s transfer function will have two zeros on the z-plane at angles ±ωn as
shown in Figure 13-83(b). The frequency magnitude response of the filter is shown in Figure 13-
83(c). (Here, the normalized frequency axis value of π corresponds to a continuous-time frequency of
half the sample rate, fs/2.) Our goal, then, is to choose the h1 coefficient such that the filter’s positive-
frequency magnitude null lands right on the 4.1 kHz center frequency of the narrowband noise in
Figure 13-82(b).
Our 3-tap filter design problem is easy because we have an expression for the h1 coefficient as a
function of the desired fn null frequency in Hz. The h1 coefficient value is

(13-143)

With fn = 4.1 kHz and fs = 10 kHz, our h1 coefficient is 1.69. (The derivation of Eq. (13-143) was left
as a homework problem in Chapter 5.) The H(f) frequency magnitude response of the h1 = 1.69 filter
is shown as the dotted curve in Figure 13-84(a). The Y(f) spectrum of the filter’s output is shown in
Figure 13-84(b) where the narrowband noise has been attenuated by roughly 54 dB. (Recall that the
noise magnitudes in the original X(f) spectrum were approximately 12 dB above the signal’s peak
magnitude in Figure 13-82(b).) The filter’s time-domain y(n) output signal, our signal of interest, is
shown in Figure 13-84(c). It’s instructive to compare that output signal to the filter’s x(n) input signal
in Figure 13-82(a).

Figure 13-84 Three-tap filter performance: (a) |H(f)| response; (b) filter output spectrum; (c) filter
time-domain output signal.



So we solved our narrowband noise filtering problem with a linear-phase FIR filter requiring only
two additions and one multiply per filter output sample. Neat, huh?
Our second example of this filter design approach that takes advantage of the frequency-domain
magnitude nulls of simple FIR filters involves the attenuation of multiple narrowband noise spectral
components whose center frequencies are harmonically related in a frequency shift keying (FSK)
demodulation system[82]. Think about a signal of interest centered at 455 kHz as shown in Figure 13-
85(a). That signal, sampled at fs = 10 MHz, is contaminated with unwanted high-amplitude DC (zero
Hz) bias noise and narrowband spectral noise components at multiples of 455 kHz. Removing the DC
bias, whose magnitude is 0 dB in Figure 13-85(a), and extracting the signal of interest from the noise
appears to require some sort of bandpass filter centered at 455 kHz.

Figure 13-85 Harmonic noise example: (a) |X(f)| spectrum; (b) filter output spectrum.



However, the trick is to use a standard FIR comb filter to remove the unwanted DC bias and attenuate
the harmonic noise components. A comb filter is shown in Figure 13-86(a) where the z−N operation is
merely a delay of N samples. The |H(f)| frequency magnitude response of an N = 8, for example, comb
filter is provided in Figure 13-86(b) where fs is the sample rate.
Figure 13-86 Standard N-delay FIR comb filter: (a) filter structure; (b) frequency magnitude response

when N = 8.

For N-delay comb filter design purposes, the following two equations give us the frequency locations
of the magnitude nulls (fnull) and magnitude peaks (fpeak) in the filter’s |H(f)|,

(13-144)

(13-144′)

where  means the integer part of X. These fnull and fpeak expressions are valid for both odd and even
N so long as N is larger than one.
For this noise-reduction problem, we need a comb filter that provides a magnitude null at zero Hz and
a magnitude peak at 455 kHz. Rearranging Eq. (13-144′) to find a candidate value for the comb delay
N for k = 0, we have

(13-145)



so we select N to be 11. The filter’s output spectrum, when N = 11, is shown in Figure 13-85(b).
There we see the dramatic reduction in the unwanted DC bias as well as the narrowband noise
located at 910 kHz. (For reference purposes, we’ve included the N = 11 comb filter’s magnitude
response in Figure 13-85(b).)
So in this example we simplified our overall narrowband noise filtering problem using a linear-phase
FIR comb filter requiring only one addition per filter output sample. In practice the comb filter is
followed by a low-order lowpass filter, whose stopband would begin in the vicinity of 1365 kHz.
That follow-on filter will have a significantly reduced computational workload compared to the case
where the pre-filtering by the simple comb filter was not performed.
For completeness, we must mention here that an alternate comb filter can be built using the network
in Figure 13-87(a) where addition is performed as opposed to the subtraction in Figure 13-86(a).
Figure 13-87 Alternate N-delay FIR comb filter: (a) filter structure; (b) |Halt(f)| frequency magnitude

response when N = 8.

For the alternate comb filter in Figure 13-87(a) the following two equations give us the frequency
locations of the magnitude nulls (fnull,alt) and magnitude peaks (fpeak,alt) in this N-delay comb filter’s
|Halt(f)|,

(13-146)

(13-146′)

where  means the integer part of X. This alternate comb filter gives us a bit of design flexibility
because it passes low-frequency signals due to a frequency magnitude peak at zero Hz (DC).

13.35 Efficient Computation of Signal Variance
In this section we show how to reduce the computational workload, and required data storage, in
computing the unbiased and biased variances of a signal sequence. (Definitions of biased and
unbiased variances can be found in Appendix D.)
We start our discussion with the traditional definition of the unbiased variance of x(n), a sequence of
N samples, written as

(13-147)



where xave is the average of the N-length x(n) sequence. Because N is a constant, we can treat the
divide by N needed to compute xave, and the above divide by (N−1), as multiplies by reciprocals,
allowing us to say that Eq. (13-147) requires 3N−2 addition and N+2 multiply operations. As it turns
out, we can obtain an equivalent expression for Varunbiased that has a reduced number of arithmetic
operations[83]. Here’s how.
First, we square the bracketed term in the summation in Eq. (13-147) and write

(13-148)

Because the center summation in Eq. (13-148) is

we can rewrite Varunbiased as
(13-148′)

Next, we arrive at our desired expression by combining terms and write Varunbiased as
(13-149)

The efficient Eq. (13-149) requires only 2N−1 addition and N+4 multiply operations. So at the
expense of two extra multiplies, we’ve reduced the number of additions needed to compute Varunbiased
by roughly N relative to Eq. (13-147).
There is a second advantage in using Eq. (13-149) instead of Eq. (13-147) in computing the variance
of N incoming x(n) samples. When using Eq. (13-147) to compute Varunbiased, we first compute xave

and must retain, in memory, the N-length x(n) sequence in order to compute the [x(n) − xave]2

sequence. When using Eq. (13-149) to compute Varunbiased, we can simultaneously accumulate (sum)



the N incoming x(n) samples and accumulate the N computed x(n)2 samples without having to keep
past x(n) samples in memory. Thus Eq. (13-149) reduces the amount of data storage needed to
compute Varunbiased.

The traditional definition for the biased variance of N x(n) samples is written as
(13-150)

Using a derivation similar to how we arrived at Eq. (13-149), we can write an efficient expression
for computing a biased variance as

(13-150′)

Equation (13-150′) requires 2N−1 addition and N+2 multiply operations. Here again, we’ve reduced
the number of additions needed to compute Varbiased by roughly N and reduced the necessary data
storage, relative to Eq. (13-150). In the next section we discuss the hardware implementation of
variance computations with a focus on real-time processing.

13.36 Real-time Computation of Signal Averages and Variances
In this section we present techniques for the efficient computation of real-time estimates of signal
average and variance. By “real-time” we mean a continuing sequence of statistical estimates will be
generated, in time, as a continuing sequence of input signal samples is applied to our processing
networks.

13.36.1 Computing Moving Averages and Variances
Figure 13-88(a) shows a 5-point real-time recursive moving averager that we analyzed in Section
11.5. For the reasons discussed in Section 11.5 the recursive moving averager is the most
computationally efficient method for computing moving averages.
Figure 13-88 Real-time recursive N-point moving averager: (a) standard N = 5 implementation; (b)

alternate implementation; (c) general recursive depiction.



Figure 13-88(b) shows an alternate, but equivalent, recursive moving averager where the integrator
now precedes the 1/5 multiplication. In this alternate arrangement the binary register holding the
integrator’s accumulation results must be large enough to accommodate values in the range of five
(number of unit-delay registers) times the true average of the most recent N x(n) input samples.
In Figure 13-88(c) we redraw the alternate recursive moving averager in order to show the network
of a general N-point recursive moving averager. There we use a single z−N delay element symbol to
represent an N-length delay line. In that figure we show a network inside the dashed-line box, which
we’ll use later for other statistical computations, called a recursive running sum (RRS).
Focusing now on the second topic of this section, there is a way to estimate the real-time N-point
moving unbiased variance of a signal, xvar,unbiased(n)[84]. (A definition of unbiased variance is
provided in Appendix D.) To see how, we start with the expression for the unbiased variance of N
time samples, Eq. (13-149) from the previous section, rewritten here as

(13-151)

where xave(n) is the average of the most recent N input x(n) samples. The limits on the summation in



Eq. (13-151) are such that we’re summing a sliding-in-time block of N samples of x(n)2.
The implementation of Eq. (13-151) is shown in Figure 13-89(a) where the process uses two N-point
RRS networks from Figure 13-88(c) to compute the N-point moving unbiased variance xvar,unbiased(n)
and the xave(n) N-point moving average of x(n)[83,85]. Note that the xvar,unbiased(n) and xave(n) outputs
are not valid until the N-stage delay lines are filled with input data.

Figure 13-89 Real-time N-point moving variance networks.

To estimate the real-time N-point moving biased variance of a signal, xvar,biased(n), we compute
(13-152)

using the network shown in Figure 13-89(b).
From a practical standpoint, in fixed-point systems, note that the binary word width of the upper RRS
delay lines, in Figure 13-89, must be twice as wide as the lower RRS delay lines.
The above real-time fixed-length moving average and moving variance networks require data memory
to implement their N-point delay lines. The following section describes techniques for estimating
cumulative averages and variances with reduced data memory requirements.

13.36.2 Computing Exponential Moving Average and Variance
An alternate method to generate estimates of both the real-time moving average and real-time moving
variance of a signal is to use the exponential averager that we discussed in Section 11.6, shown in
Figure 13-90(a). The coefficient α is the exponential averager’s weighting factor that controls the
amount of averaging that takes place at the output of the network.
Figure 13-90 Exponential moving average and exponential moving variance: (a) standard exponential

averaging network; (b) full structure.



To generate our desired exponential moving average and exponential moving variance, we use two
independent exponential averaging (EA) networks as shown in Figure 13-90(b). The two weighting
factors, α1 and α2, are constants in the range of zero to one.
The process in Figure 13-90(b) has several attractive properties. The α1 and α2 coefficients permit
control over the averaging behavior of the process; and the Figure 13-90(b) process requires fewer
computations per output sample, and reduced delay-line element (data memory) requirements,
relative to the networks in Figure 13-89.

13.37 Building Hilbert Transformers from Half-band Filters
This section discusses two techniques for obtaining the coefficients of a Hilbert transformer from the
coefficients of an N-point nonrecursive FIR half-band filter[86,87]. The first scheme is useful for
someone who needs to design a Hilbert transformer when only generic lowpass FIR filter design
software is available. The second scheme is useful for those unfortunate folks who have no FIR filter
design software at hand but have available the coefficients of a half-band filter.

13.37.1 Half-band Filter Frequency Translation
We can design a Hilbert transformer by first designing an N-tap half-band filter using our favorite FIR
filter design software, with the restriction that N+1 is an integer multiple of four. Let’s call the half-
band filter’s coefficients hhb(k), where the coefficients’ index variable k is 0, 1, 2, ..., N−1. Next we
obtain the Hilbert transformer’s hhilb(k) coefficients using

(13-153)

Figure 13-91(a) shows the coefficients of a simple 7-tap half-band filter whose DC gain is unity.
Figure 13-91(b) shows the Hilbert transformer’s hhilb(k) coefficients obtained from Eq. (13-153). The
network using those hhilb(k) coefficients to generate a complex (analytic) xc(n) = xI(n)+jxQ(n)
sequence from an original real-valued xR(n) sequence is shown in Figure 13-91(c). (Notice the z−2

delay blocks comprising two unit-delay elements.)



Figure 13-91 Seven-tap half-band FIR transformation: (a) hhb(k); (b) hhilb(k); (c) complex bandpass
filter structure.

Let’s call the network in Figure 13-91(c) a complex bandpass filter and describe its characteristics a
bit further. Figure 13-92(a) shows the |Hhb(f)| frequency magnitude response of a half-band filter, and
Figure 13-92(b) shows us that the complex bandpass filter’s |Hcbp(f)| frequency magnitude response is
|Hhb(f)| translated up in frequency by fs/4. However, notice that |Hcbp(f)|’s passband gain and ripple, as
well as its stopband ripple, are twice that of |Hhb(f)|. To make the complex bandpass filter’s gain
unity, rather than two, we decrease its coefficients by a factor of two and multiply the xI(n) sequence
in Figure 13-91(c) by 0.5. That 0.5 multiply could, of course, be implemented with an arithmetic right
shift of the xI(n) samples.

Figure 13-92 Frequency magnitude responses: (a) half-band filter; (b) complex bandpass filter.

The nifty part of this complex bandpass filter is as follows: To build a complex nonrecursive FIR
filter having the performance (transition region width, stopband attenuation, etc.) of a real N-tap
lowpass FIR filter, we typically must implement two real N-tap FIR filters having an overall



computational workload of 2(N−1) additions and 2N multiplications per complex output sample, as
well as provide 2N memory locations to store the complex coefficients. The complex bandpass filter
in Figure 13-91(c) reduces those computations and the memory requirement by a factor of two.
Here’s another attribute: because the complex filter’s coefficients are antisymmetrical, we can use the
folded FIR filter scheme described in Section 13.7 to reduce the number of multipliers by another
factor of two!

13.37.2 Half-band Filter Coefficient Modification
This second half-band filter to Hilbert transformer conversion scheme is useful for those
unfortunate folks who have no nonrecursive FIR filter design software at hand but do happen to have
the coefficients of a half-band filter. We can obtain the hhilb(k) coefficients of a Hilbert transformer
with a straightforward modification of the half-band FIR filter’s hhb(k) coefficients. The modification
steps are as follows:

1. Identify the center coefficient of hhb(k); call it hcenter.

2. Make the signs (polarity) of all nonzero coefficients before hcenter negative.

3. Make the signs (polarity) of all nonzero coefficients after hcenter positive.

4. Set the hcenter coefficient equal to zero.

An example of this half-band filter coefficient modification process is shown for an 11-tap FIR half-
band filter’s hhb(k) in Figure 13-93. In order to use the Figure 13-93(b) hhilb(k) coefficients in the
complex bandpass filter in Figure 13-92(c), those hhilb(k) coefficients will need to be multiplied by a
factor of two, or the xI(n) sequence in Figure 13-91(c) must be multiplied by 0.5. The 0.5 multiply
can be implemented with an arithmetic right shift of the x′r(n) samples if desired.

Figure 13-93 Half-band filter coefficient modification: (a) original hhb(k) coefficients; (b) hhilb(k)
coefficients.

13.38 Complex Vector Rotation with Arctangents
It’s often the case in quadrature (I/Q) processing systems that we want to compute the angle of a
complex time-domain sample. That angle computation for a complex sample C = I + jQ is, of course,

(13-154)



As it turns out, the arctangent computation in Eq. (13-154) can be performed in many ways—
anywhere from slow but accurate computationally intensive high-order polynomial evaluation, to
high-speed crude-accuracy table look-up methods. However, regardless of the method used, we can
improve the accuracy and speed of an arctangent computation if we limit the angular range over
which it is performed. And that’s where the vector rotation tricks presented here come into play.

13.38.1 Vector Rotation to the 1st Octant
Plotted on the complex plane, a complex sample C = I + jQ can reside in any of the eight octants
shown in Figure 13-94(a). When performing arctangents, please know that arctangent algorithms, be
they high precision and computationally expensive or be they computationally simple and lower
precision, are more accurate for small angles. (That is because the problematic arctangent function is
only approximately linear for small angles.) So what does this mean to us? It means that if we can
effectively rotate the angle of complex sample C into Figure 13-94(a)’s 1st or 8th octant, a smaller
angle, arctangent algorithms will provide more accurate results.
Figure 13-94 Complex vector rotation: (a) octant definitions; (b) vector rotation from the 7th octant

to the 1st octant.

For example, consider the complex number represented by vector C in Figure 13-94(b) residing in the
7th octant. The angle θ we want to compute is more negative than −π/4 radians (−45 degrees). Our
trick is to rotate C to a new (and smaller) angle θ1st, compute θ1st with an arctangent algorithm, and
add θ1st to −π/2 to obtain the desired value for θ.

Rotating vector C can be implemented as follows:
• If vector C‘s Q component is negative (C is in the 5th through the 8th octant), we can rotate C by
180 degrees by negating both the I and Q components.

• If vector C is in the 3rd or 4th octant, we can rotate C clockwise by 90 degrees by setting the new
I equal to the old Q value, and setting the new Q equal to the negative of the old I value. (Note that
the negative of the old I value is equal to the absolute value of the old I value.)

• If vector C is in the 2nd octant, we can rotate C clockwise by 45 degrees by swapping the I and Q
components.

Using the above rotation operations for our Figure 13-94(b) example, we can rotate the original 7th-



octant C = I + jQ to the 3rd octant by creating vector C3rd = −I − jQ. Next we rotate C3rd to the 1st
octant by creating vector C1st = −Q + jI. We compute θ1st as

(13-155)

using an arctangent algorithm and finally add θ1st to −π/2 to obtain our desired value for θ.
OK, here’s the neat part of this trick. We don’t actually have to perform any of the above vector
rotations to obtain angle θ1st. We merely need to find the signs of the original I and Q components and
determine which component has the larger magnitude. With those three pieces of information we
determine in which octant vector C is located by using Table 13-9.

Table 13-9 Octant Identification

Once we know vector C‘s octant, we take advantage of the following rotational symmetries of
arctangents

(13-156)

(13-156′)

and compute our desired θ value using the appropriate expression in Table 13-10.
Table 13-10 Arctan Computation

Given that this arctangent process is implemented with programmable hardware, we’ll have Table
13-10’s four different arctangent approximation routines located at four different memory locations to
which we’ll jump. The process to determine the necessary two jump address index bits (b1,b0) based
on vector C‘s octant is shown in Figure 13-95.

Figure 13-95 Octant and jump address identification flow.



To avoid division by zero when using the algorithms in Table 13-10, it’s prudent to precede the
Figure 13-95 processing with checking to see if I or Q is zero:

• If I = 0, θ is set to π/2 or −π/2 depending on the sign of Q.
• If Q = 0, θ is set to 0 or π depending on the sign of I.
• If I and Q are both zero, set θ to 0.

Again, this section does not present any specific arctangent algorithms. This material shows how to
make a given arctangent algorithm more accurate.

13.38.2 Vector Rotation by ±π/8
While we’re on the subject of vector rotation, if a 1st-octant vector C1st resides in the angle range of
π/8 ≤ θ1st ≤ π/4 radians (Range 1 in Figure 13-96(a), 22.5° ≤ θ1st ≤ 45°), we can rotate that vector by
−π/8 radians (−22.5°), forcing the new vector into Region 2. We may want to perform this rotation
because arctangent algorithms have improved accuracy in Region 2.

Figure 13-96 Angle ranges of the 1st and 8th octants.



We rotate a vector C1st = I1st + jQ1st residing in Range 1 to Range 2 by multiplying C1st by the
complex number e−jπ/8 = (A −jB), where

(13-157)

We can simplify the complex multiply by dividing A and B by 0.923879, yielding
(13-158)

This gives us a new (A′ −jB′) = (1 −j0.414213) multiplier, reducing the number of necessary real
multiplies in this −π/8 rotation process[88]. However, be aware that this (A′ −jB′) rotation induces a
vector magnitude gain of 1.0824 (0.69 dB) in the rotated vector.
Here’s how we decide if the 1st-octant vector C1st lies in the Range 1 of π/8 ≤ θ1st ≤ π/4 radians. If
the minimum of I1st or Q1st is less than 0.414213 times the maximum of I1st or Q1st, then C1st lies in
Region 1, in which case vector rotation by (A′ −jB′) multiplication is performed. Otherwise the 1st-
octant vector is in Range 2, requiring no rotation.
In a similar manner, if an 8th-octant vector C8th resides in the angle range of −π/4 ≤ θ8th ≤ −π/8
radians (Range 4 in Figure 13-96(b)), we can rotate that vector by π/8 radians (22.5°), forcing the
new vector into Region 3 by multiplying C8th by (A′ + jB′).

Again, the angle range reduction schemes in this section allow us to use arctangent algorithms that are
computationally simpler (and thus faster) for a given accuracy. Of course, this technique forces us to
perform additional angle range checking and to compute products such as (I1st + jQ1st)(A′ −jB′).
Perhaps this scheme is most useful when used with an arctangent look-up table method. You make the
call.

13.39 An Efficient Differentiating Network
This section presents a computationally efficient differentiating network that approximates the



process of taking the derivative of a discrete time-domain sequence. In Chapter 7 we introduced the
central-difference differentiator, defined by

(13-159)

as a simple differentiating network that has desirable high-frequency (noise) attenuation behavior.
The frequency magnitude response of that differentiator is the dashed |HCd(f)| curve in Figure 13-
97(a). (For comparison, we show an ideal differentiator’s straight-line |HIdeal(f)| magnitude response
in Figure 13-97(a). The frequency axis in that figure covers the positive-frequency range 0≤ω≤π
samples/radian, corresponding to a continuous-time frequency range of 0 to fs/2, where fs is the input
sample rate in Hz.) The central-difference differentiator’s frequency range of linear operation is from
zero to roughly 0.08fs Hz.

Figure 13-97 Proposed differentiator: (a) performance; (b) standard structure; (c) folded structure.

Here we recommend a computationally efficient differentiator that maintains the central-difference
differentiator’s beneficial high-frequency attenuation behavior but extends its frequency range of
linear operation. The proposed differentiator is defined by

(13-160)

The Eq. (13-160) differentiator’s frequency magnitude response is the solid |HPr(f)| curve in Figure



13-97(a), where its frequency range of linear operation extends from zero to approximately 0.17fs Hz,
roughly twice the usable frequency range of the central-difference differentiator. The differentiator in
Eq. (13-160) has a gain greater than that of the central-difference differentiator, so the solid curve in
Figure 13-97(a) was scaled for easy comparison of |Hcd(f)| and |Hdif(f)|. The |Hdif(f)| curve is the DFT
of 0.6 · ydif(n).

The structure of the proposed differentiator is shown in Figure 13-97(b) where a delay block
comprises two unit-delay elements. The folded-FIR structure for this differentiator is presented in
Figure 13-97(c) where only a single multiply need be performed per yPr(n) output sample. The really
slick aspect of the yPr(n) differentiator is that its non-unity coefficients (±1/16) are integer powers of
two. This means that a multiplication in Figure 13-97 can be implemented with an arithmetic right
shift by four bits. Happily, such a binary right-shift implementation is a linear-phase multiplierless
differentiator.
Another valuable feature of the yPr(n) differentiator is that its time delay (group delay) is exactly
three samples. Such an integer delay makes this differentiator convenient for use when the ypr(n)
output must be time-synchronized with other signals within a system. For fairness, we point out that
the disadvantage of this very efficient differentiator is that for proper operation its x(n) input signals
must be low frequency, less than one-fifth the input sample rate.
In terms of performance and computational efficiency, the only contender to the proposed
differentiator is the first narrowband “super Lanczos low-noise differentiator” discussed in Chapter
7. However, the yPr(n) differentiator proposed here has better high-frequency noise attenuation than
the Lanczos differentiator.

13.40 Linear-Phase DC-Removal Filter
In this section we introduce a linear-phase DC-removal filter useful for removing the DC bias from a
time-domain signal. The filter is based on the notion of subtracting an input signal’s moving average
(DC bias) from that signal, as shown in Figure 13-98(a).
Figure 13-98 DC-removal filter: (a) filter concept; (b) filter structure; (c) filter frequency response.



In order to reduce the delay line length of a standard tapped-delay line moving average network, we
use the D-point recursive moving averager (MA), shown in Figure 13-98(b). The bottom path, in
Figure 13-98(b), is a simple delay line having a length equal to the averager’s group delay, (D−1)/2
samples. This enables us to time-synchronize the averager’s v(n) output with the x(n) input in
preparation for the subtraction operation. There are two delay lines in Figure 13-98(b): the D-length z
−D delay line in the top path and the bottom path’s (D−1)/2-length delay line.
The D-point recursive moving averager (MA) in Figure 13-98(b) has a transfer function defined by

(13-161)

This DC-removal network’s passband performance, when D = 31, is shown in Figure 13-98(c). (The
frequency axis value of 0.5 corresponds to a cyclic frequency of half the input signal’s fs sample rate.)
While the network has the desired infinite attenuation at zero Hz, its passband peak-peak ripple is
unpleasantly large at 2.9 dB. We can do better, as we shall see.
If D is an integer power of two, the 1/D scaling in (1) can be performed using a binary right shift by
log2(D) bits, making Figure 13-98(b) a multiplier-free network. However, in that scenario the MA’s
group delay is not an integer number of samples, making it difficult to synchronize the delayed x(n)
and the v(n) sequences. To solve this problem we can use two cascaded D-point MAs as shown in
Figure 13-99(a). Because the cascaded MAs have an integer group delay of D−1 samples, we can be
clever and tap off the first moving averager’s comb delay line, eliminating the bottom-path delay line
in 13-98(b). This way we still only need implement two delay lines in Figure 13-99(a), one z−D delay
line in each MA.

Figure 13-99 Dual-MA filter: (a) filter structure; (b) filter frequency response.



The magnitude response of the Figure 13-99(a) dual-MA DC-removal network, for D = 32, is shown
in Figure 13-99(b). In that figure we show the DC-removal filter’s passband with its narrower
transition region width and a much improved peak-peak ripple of 0.42 dB. What we’ve created, then,
is a linear-phase, multiplierless, DC-removal network having a narrow transition region near zero
Hz.
Happily, it’s worth noting that standard tapped-delay line, linear-phase, highpass FIR filter designs
using least-squares error minimization, or the Parks-McClellan method, require more than 100 taps to
approximate our D = 32 DC-removal filter’s performance.
On a practical note, the MAs in Figure 13-99(a) contain integrators that can experience data
overflow. (An integrator’s gain is infinite at DC.) Using two’s complement fixed-point arithmetic
avoids integrator overflow errors if we ensure that the integrator (accumulator) bit width is at least

(13-162)

where q(n) is the input sequence to an accumulator, and  means that if k is not an integer, round it up
to the next larger integer.
For an even narrower filter transition region width, in the vicinity of zero Hz, than that shown in
Figure 13-99(b), we can set D to a larger integer power of two; however, this will not reduce the
DC-removal filter’s passband ripple.
At the expense of three additional delay lines, and four new addition operations per output sample,
we can implement the linear-phase DC-removal filter shown in Figure 13-100(a). That quad-MA
implementation, having a group delay of 2D−2 samples, yields an improved passband peak-peak
ripple of only 0.02 dB, as shown in Figure 13-100(b), as well as a reduced-width transition region
relative to the dual-MA implementation.

Figure 13-100 Quad-MA filter: (a) filter structure; (b) filter frequency response.



The DC removal network in Figure 13-100(a) contains four 1/D scaling operations which, of course,
can be combined and implemented as a single binary right shift by 4log2(D) bits. So the bottom line
here is that at the expense of multiple delay lines, it is possible to efficiently perform linear-phase DC
removal.

13.41 Avoiding Overflow in Magnitude Computations
Here we present a little trick to help avoid a common problem when computing the magnitude of a
complex number using fixed-point binary number formats. Let’s say we have a complex number c
represented by c = R + jI, and we want to compute the magnitude c using the familiar expression

(13-163)

Equation (13-163) is troublesome because the R2 and I2 terms will cause data word overflow errors
if either R or I is greater than the square root of your fixed-point number format’s largest positive
number. For example, in a signed 16-bit number format, |R| and |I| must be less than 181 to avoid
overflow errors. At the expense of absolute value comparison, branch, and divide operations, Eq.
(13-164) alleviates overflow problems[89]:

(13-164)

13.42 Efficient Linear Interpolation
In this section we present a computationally efficient linear interpolation trick that’s useful because it
performs linear interpolation requiring at most one multiply per output sample[90]. For example,
given the x(n) time sequence in Figure 13-101(a), this linear interpolator will generate the y(n)
sequence shown in Figure 13-101(b) when the interpolation factor is L = 3. Notice how the original
x(n) samples are preserved in the y(n) output sequence.

Figure 13-101 Linear interpolation: (a) input sequence; (b) L = 3 interpolated sequence; (c)
interpolator structure.



The block diagram of this efficient linear interpolator is that in Figure 13-101(c). That mysterious
block labeled “Hold Interpolator, L” is merely the operation where each input sample to the block is
repeated L−1 times. For example, if the input to the Hold Interpolator operation is {1,4,3}, and L = 3,
the output of the Hold Interpolator is {1,1,1,4,4,4,3,3,3}.
In fixed-point binary implementations if we’re able to select L to be an integer power of two, then,
happily, the final 1/L multiplication can be implemented with a binary arithmetic right shift by log2L
bits, yielding a multiplierless linear interpolator. Of course, if a gain of L is acceptable, no 1/L
scaling need be performed at all.
The neat part of this interpolator is that the computational workload, the number of additions and
multiplies per output sample, remains fixed regardless of the value of interpolation factor L.
The experienced reader might now say, “Ah, while this network is computationally simple, linear
interpolation is certainly not the most accurate method of interpolation, particularly for large
interpolation factors of L.” That is true, but if interpolation is being done in multiple sections, using
this efficient linear interpolation as the final section at the highest data rate (when the signal samples
are already very close together) will introduce only a small interpolation error.

13.43 Alternate Complex Down-conversion Schemes
Here we present two interesting complex down-conversion and decimation techniques used to
generate an analytic (complex) version, centered at zero Hz, of a real bandpass signal that was
originally centered at ±fs/4 (one-fourth the sample rate). Both methods perform signal frequency
translation by way of decimation.

13.43.1 Half-band Filter Down-conversion
The first complex down-conversion method makes use of computationally efficient half-band
filters[91]. The process is shown in Figure 13-102(a), where we use indices n, p, and m to clarify the
multirate nature of this process. The real xR(n) input signal has the spectrum shown in Figure 13-



102(b), and for our example the sample rate is fs = 24 kHz. The Delay/Hilbert transform filter
combination attenuates the negative-frequency spectral components of XR(f) to produce the complex
uI(n) + juQ(n) signal whose spectrum is provided in Figure 13-102(c). (The Delay function is a
cascade of unit-delay elements, whose length is the group delay of the Hilbert filter, needed to time-
synchronize the uI(n) and uQ(n) sequences.) The follow-on downsample by two, discard every other
sample, produces the complex v(p) sequence having the spectrum shown in Figure 13-102(d) where
the new sample rate is 12 kHz.

Figure 13-102 Analytic signal generation and decimation by two.

Next, sequences vI(p) and vQ(p) are applied to two identical real-valued highpass half-band filters,
each having the frequency magnitude response shown in Figure 13-103(a), yielding the complex w(p)
= wI(p) and wQ(p) whose spectrum is that in Figure 13-103(b). The final step in this down-
conversion process is another decimation by two, producing the desired xc(m) sequence having the
spectrum given in Figure 13-103(c) where the output sample rate is 6 kHz. Due to the nature of half-
band filters there will be some amount of spectral overlap in Xc(f) as shown in Figure 13-103(c). The
amount of spectral overlap is proportional to the transition region width of an hhp(k) filter (inversely
proportional to the number of filter taps).

Figure 13-103 Highpass filtering, down-conversion, and decimation by two.



There are three useful aspects to this first complex down-conversion scheme that enhance its
computational efficiency:

• If the Hilbert transform filter has an odd number of taps, roughly half of its coefficients will be
zero-valued, and the Delay function is an integer number of unit-delay elements.

• Roughly half of the coefficients of the highpass half-band filters, with their transition regions
centered at fs/4 and 3fs/4, will be zero-valued.

• Because the coefficients of the filters in Figure 13-102(a) are either symmetrical or
antisymmetrical, we can use the folded FIR filter scheme described in Section 13.7 to reduce the
number of multipliers by another factor of two.

13.43.2 Efficient Single-Decimation Down-conversion
Our second complex down-conversion trick is a very computationally efficient scheme, shown in
Figure 13-104(a), that operates on real xR(n) signals centered at ±fs/4. Just as in Figure 13-102(a),
the Delay/Hilbert transform filter combination attenuates the negative-frequency spectral components
of xR(n) to produce a complex analytic signal whose spectrum is centered at fs/4 (6 kHz). The
downsample-by-four, retain every fourth sample, operation down-converts (frequency translates) the
desired complex signal originally centered at fs/4 Hz down to a center frequency of zero Hz. The
compensation filter is used to compensate for the non-flat frequency magnitude response of the simple
2-tap Hilbert filter in order to widen the down-converter’s usable passband width. (The Delay
function after the downsampling in the top path is needed to time-synchronize the xI(m) and xQ(m)
sequences.) The detailed block diagram of the down-converter is shown in Figure 13-104(b), where
the compensation filter’s coefficients are hc(0) = −1/32, and hc(1) = 1/2 + 1/16.

Figure 13-104 High-efficiency complex down-conversion: (a) process; (b) detailed structure.



If the xR(n) input signal’s bandwidth is no greater than fs/6, then the Hilbert filter attenuates xR(n)’s
undesired negative-frequency spectral components, at the xc(n) output, by approximately 35 dB. That
much attenuation may not be something to write home about, but keep in mind that this down-
converter requires no multipliers because the multiplies by the hc(0) and hc(1) coefficients can be
implemented with binary shifts and adds. At the expense of two multiplies per output sample, the
compensation filter coefficients can be set to hc(0) = −0.02148 and hc(1) = 0.54128 to attenuate
xR(n)’s undesired negative-frequency spectral components by roughly 45 dB.

13.44 Signal Transition Detection
When we are tasked to build a system that must detect transitions in a pulsed signal, we generally
look to a digital differentiator as the solution to our problem. However, when a pulsed signal’s
transition spans many samples, and particularly if the signal is noisy, digital differentiators do not
provide reliable signal transition detection. One compelling solution to this problem uses a standard
tapped-delay line (time-domain convolution) filtering scheme developed by C. Turner[92]. Called
time-domain slope filtering, the transition detection tapped-delay line filter uses N coefficients
defined by

(13-165)

where the coefficient index k covers the range 0 ≤ k ≤ N−1.
For any integer N, the slope filtering Ck coefficients comprise a linear ramp, making that sequence
quite useful for detecting linear transitions in an input signal. Figure 13-105(a) shows the output of the



time-domain slope filtering process, when N = 53. In that figure we see that the slope filter performs
well in detecting the transitions of the Input signal. The dotted curve in Figure 13-105(a) is the output
of a traditional tapped-delay line digital differentiator having 53 taps. (The frequency magnitude of
the traditional digital differentiator, specifically designed to attenuate high-frequency noise, is
provided in Figure 13-105(b).)

Figure 13-105 Time-domain slope filtering: (a) pulsed input performance; (b) digital differentiator
magnitude response; (c) high-noise input performance.

The superiority of the time-domain slope filtering scheme over traditional differentiation is further
illustrated in Figure 13-105(c) where the pulsed Input signal is contaminated with high-level noise.
Concerning two practical issues, if the number of samples in a pulsed input signal’s transition is L,
the value for N, found empirically, is generally in the range of L/4 to L. It’s convenient to set N to be
an odd integer, forcing the filter’s delay to be an integer number, (N−1)/2, of samples. This facilitates
the time synchronization of the filter’s output to other sequences in a system. Also, if the Ck
coefficients are to be used in correlation processing (as opposed to the convolution processing
discussed above), the correlation’s Ck coefficients should be the coefficients from Eq. (13-165)
reversed in time order.



13.45 Spectral Flipping around Signal Center Frequency
In Section 2.4, we discussed a super-simple method of spectral flipping (spectral inversion) of a real
signal where the center of spectral rotation was fs/4. In this section we discuss a different kind of
spectral flipping process.
Consider the situation where we need to process a real-valued x(n) time signal, whose X(f) spectrum
is shown in Figure 13-106(a), to obtain a real-valued y(n) time signal whose spectrum is the flipped
Y(f) spectrum shown in Figure 13-106(b). Notice that the center of rotation of the desired spectral
flipping is not fs/4 Hz but is instead the x(n) signal’s fc center frequency. The spectral flipping
process described in Section 2.4 does not solve our problem because that process would result in the
undesirable spectrum shown in Figure 13-106(c), where the original X(f) spectrum is the dashed
curve.

Figure 13-106 Spectral flipping, centered at fc: (a) original spectrum; (b) desired spectrum; (c)
incorrect spectrum.

There are two methods to solve our fc-centered spectral flipping problem. Figure 13-107(a) shows
the first method, comprising a multirate processing technique. In considering this spectral flipping
method, the user should keep in mind that:

• The two lowpass filters (LPFs) have passbands that extend from zero Hz to fH Hz. (Note that the
sample rate for both filters is 2fs Hz.) The second LFP’s transition region width is less than 2fL.

• The cosine mixing sequence uses the upsampled-by-two time index variable n′.
• The multiply-by-four operation compensates for the sequence u(n′) amplitude loss by a factor of
two caused by interpolation, and the amplitude loss by another factor of two due to the cosine
mixing.

Figure 13-107 Spectral flipping techniques: (a) first method; (b) second method.



Of course, a smart engineer will eliminate the multiply-by-four operation altogether by increasing the
DC (zero Hz) gain of one of the lowpass filters by four.
The second method we could use to obtain a signal having the desired Figure 13-106(b) spectrum,
promoted by D. Bell, is the process shown in Figure 13-107(b)[93]. While somewhat more
computationally intensive than the above multirate method, this technique works well and deserves
mention here. The first complex multiplication and the Complex LPF are identical to the quadrature
sampling operations we discussed in Figure 8-18(a). The two identical lowpass filters, comprising
the Complex LPF, have passbands that extend from zero Hz to (fH−fL)/2 Hz, and transition region
widths of less than 2fL. The Real Part operation merely means take the real part of sequence v(n).

We can eliminate the multiply-by-two operation by increasing the DC (zero Hz) gain of the complex
filter by two. In this method, as Bell recommends, we can combine the second complex multiply and
Real Part extraction stages by computing only the real part of sequence u(n), yielding sequence v(n).
The multiply-by-two operation compensates for the amplitude loss by a factor of two caused by the
Real Part operation.

13.46 Computing Missing Signal Samples
Consider the situation where we need to process a time-domain signal that has been corrupted such
that every Qth sample is missing from the desired signal sequence. This section provides a trick for
how to recover periodically spaced missing samples of a corrupted time sequence[94].
To explain our problem, assume we want to process an x0(n) time sequence, whose sample rate is fs
Hz, but all we have available to us is a corrupted xq(n) sequence where:

• xq(n) is equal to the desired x0(n) with every Qth sample of x0(n) missing. The missing samples in
xq(n), xq(pQ) where p = 0, 1, 2, ... are represented by zero-valued samples.

• x0(n) is band-limited with negligible energy above B Hz where

(13-166)

for some integer Q ≥ 2 where fs is the data sample rate in Hz.

As an example, when Q = 5, if the desired x0(n) is the sequence in Figure 13-108(a), then xq(n) is the
corrupted sequence shown in Figure 13-108(b). Our job, then, is to recover (interpolate) the missing



samples in xq(n), xq(0), xq(5), xq(10), ... etc., to reconstruct the desired x0(n) sequence.
Figure 13-108 Time sequences: (a) original x0(n); (b) corrupted xq(n) when Q = 5.

The solution to our problem is to apply the xq(n) sequence to the tapped-delay line reconstruction
filter shown in Figure 13-109. Describing Figure 13-109’s operation in words: our desired xo(n−K)
samples are the xq(n−K) samples at the center tap of the filter unless that xq(n−K) sample is a zero-
valued missing sample, in which case the switches toggle and we compute the estimated xo(n−K) =
xo(pQ).

Figure 13-109 Reconstruction filter implementation.

The filter’s c(k) coefficients are determined by first evaluating the following expression:
(13-167)

where integer index k is in the range −K ≤ k ≤ K, sinc(x) = sin(πx)/πx, and w(k) is a time-symmetric
window sequence of length 2K+1. Next, we use h(k) to compute our desired filter coefficients as



(13-168)

This missing sample recovery process can also be applied to complex xq(n) signals, in which case
the real and imaginary parts of a complex xq(n) must be filtered separately.

There are two practical considerations to keep in mind when using this missing sample recovery
process. The first consideration is to be aware that the maximum bandwidth B given in Eq. (13-166)
is based on the assumption that the reconstruction filter has an infinite number of taps. As such, for
practical-length filters the B bandwidth requirement must be reduced. To show this, Figure 13-110
illustrates the missing sample recovery error when Q = 5, B = 0.4fs, using a Chebyshev window with
−100 dB sidelobes, for various values of K. The input signal is a noiseless sinusoid, with unity peak
amplitude, swept in frequency from a very low frequency up to fs/2 (half the sample rate).

Figure 13-110 Recovery error curves, for various K, versus input tone frequency.

In that figure we see that a K = 3 filter (7 taps) exhibits low missing sample recovery error until the
input signal’s frequency approaches roughly 0.25fs, where the recovery error starts to become large.
When K = 5, the recovery error doesn’t become large until the input signal’s frequency approaches
roughly 0.3fs. (The unlabeled curve in Figure 13-110 is a K = 7 curve.) So what we see is that to
minimize our missing sample recovery error for short-length filters, the maximum input signal
bandwidth must be kept substantially lower than the B Hz specified in Eq. (13-166).
The second practical consideration to consider when using this missing sample recovery process is
the w(k) window sequence in Eq. (13-167). There seems to be no “best” window sequence that
minimizes the recovery error for all real-world signals that we might encounter. So experimentation,
using various window functions, becomes necessary. A good place to start is to use either Kaiser or
Chebyshev window sequences whose control parameters are set such that the windows’ frequency-
domain sidelobes are very low relative to their main lobe levels.
We conclude this section by mentioning that reference [95] describes a missing sample recovery
technique that is applicable when the pattern of missing samples is more complicated than the simple
every Qth sample described here.

13.47 Computing Large DFTs Using Small FFTs
It is possible to compute N-point discrete Fourier transforms (DFTs) using radix-2 fast Fourier



transforms (FFTs) whose sizes are less than N. For example, let’s say the largest size FFT software
routine we have available is a 1024-point FFT. With the following trick we can combine the results
of multiple 1024-point FFTs to compute DFTs whose sizes are greater than 1024.
The simplest form of this idea is computing an N-point DFT using two N/2-point FFT operations.
Here’s how the trick works for computing a 16-point DFT, of a 16-sample x(n) input sequence, using
two 8-point FFTs. First we perform an 8-point FFT on the x(n) samples where n = 0, 2, 4, ..., 14.
We’ll call those FFT results X0(k). Then we store two copies of X0(k) in Memory Array 1 as shown
in Figure 13-111. Next we compute an 8-point FFT on the x(n) samples where n = 1, 3, 5, ..., 15. We
call those FFT results X1(k). We store two copies of X1(k) in Memory Array 3 in Figure 13-111.

Figure 13-111 A 16-point DFT using two 8-point FFTs.

In Memory Array 2 we have stored 16 samples of one cycle of the complex exponential e−j2πm/N,
where N = 16, and 0 ≤ m ≤ 15. Finally we compute our desired 16-point X(m) samples by performing
the arithmetic shown in Figure 13-111 on the horizontal rows of the memory arrays. That is,

The desired X(m) DFT results are stored in Memory Array 4.
We describe the above process, algebraically, as

(13-169)



and
(13-169′)

for k in the range 0 ≤ k ≤ 7.
Notice that we did nothing to reduce the size of Memory Array 2 due to redundancies in the complex
exponential sequence e−j2πm/N. As it turns out, for an N-point DFT, only N/4 complex values need be
stored in Memory Array 2. The reason for this is that

(13-170)

which involves a simple sign change on e−j2πm/N. In addition,
(13-170′)

which is merely swapping the real and imaginary parts of e−j2πm/N plus a sign change of the resulting
imaginary part. So Eqs. (13-170) and (13-170′) tell us that only the values e−j2πm/N for 0 ≤ m ≤ N/4−1
need be stored in Memory Array 2. With that reduced storage idea aside, to be clear regarding exactly
what computations are needed for our “multiple-FFTs” technique, we leave Memory Array 2
unchanged from that in Figure 13-111.
The neat part of this “multiple-FFTs” scheme is that our DFT length, N, is not restricted to be an
integer power of two. We can use computationally efficient radix-2 FFTs to compute DFTs whose
lengths are any integer multiple of an integer power of two. For example, we can compute an N = 24-
point DFT using three 8-point FFTs. To do so, we perform an 8-point FFT on the x(n) samples, where
n = 0, 3, 6, ..., 21, to obtain X0(k). Next we compute an 8-point FFT on the x(n) samples, where n = 1,
4, 7, ..., 22, to yield X1(k). And then we perform an 8-point FFT on the x(n) samples, where n = 2, 5,
8, ..., 23, to obtain an X2(k) sequence. Finally, we compute our desired 24-point DFT results using

(13-171)

(13-171′)

and
(13-171″)

for k in the range 0 ≤ k ≤ 7. The memory-array depiction of this process is shown in Figure 13-112,
with our final 24-point DFT results residing in Memory Array 6. Memory Array 2 contains N = 24
samples of one cycle of the complex exponential e−j2πm/24, where 0 ≤ m ≤ 23. Memory Array 4
contains 24 samples of two cycles of the complex exponential e−j2π(2m)/24.

Figure 13-112 A 24-point DFT using three 8-point FFTs.



To conclude this section, we state that the larger the size of the FFTs, the more computationally
efficient is this “multiple-FFTs” spectrum analysis technique. This behavior is illustrated in Figure
13-113 where we show the number of complex multiplies required by the “multiple-FFTs” algorithm
versus the desired DFT size (N). The top bold curve is the number of complex multiplies required by
the standard (inefficient) DFT algorithm, and the bottom dashed curve is the number of complex
multiplies required by a single N-point radix-2 FFT. The curves in the center of the figure show the
number of complex multiplies required by the “multiple-FFTs” algorithm when various FFT sizes (P)
are used to compute an N-point DFT. For example, if we must perform a 4096-point DFT using this
“multiple-FFTs” algorithm, it’s better for us to perform sixteen 256-point FFTs rather than one
hundred twenty-eight 32-point FFTs.

Figure 13-113 Number of complex multiplies versus N.

13.48 Computing Filter Group Delay without Arctangents



Here we present an interesting scheme used to compute the group delay of digital filters that does not
require the phase unwrapping process needed when computing arctangents in traditional group delay
measurement algorithms. The technique is based on the following: Assume we have the N-sample
h(k) impulse response of a digital filter, with k (0″k″N−1) being our time-domain index, and that we
represent the filter’s discrete-time Fourier transform (DTFT), H(ω), in polar form as

(13-172)

In Eq. (13-172), M(ω) is the frequency magnitude response of the filter, ϕ(ω) is the filter’s phase
response, and ω is continuous frequency measured in radians/second. Taking the derivative of H(ω)
with respect to ω, and performing a variety of algebraic acrobatics, we can write

(13-173)

So what does that puzzling gibberish in Eq. (13-173) tell us? As it turns out, it tells us a lot if we
recall the following items:

• jd[H(ω)]/dω = the DTFT of k · h(k)

• M(ω) · ejϕ(ω) = H(ω) = the DTFT of h(k)
• −d[ϕ(ω)]/dω = group delay of the filter

Now we are able to translate Eq. (13-173) into the meaningful expression
(13-173′)

Discretizing expression (13-173′) by replacing the DTFT with the discrete Fourier transform (DFT),
we arrive at our scheme for computing the group delay of a digital filter, measured in samples:

(13-174)

So, starting with a filter’s N-sample h(k) impulse response, performing two N-point DFTs and an N-
sample complex division, we can compute the filter’s passband group delay. (Of course, to improve
our group delay granularity we can zero-pad our original h(k) before computing the DFTs). Again, the
advantage of the process in expression (13-174) is that the phase unwrapping process needed in
traditional group delay algorithms is not needed here. Note that in implementing the process in
expression (13-174), we must be prepared to accommodate the situation where a frequency-domain
DFT[h(k)] sample is zero-valued, which will make a group delay sample unrealistically large.
As an example, the square dots in Figure 13-114(a) show the N = 25-sample h(k) impulse response of
a 2nd-order IIR lowpass filter. A 25-sample filter group delay estimation, using expression (13-174),
is shown in Figure 13-114(b). When we zero-pad the h(k) and k · h(k) sequences to a length of 64
samples (0≤k≤63), expression (13-174) yields the group delay estimate in Figure 13-114(c).
Figure 13-114 Group delay computation: (a) 25-sample h(k) and k · h(k); (b) 25-point group delay;

(c) 64-point group delay.



13.49 Computing a Forward and Inverse FFT Using a Single FFT
In Section 13.5 we described the processes of using a single N-point complex FFT to perform both a
2N-Point Real FFT and two independent N-Point Real FFTs. This section presents the algorithm for
simultaneously computing a forward FFT and an inverse FFT using a single radix-2 FFT[96].
Our algorithm is depicted by the seven steps, S1 through S7, shown in Figure 13-115. In that figure,
we compute the x(n) inverse FFT of the N-point frequency-domain conjugate-symmetric input
sequence X(m), as well as compute the Y(m) forward FFT of the N-point time-domain real-valued
input sequence y(n) using the single complex FFT in Step S4. Sample indices n and m both range
from 0 to N−1 where N is an integer power of two.

Figure 13-115 Simultaneous FFT and inverse FFT algorithm.



At first glance Figure 13-115 looks more complicated than it actually is, and here’s why:
• Steps S1 and S2 create a complex sequence that we call v(n).
• Step S1 generates the first N/2+1 samples of v(n) based on the real-valued input sequence y(n).
• Step S2 extends v(n) to a length of N samples and forces v(n) to be conjugate symmetric. The “*”
symbol in Step S2 means conjugation.

• Step S3 combines the conjugate-symmetric sequences X(m) and v(n) to create a sequence we call
z(n). (Sequence z(n) is not conjugate symmetric.)

• Step S4 is the algorithm’s single radix-2 FFT operation, generating complex sequence Z(m).
• Step S5 generates the desired real-valued x(n) time sequence by performing a circular reversal of
the real part of Z(m). (That is, other than the first sample, the real parts of Z(m) samples are
reversed in order to produce x(n). This type of sequence reversal is discussed in Appendix C.)

• Steps S6 and S7 generate the desired frequency-domain Y(m) sequence.
• Step S6 generates the first N/2+1 samples of Y(m).
• Step S7 extends the sequence from Step S6 to a length of N samples and forces conjugate
symmetry, to produce Y(m). The “*” symbol in Step S7 means conjugation.

The Figure 13-115 algorithm’s computational workload is one complex N-point FFT and roughly 2N
additions/subtractions.

13.50 Improved Narrowband Lowpass IIR Filters



Due to their resistance to quantized-coefficient errors, traditional 2nd-order infinite impulse response
(IIR) filters are the fundamental building blocks in computationally efficient high-order IIR digital
filter implementations. However, when used in fixed-point number systems, the inherent properties of
quantized-coefficient 2nd-order IIR filters do not readily permit their use in narrowband lowpass
filtering applications. Narrowband lowpass IIR filters have traditionally had a bad reputation—for
example, MATLAB’s Signal Processing Toolbox documentation warns: “All classical IIR lowpass
filters are ill-conditioned for extremely low cutoff frequencies.”
This section presents a neat trick to overcome the shortcomings of narrowband 2nd-order lowpass
IIR filters, with no increase in filter coefficient bit widths and no increase in the number of filter
multiplies per output sample.

13.50.1 The Problem with Narrowband Lowpass IIR Filters
Narrowband lowpass IIR filters are difficult to implement because of intrinsic limitations on their z-
plane pole locations. Let’s examine the restrictions on the z-plane pole locations of a standard 2nd-
order IIR filter whose structure is shown in Figure 13-116(a).

Figure 13-116 Second-order IIR filters: (a) standard form; (b) coupled form.

Such an IIR filter, having a transfer function given by
(13-175)

has a pair of conjugate poles located at radii of r, at angles of ±θ radians. (For filter stability reasons,
we always ensure that r < 1.) In fixed-point implementations, quantizing the 2rcos(θ) and −r2

coefficients restricts the possible pole locations[97,98]. On the z-plane, a pole can only reside at the
intersection of a vertical line defined by the quantized value of 2rcos(θ) and a concentric circle
whose radius is defined by the square root of the quantized value of r2. For example, Figure 13-117
shows the first quadrant of possible z-plane pole locations using five magnitude bits to represent the
filter’s two coefficients. Notice the irregular spacing of those permissible pole locations. (Due to
trigonometric symmetry, the pole locations in the other three quadrants of the z-plane are mirror
images of those shown in Figure 13-117.)

Figure 13-117 Possible pole locations for five magnitude bit coefficient quantization.



So here’s the problem we have with standard 2nd-order IIR filters: If we use floating-point software
to design a very narrowband (high-order) lowpass IIR filter (implemented as cascaded 2nd-order
filters) having poles residing in the shaded area near z = 1, subsequent quantizing of the designed
filter coefficients to five magnitude bits will make the poles shift to one of the locations shown by the
dots on the border of the shaded region in Figure 13-117. Unfortunately that pole shifting, inherent in
the Figure 13-116(a) IIR filter implementation due to coefficient quantization in fixed-point systems,
prevents us from realizing the desired narrowband lowpass filter. We can always reduce the size of
the shaded forbidden zone near z = 1 in Figure 13-117 by increasing the number of bits used to
represent the 2nd-order filters’ coefficients. However, in some filter implementation scenarios
increasing coefficient binary-word bit widths may not be a viable option.
One solution to the above problem is to use the so-called coupled-form IIR filter (also called the
Gold-Rader filter[99]) structure, shown in Figure 13-116(b), having a transfer function given by

(13-176)

Because the coupled-form filter’s quantized coefficients in Figure 13-116(b) are linear in rcos(θ) and
rsin(θ), its possible pole locations are on a regularly spaced grid on the z-plane defined by z =
rcos(θ) + jrsin(θ). This enables us to build 2nd-order narrowband lowpass IIR filters with poles in
the desired shaded region of Figure 13-117.
This pole placement behavior is a beautiful example of the difference between apparently equivalent
filter implementations. With infinite-precision coefficients the standard and coupled-form IIR filters,
having identical denominators in their transfer functions, will have identical z-plane pole locations.
But with quantized coefficients the two filters will have different pole locations.
Back to our problem. While the coupled-form IIR filter gives us increased flexibility in placing z-
plane poles for lowpass filtering, unfortunately, this coupled-form implementation requires twice the
number of multiplies needed by the standard 2nd-order IIR filter in Figure 13-116(a).
In the following material we describe a slick narrowband lowpass IIR filter structure, proposed by
Harris and Loudermilk, having poles residing in the shaded region of Figure 13-117 with no increase



in coefficient bit width and no additional multiplication operations beyond those needed for a
standard 2nd-order IIR filter[100].

13.50.2 An Improved Narrowband Lowpass IIR Filter
The improved lowpass IIR filter is created by replacing each unit-delay element in a standard 2nd-
order IIR filter with multiple unit-delay elements as shown in the left portion of Figure 13-118. This
zero-stuffed IIR filter will retain its original lowpass passband and have multiple passband images,
exactly as did the interpolated finite impulse response (IFIR) filters that we studied in Chapter 7. The
zero-stuffed IIR filter is followed by a lowpass image-reject filter that attenuates those unwanted
passband images. Given this cascaded structure, which we’ll demonstrate shortly, we call the filter
combination in Figure 13-118 an interpolated infinite impulse response (interpolated-IIR) filter.

Figure 13-118 Interpolated-IIR filter.

The M-length delay lines, where M is a positive integer, in the zero-stuffed IIR filter shift a standard
IIR filter’s conjugate poles, originally located at z = re±jθ, to the new locations of

(13-177)

That is, the new conjugate pole locations are at radii of the Mth root of r, at angles of ±θ /M radians.
Happily, those interpolated-IIR filter pole locations can now reside in the desired shaded region of
Figure 13-117 without using more bits to represent the zero-stuffed IIR filter’s coefficients.
If the original Figure 13-116(a) 2nd-order IIR filter contains feedforward coefficients, those
coefficients are also delayed by M-length delay lines.

13.50.3 Interpolated-IIR Filter Example
Let’s show an example of an interpolated-IIR filter in action. With fs representing a filter’s input
signal sample rate in Hz, assume we want to implement a recursive lowpass filter whose one-sided
passband width is 0.005fs with a stopband attenuation greater than 60 dB. If we choose to set M = 4,
then we start our interpolated-IIR filter design process by designing a standard IIR filter having a
one-sided passband width of M · 0.005fs = 0.02fs. Using our favorite IIR filter design software (for
an elliptic IIR filter in this example), we obtain a 5th-order prototype IIR filter. Partitioning that 5th-
order prototype IIR filter into two 2nd-order and one single-order IIR filter sections, all in cascade
and having coefficients represented by 12-bit words, yields the frequency magnitude response shown
in Figure 13-119(a).

Figure 13-119 Frequency magnitude responses: (a) original IIR prototype filter; (b) zero-stuffed



interpolated-IIR filter and CIC filters (dashed); (c) final narrowband 12-bit coefficient filter.

Next, replacing the unit-delay elements in the filter sections with M = 4 unit-delay elements results in
the frequency magnitude response shown in Figure 13-119(b). There we see the multiple narrowband
passband images induced by the M = 4-length delay lines of the interpolated-IIR filter. Our final job
is to attenuate those unwanted passband images. We can do so by following the cascaded increased-
delay IIR filter sections with a cascaded integrator-comb (CIC) filter, whose structure is shown on
the right side of Figure 13-118. (The CIC filter is computationally advantageous because it requires
no multiplications.) To satisfy our desired 60 dB stopband attenuation requirement, we use a 2nd-
order CIC filter—two 1st-order CIC filters in cascade—to attenuate the passband images in Figure
13-119(b). The result of our design is the interpolated-IIR and CIC filter combination whose
composite frequency magnitude response meets our filter requirements as shown Figure 13-119(c).
In practice, 2nd-order subfilters may have large gains requiring unpleasantly large bit-width
multipliers and large bit-width registers to store intermediate results. For this reason it may be
necessary to scale the IIR subfilters’ coefficients as discussed in Chapter 6, or truncate the subfilters’
output samples, in order to avoid undesirably large bit-width processing.
To recap this material, we discussed the limitations encountered when using traditional 2nd-order
quantized-coefficient IIR filters to perform narrowband lowpass filtering and mentioned the coupled-
form IIR filter that reduced those limitations albeit with an increased computational cost of doubling
the number of multiplies per filter output sample. Next we described, and then demonstrated, an
interpolated-IIR filter that overcomes the shortcomings of traditional lowpass IIR filters. The
interpolated-IIR filter provides improved lowpass IIR filter performance while requiring no increase
in filter coefficient bit widths and no additional multiply operations beyond a traditional IIR filter.
When it comes to narrowband lowpass IIR filters, there’s a new sheriff in town.

13.51 A Stable Goertzel Algorithm
In Section 13.17.1 we discussed the computational value of the Goertzel algorithm for computing



discrete Fourier transform (DFT) spectral components. However, we also mentioned that the Figure
13-42 complex resonator implementation of the Goertzel algorithm places resonator z-domain poles
on the z-plane’s unit circle. Having a resonator pole on the unit circle leads to potential instability
problems because we cannot represent the resonator’s coefficients with infinite precision. We’re
forced to represent the coefficients as accurately as a fixed number of binary bits allows. This means
the resonator’s poles will not lie exactly on the unit circle. If an imprecise binary representation of
the coefficient 2cos(2πm/N) places the poles slightly inside the z-plane’s unit circle, then the
computed X(m) spectral sample will contain a small error. Even worse, if an imprecise binary
representation of 2cos(2πm/N) places the poles slightly outside the unit circle, then the resonator is
unstable. For this reason, typical applications of the Goertzel algorithm restrict the transform length N
to be in the hundreds.
One way to avoid those potential stability problems, and let N be any value we wish, is by way of a
heterodyning scheme. That is, instead of building an imperfect resonator centered at our frequency of
interest, 2′m/N radians/sample, we frequency translate our signal of interest down to zero frequency
where we can build a perfect resonator as shown in Figure 13-120(a). We say “perfect resonator”
because that resonator, centered at zero frequency (frequency index m = 0), has coefficients of two
and one, which can be represented by binary words with perfect precision.
Figure 13-120 Stable Goertzel algorithm: (a) resonator implementation; (b) z-plane poles and zero.

Such a resonator has a z-domain transfer function of
(13-178)

with a single z-domain zero located at z = 1 and two poles at z = 1 as shown in Figure 13-120(b).
One of the poles cancels the zero at z = 1. The advantages of the network in Figure 13-120(a) are that
it is guaranteed stable, and it exhibits no output error due to a pole or zero being slightly inside or
outside the z-plane unit circle.
Now the perceptive reader would factor Eq. (13-178) as

(13-179)

and redraw Figure 13-120(a) as shown in Figure 13-121(a).
Figure 13-121 Simplified stable Goertzel algorithm: (a) simplified resonator implementation; (b) z-



plane pole.

Figure 13-121(a) tells us that our desired X(m) = y(n) spectral sample is equal to the sum of the N
samples output by the multiplier in Figure 13-121(a). (This makes perfect sense because the zero-
frequency spectral sample of an N-point DFT, X(0), is computed by merely summing a DFT’s N input
samples.) So our “stable Goertzel algorithm” now becomes quite simple.
Ah, but there’s trouble in paradise. The “weak link in the chain” of the Figure 13-121(a) network is
that we’re assuming the heterodyning sequence e−j2πm/N is ideal in its precision. If you’ve ever tried
to generate a complex e−j2πm/N sequence using binary arithmetic, you know that your sequence must be
quantized to some fixed number of bits, and thus have imperfect precision. That means the output of
your e−j2πm/N oscillator will either increase in magnitude, or decrease in magnitude, as time index n
increases. However, we solve that problem by using the guaranteed-stable quadrature oscillator
described in Section 13.32.
It’s fair to copy a slogan from the Aston Martin automobile company and say that the Figure 13-
121(a) Goertzel algorithm, using the stable quadrature oscillator, is “engineered to exceed all
expectations.”
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Appendix A. The Arithmetic of Complex Numbers

To understand digital signal processing, we have to get comfortable using complex numbers. The first
step toward this goal is learning to manipulate complex numbers arithmetically. Fortunately, we can
take advantage of our knowledge of real numbers to make this job easier. Although the physical
significance of complex numbers is discussed in Chapter 8, the following discussion provides the
arithmetic rules governing complex numbers.

A.1 Graphical Representation of Real and Complex Numbers
To get started, real numbers are those positive or negative numbers we’re used to thinking about in
our daily lives. Examples of real numbers are 0.3, –2.2, 5.1, etc. Keeping this in mind, we see how a
real number can be represented by a point on a one-dimensional axis, called the real axis, as shown
in Figure A-1.

Figure A-1 The representation of a real number as a point on the one-dimensional real axis.

We can, in fact, consider that all real numbers correspond to all of the points on the real axis line on a
one-to-one basis.
A complex number, unlike a real number, has two parts: a real part and an imaginary part. Just as a
real number can be considered to be a point on the one-dimensional real axis, a complex number can
be treated as a point on a complex plane as shown in Figure A-2. We’ll use this geometrical concept
to help us understand the arithmetic of complex numbers.†
† The complex plane representation of a complex number is sometimes called an Argand diagram—named after the French
mathematician Jean Robert Argand (1768–1825).

Figure A-2 The phasor representation of the complex number C = R + jI on the complex plane.

A.2 Arithmetic Representation of Complex Numbers
A complex number C is represented in a number of different ways in the literature, such as

(A-1)

(A-1′)

(A-1″)



(A-1′′′)

Equations (A-1″) and (A-1′′′) remind us that the complex number C can also be considered the tip of a
phasor on the complex plane, with magnitude M, in the direction of ø degrees relative to the positive
real axis as shown in Figure A-2. (We’ll avoid calling phasor M a vector because the term vector
means different things in different contexts. In linear algebra, vector is the term used to signify a one-
dimensional matrix. On the other hand, in mechanical engineering and field theory, vectors are used to
signify magnitudes and directions, but there are vector operations (scalar or dot product, and vector
or cross-product) that don’t apply to our definition of a phasor. The relationships between the
variables in this figure follow the standard trigonometry of right triangles. Keep in mind that C is a
complex number, and the variables R, I, M, and ø are all real numbers. The magnitude of C,
sometimes called the modulus of C, is

(A-2)

and, by definition, the phase angle, or argument, of C is the arctangent of I/R, or
(A-3)

The variable ø in Eq. (A-3) is a general angle term. It can have dimensions of degrees or radians. Of
course, we can convert back and forth between degrees and radians using π radians = 180°. So, if ør
is in radians and ød is in degrees, then we can convert ør to degrees by the expression

(A-4)

Likewise, we can convert ød to radians by the expression
(A-5)

The exponential form of a complex number has an interesting characteristic that we need to keep in
mind. Whereas only a single expression in rectangular form can describe a single complex number, an
infinite number of exponential expressions can describe a single complex number; that is, while, in
the exponential form, a complex number C can be represented by C= Mejø, it can also be represented
by

(A-6)

where n = ±1, ±2, ±3, . . . and ø is in radians. When ø is in degrees, Eq. (A-6) is in the form
(A-7)

Equations (A-6) and (A-7) are almost self-explanatory. They indicate that the point on the complex
plane represented by the tip of the phasor C remains unchanged if we rotate the phasor some integral



multiple of 2π radians or an integral multiple of 360°. So, for example, if C = Mej(20°), then
(A-8)

The variable ø, the angle of the phasor in Figure A-2, need not be constant. We’ll often encounter
expressions containing a complex sinusoid that takes the form

(A-9)

Equation (A-9) represents a phasor of magnitude M whose angle in Figure A-2 is increasing linearly
with time at a rate of ω radians each second. If ω = 2π, the phasor described by Eq. (A-9) is rotating
counterclockwise at a rate of 2π radians per second—one revolution per second—and that’s why ω is
called the radian frequency. In terms of frequency, Eq. (A-9)’s phasor is rotating counterclockwise at
ω = 2πf radians per second, where f is the cyclic frequency in cycles per second (Hz). If the cyclic
frequency is f = 10 Hz, the phasor is rotating at 20π radians per second. Likewise, the expression

(A-9′)

represents a phasor of magnitude M that rotates in a clockwise direction about the origin of the
complex plane at a negative radian frequency of –ω radians per second.

A.3 Arithmetic Operations of Complex Numbers
A.3.1 Addition and Subtraction of Complex Numbers
Which of the above forms for C in Eq. (A-1) is the best to use? It depends on the arithmetic operation
we want to perform. For example, if we’re adding two complex numbers, the rectangular form in Eq.
(A-1) is the easiest to use. The addition of two complex numbers, C1 = R1 + jI1 and C2 = R2 + jI2, is
merely the sum of the real parts plus j times the sum of the imaginary parts as

(A-10)

Figure A-3 is a graphical depiction of the sum of two complex numbers using the concept of phasors.
Here the sum phasor C1 + C2 in Figure A-3(a) is the new phasor from the beginning of phasor C1 to
the end of phasor C2 in Figure A-3(b). Remember, the Rs and the Is can be either positive or negative
numbers. Subtracting one complex number from the other is straightforward as long as we find the
differences between the two real parts and the two imaginary parts separately. Thus

(A-11)

Figure A-3 Geometrical representation of the sum of two complex numbers.



An example of complex number addition is discussed in Section 11.3, where we covered the topic of
averaging fast Fourier transform outputs.

A.3.2 Multiplication of Complex Numbers
We can use the rectangular form to multiply two complex numbers as

(A-12)

However, if we represent the two complex numbers in exponential form, their product takes the
simpler form

(A-13)

because multiplication results in the addition of the exponents. Of some interest is the fact that the
product of the magnitudes of two complex numbers is equal to the magnitude of their product. That is,

(A-13′)

As a special case of multiplication of two complex numbers, scaling is multiplying a complex
number by another complex number whose imaginary part is zero. We can use the rectangular or
exponential forms with equal ease as follows:

(A-14)

or in exponential form,
(A-15)

A.3.3 Conjugation of a Complex Number
The complex conjugate of a complex number is obtained merely by changing the sign of the number’s
imaginary part. So, if we denote C* as the complex conjugate of the number C = R + jI = Mejø, then
C* is expressed as

(A-16)

There are three characteristics of conjugates that occasionally come in handy. First, the conjugate of a



product is equal to the product of the conjugates. That is, if C = C1C2, then from Eq. (A-13)
(A-17)

Second, the sum of conjugates of two complex numbers is equal to the conjugate of the sum. We can
show this in rectangular form as

(A-17′)

Third, the product of a complex number and its conjugate is the complex number’s magnitude squared.
It’s easy to prove this in exponential form as

(A-18)

(This property is often used in digital signal processing to determine the relative power of a complex
sinusoidal phasor represented by Mejωt.)

A.3.4 Division of Complex Numbers
The division of two complex numbers is also convenient using the exponential and magnitude and
angle forms, such as

(A-19)

and
(A-19′)

Although not nearly so handy, we can perform complex division in rectangular notation by multiplying
the numerator and the denominator by the complex conjugate of the denominator as

(A-20)

A.3.5 Inverse of a Complex Number



A special form of division is the inverse, or reciprocal, of a complex number. If C = Mejø, its inverse
is given by

(A-21)

In rectangular form, the inverse of C = R + jI is given by
(A-22)

We obtain Eq. (A-22) by substituting R1 = 1, I1 = 0, R2 = R, and I2 = I in Eq. (A-20).

A.3.6 Complex Numbers Raised to a Power

Raising a complex number to some power is easily done in the exponential form. If C = Mejø, then
(A-23)

For example, if C = 3ej125°, then C cubed is
(A-24)

We conclude this appendix with four complex arithmetic operations that are not very common in
digital signal processing—but you may need them sometime.

A.3.7 Roots of a Complex Number
The kth root of a complex number C is the number that, multiplied by itself k times, results in C. The
exponential form of C is the best way to explore this process. When a complex number is represented
by C = Mejø, remember that it can also be represented by

(A-25)

In this case, the variable ø in Eq. (A-25) is in degrees. There are k distinct roots when we’re finding
the kth root of C. By “distinct,” we mean roots whose exponents are less than 360°. We find those
roots by using the following:

(A-26)

Next, we assign the values 0, 1, 2, 3, . . ., k–1 to n in Eq. (A-26) to get the k roots of C. OK, we need
an example here! Let’s say we’re looking for the cube (third) root of C = 125ej(75°). We proceed as
follows:

(A-27)

Next we assign the values n = 0, n = 1, and n = 2 to Eq. (A-27) to get the three roots of C. So the
three distinct roots are



and

A.3.8 Natural Logarithms of a Complex Number

Taking the natural logarithm of a complex number C = Mejø is straightforward using exponential
notation; that is,

(A-28)

where 0 ≤ ø < 2π. By way of example, if C = 12ejπ/4, the natural logarithm of C is
(A-29)

This means that e(2.485 + j0.785) = e2.485 · ej0.785 = 12ejπ/4.
Before leaving this topic of the natural logarithm of complex numbers, we remind the reader that ejπ =
–1, which allows us to write

(A-30)

showing how the natural logarithm of a negative real number is defined.
As an interesting aside, rearranging the ejπ = –1 expression enables us to write what many
mathematicians call “the most beautiful formula in mathematics.” That equation is

(A-31)

Equation (A-31) is famous because the natural constants e, π, 0, and 1, along with the fundamental
operations of addition, multiplication, exponentiation, the “j” operator, and equality, all appear
exactly once!

A.3.9 Logarithm to the Base 10 of a Complex Number

We can calculate the base 10 logarithm of the complex number C = Mejø using
(A-32)

† For the second term of the result in Eq. (A-32) we used loga(xn) = n·logax according to the law of logarithms.

Of course e is the irrational number, approximately equal to 2.71828, whose log to the base 10 is
approximately 0.43429. Keeping this in mind, we can simplify Eq. (A-32) as

(A-32′)

Repeating the above example with C = 12ejπ/4 and using the Eq. (A-32′) approximation, the base 10
logarithm of C is



(A-33)

The result from Eq. (A-33) means that
(A-33′)

A.3.10 Log to the Base 10 of a Complex Number Using Natural Logarithms
Unfortunately, some software mathematics packages have no base 10 logarithmic function and can
calculate only natural logarithms. In this situation, we just use

(A-34)

to calculate the base 10 logarithm of x. Using this change of base formula, we can find the base 10
logarithm of a complex number C = Mejø; that is,

(A-35)

Because log10(e) is approximately equal to 0.43429, we use Eq. (A-35) to state that
(A-36)

Repeating, again, the example above of C = 12ejπ/4, the Eq. (A-36) approximation allows us to take
the base 10 logarithm of C using natural logs as

(A-37)

giving us the same result as Eq. (A-32).

A.4 Some Practical Implications of Using Complex Numbers
At the beginning of Section A.3, we said that the choice of using the rectangular versus the polar form
of representing complex numbers depends on the type of arithmetic operations we intend to perform.
It’s interesting to note that the rectangular form has a practical advantage over the polar form when
we consider how numbers are represented in a computer. For example, let’s say we must represent
our complex numbers using a four-bit sign-magnitude binary number format. This means that we can
have integral numbers ranging from –7 to +7, and our range of complex numbers covers a square on
the complex plane as shown in Figure A-4(a) when we use the rectangular form. On the other hand, if
we used four-bit numbers to represent the magnitude of a complex number in polar form, those
numbers must reside on or within a circle whose radius is 7 as shown in Figure A-4(b). Notice how
the four shaded corners in Figure A-4(b) represent locations of valid complex values using the



rectangular form but are out of bounds if we use the polar form. Put another way, a complex number
calculation, yielding an acceptable result in rectangular form, could result in an overflow error if we
use polar notation in our computer. We could accommodate the complex value 7 + j7 in rectangular
form but not its polar equivalent, because the magnitude of that polar number is greater than 7.

Figure A-4 Complex integral numbers represented as points on the complex plane using a four-bit
sign-magnitude data format: (a) using rectangular notation; (b) using polar notation.

Although we avoid any further discussion here of the practical implications of performing complex
arithmetic using standard digital data formats, it is an intricate and interesting subject. To explore this
topic further, the inquisitive reader is encouraged to start with the references.
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Appendix B. Closed Form of a Geometric Series

In the literature of digital signal processing, we often encounter geometric series expressions like
(B-1)

or
(B-2)

Unfortunately, many authors make a statement like “and we know that” and drop Eqs. (B-1) or (B-2)
on the unsuspecting reader who’s expected to accept these expressions on faith. Assuming that you
don’t have a Ph.D. in mathematics, you may wonder exactly what arithmetic sleight of hand allows us
to arrive at Eqs. (B-1) or (B-2)? To answer this question, let’s consider a general expression for a
geometric series such as

(B-3)

where n, N, and p are integers and a and r are any constants. Multiplying Eq. (B-3) by r gives us
(B-4)

Subtracting Eq. (B-4) from Eq. (B-3) gives the expression

S – Sr = S(1 − r) = arp – arN,
or

(B-5)

So here’s what we’re after. The closed form of the series is
(B-6)

(By “closed form,” we mean taking an infinite series and converting it to a simpler mathematical form
without the summation.) When a = 1, Eq. (B-6) validates Eq. (B-1). We can quickly verify Eq. (B-6)
with an example. Letting N = 5, p = 0, a = 2, and r = 3, for example, we can create the following list:



Plugging our example N, p, a, and r values into Eq. (B-6),
(B-7)

which equals the sum of the rightmost column in the list above.
As a final step, the terms of our earlier Eq. (B-2) are in the form of Eq. (B-6) as p = 0, a = 1, and r =
e–j2πm/N.† So plugging those terms from Eq. (B-2) into Eq. (B-6) gives us
† From the math identity axy = (ax)y, we can say e–j2πnm/N = (e–j2πm/N)n, so r = e–j2πm/N.

(B-8)

confirming Eq. (B-2).





Appendix C. Time Reversal and the DFT

The notion of time reversal in discrete systems occasionally arises in the study of the discrete Fourier
transform (DFT), the mathematical analysis of digital filters, and even in practice (straight time
reversal is used in a digital filtering scheme described in Section 13.12). We give the topic of time
reversal some deserved attention here because it illustrates one of the truly profound differences
between the worlds of continuous and discrete systems. In addition, the spectral effects of reversing a
time sequence are (in my opinion) not obvious and warrant investigation.
Actually, in discrete-time systems there are two forms of time reversal we need to think about.
Consider the 6-point x(n) time-domain sequence

(C-1)

Due to the periodicity properties of discrete sampled representations (discussed in Section 3.17), we
can depict the x(n) time sequence as samples on a circle as shown in Figure C-1(a). There we
arbitrarily assign positive time flow as counterclockwise rotation. (For our UK friends,
counterclockwise means your anticlockwise.)

Figure C-1 Circular representations of periodic sequences: (a) original x(n) sequence; (b) circular
time reversal of x(n).

Time reversal, as defined here for sequences that are treated as periodic, means traveling clockwise
around the circle (in the negative time direction), creating a new time sequence

(C-2)

We call xc(n) the circular time reversal of x(n), where the subscript “c” means circular reversal, and
depict xc(n) as in Figure C-1(b).

The interesting issue here is that for real N-point time sequences, the DFT of xc(n) is the complex
conjugate of the DFT of x(n). That is,

(C-3)

where the DFT index is 0 ≤ m ≤ N–1. Due to the conjugate symmetry of DFTs of real sequences, we
should realize that X*(m) is a straight reversal of the X(m) samples.



Let’s illustrate Eq. (C-3) with an example. With X(m) representing the DFT of x(n), we can write
down X(m)’s m = 4 sample X(4) as

(C-4)

Because e–j2πk/6 has a period of 6, we can write Eq. (C-4) as
(C-5)

Next, let’s write down the (circular-reversed) Xc(m)’s m = 4-sample Xc(4) as
(C-6)

or
(C-7)

Replacing Xc(4)’s negative angles with their positive-angle equivalents yields
(C-8)

which is the conjugate of Eq. (C-5), demonstrating that X(m) and Xc(m) are complex conjugates.

An alternate time reversal concept, which we’ll call straight time reversal, is the simple reversal of
Eq. (C-1)’s x(n), yielding an xs(n) sequence

(C-9)

where the subscript “s” means straight reversal. For real N-point time sequences, the DFT of xs(n) is
(C-10)

We can demonstrate Eq. (C-10) the same way we did Eq. (C-3), but consider Figure C-2. There we
show the samples of repeated revolutions around the xc(n) circle in Figure C-1(b), indicating both the
6-point xs(n) and the 6-point xc(n) sequences. Notice how xs(n) is shifted backward in time by five
samples from xc(n).

Figure C-2 Periodic sequences xs(n) and xc(n).



Using the principle of the DFT’s shifting theorem from Section 3.6, we know that Xs(m) is equal to
Xc(m) times a linear phase shift of e–j2πm(5)/6 for our N = 6 example. So, in the general N-point
sequence case,

(C-11)

which validates Eq. (C-10).





Appendix D. Mean, Variance, and Standard Deviation

In our studies, we’re often forced to consider noise functions. These are descriptions of noise signals
that we cannot explicitly describe with a time-domain equation. Noise functions can be quantified,
however, in a worthwhile way using the statistical measures of mean, variance, and standard
deviation. Although here we only touch on the very broad and important field of statistics, we will
describe why, how, and when to use these statistical indicators, so that we can add them to our
collection of signal analysis tools. First we’ll determine how to calculate these statistical values for a
series of discrete data samples, cover an example using a continuous analytical function, and
conclude this appendix with a discussion of the probability density functions of several random
variables that are common in the field of digital signal processing. So let’s proceed by sticking our
toes in the chilly waters of the mathematics of statistics to obtain a few definitions.

D.1 Statistical Measures
Consider a continuous sinusoid having a frequency of fo Hz with a peak amplitude of Ap expressed by
the equation

(D-1)

Equation (D-1) completely specifies x(t)—that is, we can determine x(t)’s exact value at any given
instant in time. For example, when time t = 1/4fo, we know that x(t)’s amplitude will be Ap, and at the
later time t = 1/2fo, x(t)’s amplitude will be zero. On the other hand, we have no definite way to
express the successive values of a random function or of random noise.† There’s no equation like Eq.
(D-1) available to predict future noise-amplitude values, for example. (That’s why they call it random
noise.) Statisticians have, however, developed powerful mathematical tools to characterize several
properties of random functions. The most important of these properties have been given the names
mean, variance, and standard deviation.
† We define random noise to be unwanted, unpredictable disturbances contaminating a signal or a data sequence of interest.

Mathematically, the sample mean, or average, of N separate values of a sequence x, denoted xave, is
defined as[1]

(D-2)

Equation (D-2), already familiar to most people, merely states that the average of a sequence of N
numbers is the sum of those numbers divided by N. Graphically, the average can be depicted as that
value around which a series of sample values cluster, or congregate, as shown in Figure D-1. If the
eight values depicted by the dots in Figure D-1 represent some measured quantity and we applied
those values to Eq. (D-2), the average of the series is 5.17, as shown by the dotted line.

Figure D-1 Average of a sequence of eight values.



An interesting property of the average (mean value) of an x(n) sequence is that xave is the value that
makes the sum of the differences between x(n) and xave equal to zero. That is, the sum of the sequence
diff(n) = x(n) – xave is zero.

Now that we’ve defined average, another key definition is the variance of a sequence, σ2, defined as
(D-3)

Sometimes in the literature we’ll see σ2 defined with a 1/(N–1) factor before the summation instead
of the 1/N factor in Eq. (D-3). In a moment we’ll explain why this is so.
Variance is a very important concept because it’s the yardstick with which we measure, for example,
the effect of quantization errors and the usefulness of signal-averaging algorithms. It gives us an idea
how the aggregate values in a sequence fluctuate around the sequence’s average and provides us with
a well-defined quantitative measure of those fluctuations. Mathematicians call those fluctuations the
dispersion of the sequence. (Because the positive square root of the variance, the standard deviation,
is typically denoted as σ in the literature, we’ll use the conventional notation of σ2 for the variance.)
Equation (D-3) looks a bit perplexing if you haven’t seen it before. Its meaning becomes clear if we
examine it carefully. The x(1) – xave value in the bracket, for example, is the difference between the
x(1) value and the sequence average xave. For any sequence value x(n), the x(n) – xave difference,
which we denote as Δ(n), can be either positive or negative, as shown in Figure D-2. Specifically,
the differences Δ(1), Δ(2), Δ(3), and Δ(8) are negative because their corresponding sequence values
are below the sequence average shown by the dotted line. If we replace the x(n) – xave difference
terms in Eq. (D-3) with Δ(n) terms, the variance can be expressed as

(D-4)

Figure D-2 Difference values Δ(n) of the sequence in Figure D-1.



The reader might wonder why the squares of the differences are summed, instead of just the
differences themselves. This is because, by the very nature of the definition of xave, the sum of the
Δ(n) difference samples will always be zero. Because we need an unsigned measure of each
difference, we use the difference-squared terms as indicated by Eq. (D-4). In that way, individual
Δ(n) difference terms will contribute to the overall variance regardless of whether the difference is
positive or negative. Plugging the Δ(n) values from the example sequence in Figure D-2 into Eq. (D-
4), we get a variance value of 0.34. Another useful measure of a signal sequence is the square root of
the variance known as the standard deviation. Taking the square root of Eq. (D-3) to get the standard
deviation σ,

(D-5)

So far, we have three measurements to use in evaluating a sequence of values: the average xave, the
variance σ2, and the standard deviation σ. Where xave indicates around what constant level the
individual sequence values vary, σ2 is a measure of the magnitude of the noise fluctuations around the
average xave. If the sequence represents a series of random signal samples, we can say that xave

specifies the average, or constant, value of the signal. The variance σ2 is the magnitude squared, or
power, of the fluctuating component of the signal. The standard deviation, then, is an indication of the
magnitude of the fluctuating component of the signal.

D.2 Statistics of Short Sequences
In this section we discuss a subtle issue regarding the variance of a discrete sequence. The variance
Eq. (D-3) is only exactly correct if N is infinitely large. When N is a small number and we’re
computing an [x(4)–xave] term, for example, that [x(4)–xave] value is too highly influenced (biased) by
the single x(4) sample. This results in an [x(4)–xave] value that’s slightly smaller than it should be[2].
As such, Eq. (D-3) is often called a biased estimate of the true variance of x(n). Mathematicians have
determined that using a 1/(N–1) factor, called Bessel’s correction, before the summation in Eq. (D-3)
yields a more accurate estimation of the true variance of the infinite-length sequence x(n), when we
use only N samples of x(n) to estimate the true variance. That is,

(D-6)



Equation (D-6) is called an unbiased estimate of the variance of x(n). However, when N is greater
than, say, 100, as it often is in real-world applications, the difference between Eqs. (D-3) and (D-6)
will have little practical significance.
We can justify that claim by showing an example of the percent difference in using Eqs. (D-3) and (D-
6), as a function of the x(n) sequence length N, as the solid curve in Figure D-3. Considering the
unbiased variance to be correct (zero error), the solid error curve in Figure D-3 shows how much
smaller (negative percent error) the biased variance will be compared to the unbiased variance when
x(n) is Gaussian (to be described later) distributed random noise of unity variance. For instance, the
percent error between the biased and the unbiased variance estimates is roughly –1 percent when N =
100. The dashed curve in Figure D-3 is equal to –100 percent times the true x(n) variance divided by
N, so we can say that the percent error in using Eq. (D-3) compared to Eq. (D-6) is roughly

(D-7)

Figure D-3 Percent error in Eq. (D-3) relative to Eq. (D-6).

The bottom line here is that Eq. (D-6) should be considered for use in computing the variances of
discrete sequences when N is small. Section 13.35 discusses a computationally efficient, and
memory-saving, way to compute variances.

D.3 Statistics of Summed Sequences
Here we discuss the statistical effects of adding two sequences. This material has great utility in
noise-reduction operations. If we add two equal-length independent (uncorrelated) sequences q(n)
and r(n), such that

(D-8)

thanks to the good work of dead mathematicians we can say[3]:
• The average (mean) of the p(n) sequence is equal to the sum of the individual averages of the q(n)
and r(n) sequences.

• The variance of the p(n) sequence is equal to the sum of the individual variances of the q(n) and
r(n) sequences. That is,



This means that if we consider the variances of two signals as being measures of their noise
powers, then when two noisy signals are added, the resultant signal’s noise power is the sum of the
two individual noise powers.

• The variance of C · p(n) = C · q(n) + C · r(n), where C is a constant, is C2 times the variance of
the p(n) sequence, or

The above properties are related to a key characteristic of sampled signals that we can use for noise
reduction by way of averaging. Assume we have an infinitely long x(n) sequence contaminated with
uncorrelated noise, and the variance of x(n) is K. If we extract N blocks of samples from x(n), with
each block sequence being M samples in length, and average those N sequences, the variance of the
resultant single M-sample average sequence is

(D-9)

The square root of Eq. (D-9) yields the standard deviation of the single M-sample average sequence
as

(D-10)

where σx is the standard deviation of the original x(n) sequence.

As an example of Eq. (D-10), say that we have an x(n) sequence and compute the average of the first
N samples of x(n), x(0) through x(N–1), to produce an xave(0) sample. Next we compute the average
of the second set of N samples of x(n), x(N) through x(2N–1), to produce an xave(1) sample, and so
on. If the standard deviation of an x(n) sequence, having an average value of 10 and standard
deviation σx = 4, Figure D-4 shows the N = 4-point averaged xave(n) sequence having an average
value of 10 and a reduced standard deviation of σx/N = 4/2 = 2. Chapter 11 gives practical examples
of using Eq. (D-10) in real-world situations.

Figure D-4 xave(n) sequence when N = 4.



On a practical note, if xs(n) are signal samples and xn(n) are noise samples, we can think of the x(n)
samples in Eqs. (D-9) and (D-10) as being represented by x(n) = xs(n) + xn(n). The notion of
contaminating noise being uncorrelated means that all the xn(n) noise samples are independent from
each other, which implies that no information about any one noise sample can be determined from
knowledge of any of the other noise samples. This assumption is not always valid if a noisy x(n)
signal has been filtered. With lowpass filtering, adjacent noise samples will be correlated (their
amplitudes will be similar); the narrower the lowpass filter’s passband, the more adjacent noise
samples tend to be correlated. If the lowpass filter’s passband is wide relative to half the sample rate
(fs/2), then the correlation among noise samples will be low and the noise samples can be considered
uncorrelated. If the lowpass filter’s passband is very narrow relative to fs/2, then averaging is not as
effective as we might expect from Eqs. (D-9) and (D-10).
We have discussed many statistical measures of real-valued discrete sequences, so Table D-1
compiles what we’ve learned so far. The x(n) sequence in the table can be an information-carrying
signal, a noise-only signal, or a combination of the two.

Table D-1 Statistical Measures of Real-Valued Sequences

D.4 Standard Deviation (RMS) of a Continuous Sinewave
In computing the average power in electric circuits, for sinewave signals engineers often use a
parameter called the rms value of the sinewave. That parameter, xrms, for discrete samples is defined
as

(D-11)



The x(n)rms in Eq. (D-11) is the square root of the mean (average) of the squares of the sequence x(n).
For a continuous sinusoid x(t) = Apsin(2πft) = Apsin(ωt) whose average value is zero, xrms is xrms-sine
defined as

(D-12)

This xrms-sine expression is a lot easier to use for calculating average power dissipation in circuit
elements than performing the integral of more complicated expressions. When a signal’s average
value is zero, then its rms value is equal to the signal’s standard deviation. The variance of a
sinewave is, of course, the square of Eq. (D-12).
We’ve provided the equations for the mean (average) and variance of a sequence of discrete values,
introduced an expression for the standard deviation or rms of a sequence, and given an expression for
the rms value of a continuous sinewave. The next question is “How can we characterize random
functions for which there are no equations to predict their values and we have no discrete sample
values with which to work?” The answer is that we must use probability density functions. Before we
do that, in Section D.6, let’s first show how to use our statistical measures to estimate the signal-to-
noise ratio of a discrete signal.

D.5 Estimating Signal-to-Noise Ratios
Given the above statistics of sampled signals, we now discuss a widely used way to quantify the
quality of a noise-contaminated signal. By “quality” we mean the difference between listening to a
recording of the Beatles’ song “Hey Jude” on your iPod in a library and listening to the song while
standing next to a running jet engine. We quantify the quality of a noise-contaminated signal by
measuring, or estimating, its signal-power-to-noise-power ratio (SNR). The SNR of a signal is the
ratio of the power of the noise-free signal over the power of the noise, or

(D-13)

To illustrate the notion of SNR, the following list shows the SNRs (in dB) of a few common signal
processing devices:



The SNR of a signal can be estimated in either the time domain or the frequency domain. We discuss
those operations next.

D.5.1 Estimating SNR in the Time Domain
We can estimate, by way of time-domain measurement, the SNR of a signal based on time-domain
sample values. If xs(n) are real-valued signal samples and xn(n) are real-valued noise samples, the
SNR of a signal x(n) = xs(n) + xn(n) is

(D-14)

where the divide-by-N operations are shown for clarity but need not be performed because they
cancel in the numerator and denominator. If we know the variances of xs(n) and xn(n), we can express
the SNR of the fluctuating (AC) portion of a signal as

(D-15)

In practice signal powers can vary over many orders of magnitude. For example, military radar
systems transmit signals whose power is measured in megawatts, while the signal received by your
cell phone antenna is measured in microwatts. That’s 12 orders of magnitude! As such, it’s both
convenient and common to describe signal power and noise power logarithmically using decibels.
(Decibels are discussed in Appendix E.) We express signal-to-noise ratios measured in decibels (dB)
as

(D-16)

where the SNR term in Eq. (D-16) is the SNR value from Eqs. (D-14) or (D-15). If we know the rms
values of xs(n) and xn(n), then we can express a signal’s SNR in dB as



(D-17)

Because the ratio in Eq. (D-17) is in terms of amplitudes (voltages or currents), rather than powers,
we’re forced to use the factor of 20 in computing SNRdB based on rms values. If we know the
standard deviations of xs(n) and xn(n), we can express the SNR of the fluctuating (AC) portion of a
signal in dB as

(D-18)

The values for linear SNR, Eq. (D-14), are always positive, but values for SNRdB can be positive or
negative. For example, if a signal’s linear SNR is 4, then its SNRdB is 10 · log10(4) = 6 dB. If a
signal’s linear SNR is 1/4, then its SNRdB is 10 · log10(1/4) = –6 dB.

D.5.2 Estimating SNR in the Frequency Domain
We can obtain a rough estimate of the SNR of a signal based on its frequency-domain characteristics.
The standard procedure for doing so is as follows: Assume we have N = 100 samples of the noisy
986 Hz real-valued x(n) sinusoid, where the sample rate is fs = 8 kHz, as shown in Figure D-5(a).
After performing a 100-point DFT, and computing the spectral magnitude-squared sample values, we
obtain the positive-frequency |X(m)|2 power spectral samples depicted in Figure D-5(b).

Figure D-5 SNR estimation example: (a) noisy time-domain sinusoid; (b) 100-point DFT power
samples.

Next we determine a Threshold power value, the dashed line in Figure D-5(b), above which only
signal-related power samples exist and below which are the noise-only power samples. The
estimated SNR of x(n) is then

(D-19)



The SNR measured in dB is found using
(D-20)

There are several practical topics to keep in mind when estimating SNR by way of frequency-domain
samples:

• For computational-efficiency reasons, the length of x(n) should be an integer power of two so that
fast Fourier transforms (FFTs) can be used to obtain an |X(m)|2 sequence.

• Due to the spectral symmetry of real-only time samples, we need only examine the |X(m)|2 power
samples in the range 0 ≤ m ≤ N/2, i.e., positive frequency.

• The Threshold value should be set such that as many of the signal power samples as possible,
including any harmonics of the fundamental signal, are above that Threshold value.

• If we repeat our SNR estimation computation on multiple non-overlapping N-sample x(n)
sequences, we’ll see a noticeable variation (variance) in the various SNR estimation results. To
improve the accuracy, and repeatability, of our SNR estimation it’s prudent to collect many blocks
of N-sample x(n) sequences and perform many FFTs to compute multiple |X(m)| magnitude
sequences. Then those multiple |X(m)| sequences are averaged before computing a single |X(m)|2
power sequence for use in Eq. (D-19). The idea is to improve the accuracy (reduce the variance)
of our SNR estimations by way of averaging as indicated by Eq. (D-2).

D.5.3 Controlling Test Signal SNR in Software
For completeness, below are methods for adjusting the SNR of a real-valued discrete test signal
generated in software. Here’s what we mean. Assume we have generated a noise-contaminated zero-
mean signal sequence x(n) = xs(n) + xn(n), where xs(n) are noise-free signal samples and xn(n) are
noise-only samples. We can adjust the SNR of x(n) to a desired value of SNRnew, measured in dB, by
scaling the xn(n) noise samples as

(D-21)

where
(D-22)

So the SNR of the new xnew(n) = xs(n) + xn,new(n) sequence will be SNRnew dB where the original
xs(n) noise-free samples remain unchanged. Notice that the ratio in Eq. (D-22) is the linear (not dB)
SNR of the original x(n) sequence.
In a similar manner, we scale the original xs(n) noise-free samples as

(D-23)



so that the SNR of the new xnew(n) = xs,new(n) + xn(n) sequence will be the desired SNRnew dB. In this
case the original xn(n) noise samples remain unchanged.

D.6 The Mean and Variance of Random Functions
To determine the mean or variance of a random function, we use what’s called the probability density
function. The probability density function (PDF) is a measure of the likelihood of a particular value
occurring in some function. We can explain this concept with simple examples of flipping a coin or
throwing dice as illustrated in Figures D-6(a) and (b). The result of flipping a coin can only be one of
two possibilities: heads or tails. Figure D-6(a) indicates this PDF and shows that the probability
(likelihood) is equal to one-half for both heads and tails. That is, we have an equal chance of the coin
side facing up being heads or tails. The sum of those two probability values is one, meaning that
there’s a 100 percent probability that either a head or a tail will occur.

Figure D-6 Simple probability density functions: (a) probability of flipping a single coin; (b)
probability of a particular sum of the upper faces of two dice; (c) probability of the order of birth of

the girl and her sibling.

Figure D-6(b) shows the probability of a particular sum of the upper faces when we throw a pair of
dice. This probability function is not uniform because, for example, we’re six times more likely to
have the die faces sum to seven than sum to two (snake eyes).
We can say that after tossing the dice a large number of times, we should expect that 6/36 = 16.7
percent of those tosses would result in sevens, and 1/36 = 2.8 percent of the time we’ll get snake
eyes. The sum of those 11 probability values in Figure D-6(b) is also one, telling us that this PDF
accounts for all (100 percent) of the possible outcomes of throwing the dice.
The fact that PDFs must account for all possible result conditions is emphasized in an interesting way
in Figure D-6(c). Suppose a woman says, “Of my two children, one is a girl. What’s the probability
that my daughter has a sister?” Be careful now—curiously enough, the answer to this controversial
question is not a 50-50 chance. There are more possibilities to consider than the girl just having a
brother or a sister. We can think of all the possible combinations of birth order of two children such
that one child is a girl. Because we don’t know the gender of the first-born child, there are three
gender order possibilities: girl, then boy; boy, then girl; and girl, then girl as shown in Figure D-6(c).
So the possibility of the daughter having a sister is 1/3 instead of 1/2! (Believe it.) Again, the sum of



those three 1/3rd probability values is one.
Two important features of PDFs are illustrated by the examples in Figure D-6: PDFs are always
positive and the area under their curves must be equal to unity. The very concept of PDFs make them
a positive likelihood that a particular result will occur, and the fact that some result must occur is
equivalent to saying that there’s a probability of one (100 percent chance) that we’ll have that result.
For continuous probability density functions, p(x), we indicate these two characteristics by

(D-24)

and
(D-25)

In Section D.1 we illustrated how to calculate the average (mean) and variance of discrete samples.
We can also determine these statistical measures for a random function x if we know the PDF of that
function. Using μx to denote the average of a random function of x, μx is defined as

(D-26)

and the variance of x is defined as[4]
(D-27)

In digital signal processing, we’ll encounter continuous probability density functions that are uniform
in value similar to the examples in Figure D-3. In these cases it’s easy to use Eqs. (D-26) and (D-27)
to determine their average and variance. Figure D-7 illustrates a uniform continuous PDF indicating a
random function whose values have an equal probability of being anywhere in the range from –a to b.

Figure D-7 Continuous uniform probability density function.

From Eq. (D-25) we know that the area under the curve must be unity (i.e., the probability is 100
percent that the value will be somewhere under the curve). So the amplitude of p(x) must be the area
divided by the width, or p(x) = 1/(b + a). From Eq. (D-26) the average of this p(x) is

(D-28)



which happens to be the midpoint in the range from –a to b. The variance of the PDF in Figure D-7 is
(D-29)

We use the results of Eqs. (D-28) and (D-29) in Chapter 9 to analyze the errors induced by
quantization from analog-to-digital converters, and the effects of finite word lengths of hardware
registers.

D.7 The Normal Probability Density Function
A probability density function (PDF) that’s so often encountered in nature deserves our attention. This
function is so common that it’s actually called the normal PDF and is also sometimes called the
Gaussian PDF. (A scheme for generating discrete data to fit this function is discussed in Section
13.12.)
This function, whose shape is shown in Figure D-8, is important because random data having this
distribution is very useful in testing both software algorithms and hardware processors. The normal
PDF is defined mathematically by

Figure D-8 A normal PDF with mean = μx and standard deviation = σ.

(D-30)



The area under the curve is one and the percentages at the bottom of Figure D-8 tell us that, for
random functions having a normal distribution, there’s a 68.27 percent chance that any particular
value of x will differ from the mean by ≤σ. Likewise, 99.73 percent of all the x data values will be
within 3σ of the mean μx.
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Appendix E. Decibels (dB and dBm)

This appendix introduces the logarithmic function used to improve the magnitude resolution of
frequency-domain plots when we evaluate signal spectra, digital filter magnitude responses, and
window function magnitude responses. When we use a logarithmic function to plot signal levels in the
frequency domain, the vertical axis unit of measure is decibels.

E.1 Using Logarithms to Determine Relative Signal Power
In discussing decibels, it’s interesting to see how this unit of measure evolved. When comparing
continuous (analog) signal levels, early specialists in electronic communications found it useful to
define a measure of the difference in powers of two signals. If that difference was treated as the
logarithm of a ratio of powers, it could be used as a simple additive measure to determine the overall
gain or loss of cascaded electronic circuits. The positive logarithms associated with system
components having gain could be added to the negative logarithms of those components having loss
quickly to determine the overall gain or loss of the system. With this in mind, the difference between
two signal power levels (P1 and P2), measured in bels, was defined as the base 10 logarithm of the
ratio of those powers, or

(E-1)

† The dimensionless unit of measure bel was named in honor of Alexander Graham Bell.

The use of Eq. (E-1) led to another evolutionary step because the unit of bel was soon found to be
inconveniently small. For example, it was discovered that the human ear could detect audio power
level differences of one-tenth of a bel. Measured power differences smaller than one bel were so
common that it led to the use of the decibel (bel/10), effectively making the unit of bel obsolete. The
decibel (dB), then, is a unit of measure of the relative power difference of two signals defined as

(E-2)

The logarithmic function 10·log10(P1/P2), plotted in Figure E-1, doesn’t seem too beneficial at first
glance, but its application turns out to be very useful. Notice the large change in the function’s value
when the power ratio (P1/P2) is small, and the gradual change when the ratio is large. The effect of
this nonlinearity is to provide greater resolution when the ratio P1/P2 is small, giving us a good way
to recognize very small differences in the power levels of signal spectra, digital filter responses, and
window function frequency responses.

Figure E-1 Logarithmic decibel function of Eq. (E-2).



Let’s demonstrate the utility of the logarithmic function’s variable resolution. First, remember that the
power of any frequency-domain sequence representing signal magnitude |X(m)| is proportional to
|X(m)| squared. For convenience, the proportionality constant is assumed to be one, so we say the
power of |X(m)| is

(E-3)

Although Eq. (E-3) may not actually represent power (in watts) in the classical sense, it’s the
squaring operation that’s important here, because it’s analogous to the traditional magnitude squaring
operation used to determine the power of continuous signals. (Of course, if X(m) is complex, we can
calculate the power spectrum sequence using |X(m)|2 = Xreal(m)2 + Ximag(m)2.) Taking ten times the log
of Eq. (E-3) allows us to express a power spectrum sequence XdB(m) in dB as

(E-4)

Because log(x2) = log(x) + log(x) = 2log(x), we can eliminate the squaring operation in Eq. (E-4) by
doubling the factor of ten and represent the power spectrum sequence by the expression

(E-5)

Without the need for the squaring operation, Eq. (E-5) is a more convenient way than Eq. (E-4) to
calculate the XdB(m) power spectrum sequence from the X(m) sequence.
Equations (E-4) and (E-5), then, are the expressions used to convert a linear magnitude axis to a
logarithmic magnitude-squared, or power, axis measured in dB. What we most often see in the
literature are normalized log magnitude spectral plots where each value of |X(m)|2 is divided by the
first |X(0)|2 power value (for m = 0), as

(E-6)

The division by the |X(0)|2 or |X(0)| value always forces the first value in the normalized log



magnitude sequence XdB(m) equal to 0 dB.† This makes it easy for us to compare multiple log
magnitude spectral plots. To illustrate, let’s look at the frequency-domain representations of the
Hanning and triangular window functions. The magnitudes of those frequency-domain functions are
plotted on a linear scale in Figure E-2(a) where we’ve arbitrarily assigned their peak values to be 2.
Comparing the two linear scale magnitude sequences, WHanning(m) and Wtriangular(m), we can see some
minor differences between their magnitude values. If we’re interested in the power associated with
the two window functions, we square the two magnitude functions and plot them on a linear scale as
in Figure E-2(b). The difference between the two window functions’ power sequences is impossible
to see above the frequency of, say, m = 8 in Figure E-2(b). Here’s where the dB scale helps us out. If
we plot the normalized log magnitude versions of the two magnitude-squared sequences on a
logarithmic dB scale using Eq. (E-6), the difference between the two functions will become obvious.
† That’s because log10(|X(0)|/|X(0)|) = log10(1) = 0.

Figure E-2 Hanning (white squares) and triangular (black squares) window functions in the
frequency domain: (a) magnitude responses using a linear scale; (b) magnitude-squared responses

using a linear scale; (c) log magnitude responses using a normalized dB scale.



Normalization, in the case of the Hanning window, amounts to calculating the log magnitude sequence
normalized over |WHanning(0)| as

(E-7)

The normalized log magnitude sequences are plotted in Figure E-2(c). We can now clearly see the
difference in the magnitude-squared window functions in Figure E-2(c) as compared to the linear
plots in Figure E-2(b). Notice how normalization forced the peak values for both log magnitude
functions in Figure E-2(c) to be zero dB. (The dots in Figure E-2 are connected by lines to emphasize
the sidelobe features of the two log magnitude sequences.)
Although we’ve shown the utility of dB plots using window function frequency responses as
examples, the dB scale is equally useful when we’re plotting signal-power spectra or digital filter



frequency responses. We can further demonstrate the dB scale using a simple digital filter example.
Let’s say we’re designing an 11-tap highpass FIR filter whose coefficients are shown in Figure E-
3(a). If the center coefficient h(5) is –0.48, the filter’s frequency magnitude response |H–0.48(m)| can
be plotted as the white dots on the linear scale in Figure E-3(b). Should we change h(5) from –0.48 to
–0.5, the new frequency magnitude response |H–0.5(m)| would be the black dots in Figure E-3(b). It’s
difficult to see much of a difference between |H–0.48(m)| and |H–0.5(m)| on a linear scale. If we used
Eq. (E-6) to calculate two normalized log magnitude sequences, they could be plotted as shown in
Figure E-3(c), where the filter sidelobe effects of changing h(5) from –0.48 to –0.5 are now easy to
see.

Figure E-3 FIR filter magnitude responses: (a) FIR filter time-domain coefficients; (b) magnitude
responses using a linear scale; (c) log magnitude responses using the dB scale.

E.2 Some Useful Decibel Numbers
If the reader uses dB scales on a regular basis, there are a few constants worth committing to memory.
A power difference of 3 dB corresponds to a power factor of two; that is, if the magnitude-squared



ratio of two different frequency components is 2, then from Eq. (E-2),
(E-8)

Likewise, if the magnitude-squared ratio of two different frequency components is 1/2, then the
relative power difference is –3 dB because

(E-9)

Table E-1 lists several magnitude and power ratios versus dB values that are worth remembering.
Keep in mind that decibels indicate only relative power relationships. For example, if we’re told that
signal A is 6 dB above signal B, we know that the power of signal A is four times that of signal B,
and that the magnitude of signal A is twice the magnitude of signal B. We may not know the absolute
power of signals A and B in watts, but we do know that the power ratio is PA/PB = 4.

Table E-1 Some Useful Logarithmic Relationships

E.3 Absolute Power Using Decibels
Let’s discuss another use of decibels that the reader may encounter in the literature. It’s convenient for
practitioners in the electronic communications field to measure continuous signal-power levels
referenced to a specific absolute power level. In this way, they can speak of absolute power levels in
watts while taking advantage of the convenience of decibels. The most common absolute power
reference level used is the milliwatt. For example, if P2 in Eq. (E-2) is a reference power level of
one milliwatt, then

(E-10)

The dBm unit of measure in Eq. (E-10) is read as “dB relative to a milliwatt.” Thus, if a continuous
signal is specified as having a power of 3 dBm, we know that the signal’s absolute power level is 2
times one milliwatt, or 2 milliwatts. Likewise, a –10 dBm signal has an absolute power of 0.1
milliwatts.†



† Other absolute reference power levels can be used. People involved with high-power transmitters sometimes use a single watt as their
reference power level. Their unit of power using decibels is the dBW, read as “dB relative to a watt.” In this case, for example, 3 dBW
is equal to a 2-watt power level.

The reader should take care not to inadvertently use dB and dBm interchangeably. They mean very
different things. Again, dB is a relative power level relationship, and dBm is an absolute power level
in milliwatts.





Appendix F. Digital Filter Terminology

The first step in becoming familiar with digital filters is to learn to speak the language used in the
filter business. Fortunately, the vocabulary of digital filters corresponds very well to the mother
tongue used for continuous (analog) filters—so we don’t have to unlearn anything that we already
know. This appendix is an introduction to the terminology of digital filters.
Allpass filter—an IIR filter whose magnitude response is unity over its entire frequency range, but

whose phase response is variable. Allpass filters are typically appended in a cascade arrangement
following a standard IIR filter, H1(z), as shown in Figure F-1.

Figure F-1 Typical use of an allpass filter.

An allpass filter, Hap(z), can be designed so that its phase response compensates for, or equalizes,
the nonlinear phase response of an original IIR filter[1–3]. Thus, the phase response of the
combined filter, Hcombined (z), is more linear than the original H1(z), and this is particularly
desirable in communications systems. In this context, an allpass filter is sometimes called a phase
equalizer.
Allpass filters have the property that the numerator polynomial coefficients in the filter’s H(z)
transfer function are a reverse-order version of the denominator polynomial coefficients. For
example, the following transfer function describes a 2nd-order allpass filter:

(F-1)

where the numerator polynomial coefficients are [B, A, 1] and the denominator polynomial
coefficients are [1, A, B].

Attenuation—an amplitude loss, usually measured in dB, incurred by a signal after passing through a
digital filter. Filter attenuation is the ratio, at a given frequency, of the signal amplitude at the output
of the filter divided by the signal amplitude at the input of the filter, defined as

(F-2)

For a given frequency, if the output amplitude of the filter is smaller than the input amplitude, the
ratio in Eq. (F-2) is less than one, and the attenuation is a negative number.

Band reject filter—a filter that rejects (attenuates) one frequency band and passes both a lower- and
a higher-frequency band. Figure F-2(a) depicts the frequency response of an ideal band reject



filter. This filter type is sometimes called a notch filter.
Figure F-2 Filter symbols and frequency responses: (a) band reject filter; (b) bandpass filter.

Bandpass filter—a filter, as shown in Figure F-2(b), that passes one frequency band and attenuates
frequencies above and below that band.

Bandwidth—the frequency width of the passband of a filter. For a lowpass filter, the bandwidth is
equal to the cutoff frequency. For a bandpass filter, the bandwidth is typically defined as the
frequency difference between the upper and lower 3 dB points.

Bessel function—a mathematical function used to produce the most linear phase response of all IIR
filters with no consideration of the frequency magnitude response. Specifically, filter designs based
on Bessel functions have maximally constant group delay.

Butterworth function—a mathematical function used to produce maximally flat filter magnitude
responses with no consideration of phase linearity or group delay variations. Filter designs based
on a Butterworth function have no amplitude ripple in either the passband or the stopband.
Unfortunately, for a given filter order, Butterworth designs have the widest transition region of the
most popular filter design functions.

Cascaded filters—a filtering system where multiple individual filters are connected in series; that is,
the output of one filter drives the input of the following filter as illustrated in Figures F-1 and 6-
37(a).

Center frequency (f0)—the frequency lying at the midpoint of a bandpass filter. Figure F-2(b) shows
the fo center frequency of a bandpass filter.

Chebyshev function—a mathematical function used to produce passband or stopband ripples
constrained within fixed bounds. There are families of Chebyshev functions based on the amount of
ripple, such as 1 dB, 2 dB, and 3 dB of ripple. Chebyshev filters can be designed to have a
frequency response with ripples in the passband and a flat stopband (Chebyshev Type I), or flat
passbands and ripples in the stopband (Chebyshev Type II). Chebyshev filters cannot have ripples
in both the passband and the stopband. Digital filters based upon Chebyshev functions have steeper
transition region roll-off but more nonlinear-phase response characteristics than, say, Butterworth
filters.

CIC filter—cascaded integrator-comb filter. CIC filters are computationally efficient, linear-phase,



recursive, FIR, lowpass filters used in sample rate change applications. Those filters are discussed
in Chapter 10.

Coefficients—see filter coefficients.
Cutoff frequency—the highest passband frequency for lowpass filters (and the lower passband

frequency for highpass filters) where the magnitude response is within the peak-peak passband
ripple region. Figure F-3 illustrates the fc cutoff frequency of a lowpass filter.

Figure F-3 A lowpass digital filter frequency response. The stopband relative amplitude is –20 dB.

Decibels (dB)—a unit of attenuation, or gain, used to express the relative voltage or power between
two signals. For filters, we use decibels to indicate cutoff frequencies (−3 dB) and stopband signal
levels (−20 dB) as illustrated in Figure F-3. Appendix E discusses decibels in more detail.

Decimation filter—a lowpass digital FIR filter where the output sample rate is less than the filter’s
input sample rate. As discussed in Section 10.1, to avoid aliasing problems, the output sample rate
must not violate the Nyquist criterion.

Digital filter—computational process, or algorithm, transforming a discrete sequence of numbers (the
input) into another discrete sequence of numbers (the output) having a modified frequency-domain
spectrum. Digital filtering can be in the form of a software routine operating on data stored in
computer memory or can be implemented with dedicated hardware.

Elliptic function—a mathematical function used to produce the sharpest roll-off for a given number of
filter taps. However, filters designed by using elliptic functions, also called Cauer filters, have the
poorest phase linearity of the most common IIR filter design functions. The ripples in the passband
and stopband are equal with elliptic filters.

Envelope delay—see group delay.
Filter coefficients—the set of constants, also called tap weights, used to multiply against delayed

signal sample values within a digital filter structure. Digital filter design is an exercise in
determining the filter coefficients that will yield the desired filter frequency response. For an FIR
filter, by definition, the filter coefficients are the impulse response of the filter.

Filter order—a number describing the highest exponent in either the numerator or denominator of the
z-domain transfer function of a digital filter. For tapped-delay line FIR filters, there is no



denominator in the transfer function and the filter order is merely the number of delay elements
used in the filter structure. Generally, the larger the filter order, the better the frequency-domain
performance, and the higher the computational workload, of the filter.

Finite impulse response (FIR) filter—defines a class of digital filters that have only zeros on the z-
plane. The key implications of this are: (1) FIR filter impulse responses have finite time durations,
(2) FIR filters are always stable, and (3) FIR filters can have exactly linear phase responses (so
long as the filters’ impulse response samples are symmetrical, or antisymmetrical). For a given
filter order, digital FIR filters have a much more gradual transition region roll-off (poorer
performance) than digital IIR filters. FIR filters can be implemented with both nonrecursive
(tapped-delay line) and recursive (CIC filters, for example) structures.

Frequency magnitude response—a frequency-domain description of how a filter interacts with input
signals. The frequency magnitude response in Figure F-3 is a curve of filter attenuation (in dB)
versus frequency. Associated with a filter’s magnitude response is a phase response.

Group delay—the negative of the derivative of a filter’s frequency-domain phase response with
respect to frequency, G(ω) = –d(Hø(ω))/d(ω). If a filter’s complex frequency response is
represented in polar form as

(F-3)

where digital frequency ω is continuous and ranges from –π to π radians/sample, corresponding to
a cyclic frequency range of –fs/2 to fs/2 Hz, then the filter’s group delay is defined as

(F-4)

Because the dimensions of Hø(ω) are radians, and the dimensions of ω are radians/sample, the
dimensions of group delay G(ω) are time measured in samples.
If a filter’s complex frequency response is expressed in terms of a normalized frequency variable
as

(F-5)

where frequency f is continuous and is in the range of –0.5 ≤ f ≤ 0.5, then the group delay G(f) is
defined as

(F-6)

The concept of group delay deserves additional explanation beyond a simple algebraic definition.
For an ideal lowpass filter, for example, the frequency-domain phase response will be linear and
the group delay would be constant. Group delay can also be thought of as the propagation time
delay of the envelope (the information) of an amplitude-modulated (AM) signal as it passes



through a digital filter. (In this context, group delay is often called envelope delay.) If a filter’s
passband group delay is not constant (a nonlinear-phase filter), then group delay distortion occurs
because signals at different frequencies take different amounts of time (a different number of
sample time intervals) to pass through the filter.

Half-band filter—a type of FIR filter whose transition region is centered at one-quarter of the
sampling rate, or fs/4. Specifically, the end of the passband and the beginning of the stopband are
equally spaced about fs/4. Due to their frequency-domain symmetry, half-band filters are often used
in decimation filtering schemes because half of their time-domain coefficients are zero. This
reduces the number of necessary filter multiplications, as described in Section 5.7.

Highpass filter—a filter that passes high frequencies and attenuates low frequencies, as shown in
Figure F-4(a). We’ve all experienced a kind of highpass filtering in our living rooms. Notice what
happens when we turn up the treble control (or turn down the bass control) on our home stereo
systems. The audio amplifier’s normally flat frequency response changes to a kind of analog
highpass filter, giving us that sharp and tinny sound as the high-frequency components of the music
are being accentuated.

Figure F-4 Filter symbols and frequency responses: (a) highpass filter; (b) low pass filter.

Impulse response—a digital filter’s time-domain output sequence when the input is a single unity-
valued sample (impulse) preceded and followed by zero-valued samples. A digital filter’s
frequency-domain response can be calculated by taking the discrete Fourier transform of the filter’s
time-domain impulse response[4].

Infinite impulse response (IIR) filter—a class of digital filters that may have both zeros and poles
on the z-plane. As such, IIR filters are not guaranteed to be stable and almost always have
nonlinear phase responses. For a given filter order (number of IIR feedback taps), IIR filters have a
much steeper transition region roll-off than digital FIR filters.

Linear-phase filter—a filter that exhibits a constant change in phase angle (degrees) as a function of
frequency. The resultant filter phase plot versus frequency is a straight line. As such, a linear-phase
filter’s group delay is a constant. To preserve the integrity of their information-carrying signals,
linear phase is an important criterion for filters used in communications systems.

Lowpass filter—a filter that passes low frequencies and attenuates high frequencies as shown in
Figure F-4(b). By way of example, we experience lowpass filtering when we turn up the bass



control (or turn down the treble control) on our home stereo systems, giving us that dull, muffled
sound as the high-frequency components of the music are being attenuated.

Nonrecursive filter—a digital filter implementation where no filter output sample is ever retained
for later use in computing a future filter output sample. Such filters have no “feedback” signal
paths.

Notch filter—see band reject filter.
Order—see filter order.
Passband—that frequency range over which a filter passes signal energy with minimum attenuation,

usually defined as the frequency range where the magnitude response is within the peak-peak
passband ripple region, as depicted in Figure F-3.

Passband ripple—peak-peak fluctuations, or variations, in the frequency magnitude response within
the passband of a filter as illustrated in Figure F-3.

Phase response—the difference in phase, at a particular frequency, between an input sinewave and
the output sinewave at that frequency. The phase response, sometimes called phase delay, is
usually depicted by a curve showing the filter’s phase shift versus frequency. Section 5.8 discusses
digital filter phase response in more detail.

Phase wrapping—an artifact of arctangent software routines, used to calculate phase angles, that
causes apparent phase discontinuities. When a true phase angle is in the range of –180o to –360o,
some software routines automatically convert those angles to their equivalent positive angles in the
range of 0o to +180o. Section 5.8 illustrates an example of phase wrapping when the phase of an
FIR filter is calculated.

Quadrature filter—a dual-path digital filter operating on complex signals, as shown in Figure F-5.
One filter operates on the in-phase i(n) data, and the other filter processes the quadrature-phase
q(n) signal data. Quadrature filtering is normally performed on complex signals, whose spectra are
centered at zero Hz, using lowpass digital filters.

Figure F-5 Two lowpass filters used to implement quadrature filtering.

Recursive filter—a digital filter implementation where current filter output samples are retained for
later use in computing future filter output samples. Such filters have “feedback” signal paths.

Relative attenuation—attenuation measured relative to the largest magnitude value. The largest
signal level (minimum attenuation) is typically assigned the reference level of zero dB, as depicted
in Figure F-3, making all other magnitude points on a frequency-response curve negative dB



values.
Ripple—refers to fluctuations (measured in dB) in the passband, or stopband, of a filter’s frequency-

response curve. Elliptic and Chebyshev-based filters have equiripple characteristics in that their
ripple is constant across their passbands. Bessel- and Butterworth-derived filters have no ripple in
their passband responses. Ripples in the stopband response are sometimes called out-of-band
ripple.

Roll-off—a term used to describe the steepness, or slope, of the filter response in the transition
region from the passband to the stopband. A particular digital filter may be said to have a roll-off
of 12 dB/octave, meaning that the second-octave frequency would be attenuated by 24 dB, and the
third-octave frequency would be attenuated by 36 dB, and so on.

Shape factor—a term used to indicate the steepness of a filter’s roll-off. Shape factor is normally
defined as the ratio of a filter’s passband width divided by the passband width plus the transition
region width. The smaller the shape factor value, the steeper the filter’s roll-off. For an ideal filter
with a transition region of zero width, the shape factor is unity. The term shape factor is also used
to describe analog filters.

Stopband—that band of frequencies attenuated by a digital filter. Figure F-3 shows the stopband of a
lowpass filter.

Structure—a fancy term meaning the block diagram, the signal-flow implementation, of a digital
filter. For example, lowpass moving average filters may be built (implemented) with both
nonrecursive structures and recursive structures.

Tap—a multiplication operation inside a digital filter that computes the product of a single data value
times a single filter coefficient.

Tap weights—see filter coefficients.
Tchebyschev function—see Chebyshev function.
Transfer function—a mathematical expression of the ratio of the output of a digital filter divided by

the input of the filter as expressed in a transform domain (e.g., z-domain, Laplace, frequency).
Given the transfer function, we can determine the filter’s frequency magnitude and phase responses.

Transition region—the frequency range over which a filter transitions from the passband to the
stopband. Figure F-3 illustrates the transition region of a lowpass filter. The transition region is
sometimes called the transition band.

Transversal filter—in the field of digital filtering, transversal filter is another name for FIR filters
implemented with the nonrecursive structures described in Chapter 5.

Zero-phase filter—an off-line (because it operates on a block of filter input samples) filtering
method which cancels the nonlinear phase response of an IIR filter. Section 13.12 details this non-
real-time filtering technique.
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Appendix G. Frequency Sampling Filter Derivations

While much of the algebra related to frequency sampling filters is justifiably omitted in the literature,
several derivations are included here for two reasons: first, to validate the equations used in Section
7.5; and second, to show the various algebraic acrobatics that may be useful in your future digital
signal processing analysis efforts.

G.1 Frequency Response of a Comb Filter
The frequency response of a comb filter is Hcomb(z) evaluated on the unit circle. We start by
substituting ejω for z in Hcomb(z) from Eq. (7-37), because z = ejω defines the unit circle, giving

(G-1)

Factoring out the half-angled exponential e–jωN/2, we have
(G-2)

Using Euler’s identity, 2jsin(α) = ejα – e–jα, we arrive at
(G-3)

Replacing j with ejπ/2, we have
(G-4)

Determining the maximum magnitude response of a filter is useful in DSP. Ignoring the phase shift
term (complex exponential) in Eq. (G-4), the frequency-domain magnitude response of a comb filter
is

(G-5)

with the maximum magnitude being 2.

G.2 Single Complex FSF Frequency Response
The frequency response of a single-section complex FSF is Hss(z) evaluated on the unit circle. We
start by substituting ejω for z in Hss(z), because z = ejω defines the unit circle. Given an Hss(z) of

(G-6)

we replace the z terms with ejω, giving
(G-7)



Factoring out the half-angled exponentials e–jωN/2 and e–j(ω/2 − πk/N), we have
(G-8)

Using Euler’s identity, 2jsin(α) = ejα – e–jα, we arrive at
(G-9)

Canceling common factors and rearranging terms in preparation for our final form, we have the
desired frequency response of a single-section complex FSF:

(G-10)

Next we derive the maximum amplitude response of a single-section FSF when its pole is on the unit
circle and H(k) = 1. Ignoring those phase shift factors (complex exponentials) in Eq. (G-10), the
amplitude response of a single-section FSF is

(G-11)

We want to know the value of Eq. (G-11) when ω = 2πk/N, because that’s the value of ω at the pole
locations, but |Hss(ejω)|ω=2πk/N is indeterminate as

(G-12)

Applying the Marquis de L’Hopital’s Rule to Eq. (G-11) yields
(G-13)

The phase factors in Eq. (G-10), when ω = 2πk/N, are
(G-14)



Combining the result of Eqs. (G-13) and (G-14) with Eq. (G-10), we have
(G-15)

So the maximum magnitude response of a single-section complex FSF at resonance is |H(k)|N,
independent of k.

G.3 Multisection Complex FSF Phase
This appendix shows how the (−1)k factors arise in Eq. (7-48) for an even-N multisection linear-
phase complex FSF. Substituting the positive-frequency, 0 ≤ k ≤ (N/2)–1, |H(k)|ejϕ(k) gain factors,
with ϕ(k) phase values from Eq. (7-46), into Eq. (7-45) gives

(G-16)

where the subscript “pf” means positive frequency. Focusing only on the numerator inside the
summation in Eq. (G-16), it is

(G-17)

showing how the (−1)k factors occur within the first summation of Eq. (7-48). Next we substitute the
negative-frequency |H(k)|ejϕ(k) gain factors, (N/2)+1 ≤ k ≤ N–1, with ϕ(k) phase values from Eq. (7-
46″), into Eq. (7-45), giving

(G-18)

where the subscript “nf” means negative frequency. Again, looking only at the numerator inside the
summation in Eq. (G-18), it is

(G-19)

That ejπN factor in Eq. (G-19) is equal to 1 when N is even, so we write
(G-20)

establishing both the negative sign before, and the (−1)k factor within, the second summation of Eq.
(7-48). To account for the single-section for the k = N/2 term (this is the Nyquist, or fs/2, frequency,
where ω = π), we plug the |H(N/2)|ej0 gain factor, and k = N/2, into Eq. (7-43), giving



(G-21)

G.4 Multisection Complex FSF Frequency Response
The frequency response of a guaranteed-stable complex N-section FSF, when r < 1, is Hgs,cplx(z) with
the z variable in Eq. (7-53) replaced by ejω, giving

(G-22)

To temporarily simplify our expressions, we let θ = ω − 2πk/N, giving
(G-23)

Factoring out the half-angled exponentials, and accounting for the r factors, we have
(G-24)

Converting all the terms inside parentheses to exponentials (we’ll see why in a moment), we have
(G-25)

The algebra gets a little messy here because our exponents have both real and imaginary parts.
However, hyperbolic functions to the rescue. Recalling when α is a complex number, sinh(α) = (eα –
e–α)/2, we have

(G-26)

Replacing angle θ with ω − 2πk/N, canceling the –2 factors, we have
(G-27)



Rearranging and combining terms, we conclude with
(G-28)

(Whew! Now we see why this frequency response expression is not usually found in the literature.)

G.5 Real FSF Transfer Function
The transfer function equation for the real-valued multisection FSF looks a bit strange at first glance,
so rather than leaving its derivation as an exercise for the reader, we show the algebraic acrobatics
necessary in its development. To preview our approach, we’ll start with the transfer function of a
multisection complex FSF and define the H(k) gain factors such that all filter poles are in conjugate
pairs. This will lead us to real-FSF structures with real-valued coefficients. With that said, we begin
with Eq. (7-53)’s transfer function of a guaranteed-stable N-section complex FSF of

(G-29)

Assuming N is even, and breaking Eq. (G-29)’s summation into parts, we can write
(G-30)

The first two ratios inside the brackets account for the k = 0 and k = N/2 frequency samples. The first
summation is associated with the positive-frequency range, which is the upper half of the z-plane’s
unit circle. The second summation is associated with the negative-frequency range, the lower half of
the unit circle.
To reduce the clutter of our derivation, let’s identify the two summations as

(G-31)

We then combine the summations by changing the indexing of the second summation as
(G-32)



Putting those ratios over a common denominator and multiplying the denominator factors, and then
forcing the H(N–k) gain factors to be complex conjugates of the H(k) gain factors, we write

(G-33)

where the “*” symbol means conjugation. Defining H(N-k) = H*(k) mandates that all poles will be
conjugate pairs and, as we’ll see, this condition converts our complex FSF into a real FSF with real-
valued coefficients. Plowing forward, because ej2π[N–k]/N = e–j2πN/Ne–j2πk/N = e–j2πk/N, we make that
substitution in Eq. (G-33), rearrange the numerator, and combine the factors of z-1 in the denominator
to arrive at

(G-34)

Next we define each complex H(k) in rectangular form with an angle ϕk, or H(k) = |H(k)|[cos(ϕk)
+jsin(ϕk)], and H*(k) = |H(k)|[cos(ϕk) –jsin(ϕk)]. Realizing that the imaginary parts of the sum cancel
so that H(k) + H*(k) = 2|H(k)|cos(ϕk) allows us to write

(G-35)

Recalling Euler’s identity, 2cos(α) = ejα + e–jα, and combining the |H(k)| factors leads to the final
form of our summation:

(G-36)

Substituting Eq. (G-36) for the two summations in Eq. (G-30), we conclude with the desired transfer
function

(G-37)



where the subscript “real” means a real-valued multisection FSF.

G.6 Type-IV FSF Frequency Response
The frequency response of a single-section even-N Type-IV FSF is its transfer function evaluated on
the unit circle. To begin that evaluation, we set Eq. (7-58)’s |H(k)| = 1, and denote a Type-IV FSF’s
single-section transfer function as

(G-38)

where the “ss” subscript means single-section. Under the assumption that the damping factor r is so
close to unity that it can be replaced with 1, we have the simplified FSF transfer function

(G-39)

Letting ωr = 2πk/N to simplify the notation and factoring HType-IV,ss(z)’s denominator gives
(G-40)

in which we replace each z term with ejω, as
(G-41)

Factoring out the half-angled exponentials, we have
(G-42)

Using Euler’s identity, 2jsin(α) = ejα – e–jα, we obtain
(G-43)

Canceling common factors, and adding like terms, we have
(G-44)



Plugging 2πk/N back in for ωr, the single-section frequency response is
(G-45)

Based on Eq. (G-45), the frequency response of a multisection even-N Type-IV FSF is
(G-46)

To determine the amplitude response of a single section, we ignore the phase shift terms (complex
exponentials) in Eq. (G-45) to yield

(G-47)

To find the maximum amplitude response at resonance we evaluate Eq. (G-47) when ω = 2πk/N,
because that’s the value of ω at the FSF’s pole locations. However, that ω causes the denominator to
go to zero, causing the ratio to go to infinity. We move on with one application of L’Hopital’s Rule to
Eq. (G-47) to obtain

(G-48)

Eliminating the πk terms by using trigonometric reduction formulas sin(πk–α) = (−1)k[-sin(α)] and
sin(πk+α) = (−1)k[sin(α)], we have a maximum amplitude response of

(G-49)

Equation (G-49) is only valid for 1 ≤ k ≤ (N/2)–1. Disregarding the (−1)k factors, we have a



magnitude response at resonance, as a function of k, of
(G-50)

To find the resonant gain at 0 Hz (DC) we set k = 0 in Eq. (G-47), apply L’Hopital’s Rule (the
derivative with respect to ω) twice, and set ω = 0, giving

(G-51)

To obtain the resonant gain at fs/2 Hz we set k = N/2 in Eq. (G-47), again apply L’Hopital’s Rule
twice, and set ω = π, yielding

(G-52)





Appendix H. Frequency Sampling Filter Design Tables

In Section 7.5 we described the so-called Type-IV frequency sampling filter (FSF). The tables in this
appendix provide a list of optimum transition coefficient values for the Case I (see Figure 7-44)
Type-IV lowpass FSFs of various passband bandwidths, over a range of values of N. Table H-1
provides the H(k) single transition coefficient and two transition coefficients for even values of N.
Table H-2 provides the H(k) three transition coefficients for even N. Table H-3 provides the H(k)
single transition coefficient and two transition coefficients for odd values of N, while Table H-4
provides the H(k) three transition coefficients for odd N.

Table H-1 Lowpass Type-IV FSF for Even N (One and Two Coefficients)





Table H-2 Lowpass Type-IV FSF for Odd N (One and Two Coefficients)







Table H-3 Lowpass Type-IV FSF for Even N (Three Coefficients)





Table H-4 Lowpass Type-IV FSF for Odd N (Three Coefficients)





The passband bandwidth in these tables, signified by the BW parameter, is the number of FSF sections
having unity-valued H(k) gain factors. For example, an N = 32 lowpass FSF using six passband
sections and a single transition region coefficient (T1) would have the H(k) gain values shown in
Figure H-1(a). In this case, the T1 coefficient would be found in Table H-1 for N = 32 at a bandwidth
BW = 6. An N = 23 lowpass FSF with five passband sections and two transition region coefficients
(T1 and T2) would have the H(k) gain values shown in Figure H-1(b). In this case, the T1 and T2
coefficients are found in Table H-2 for N = 23 at a bandwidth BW = 5. An additional parameter in the
tables is the maximum stopband sidelobe attenuation levels (Atten).

Figure H-1 Transition coefficient examples: (a) one coefficient for N = 32 and BW = 6; (b) two
coefficients for N = 23 and BW = 5.





Appendix I. Computing Chebyshev Window Sequences

Because detailed methods for computing Chebyshev window functions are not readily available in the
literature of DSP, here we provide the steps for computing these useful window sequences.
Below we provide methods for computing two types of Chebyshev window sequences. The first
window type yields symmetric window sequences, in which their first and last samples are equal.
That type of window is used in the Window Design Method of tapped-delay line FIR filter design.
The second Chebyshev window computation method produces nonsymmetric window sequences, in
which their first and last samples are not equal. That type of window is used for spectral leakage
reduction in spectrum analysis applications. (This nonsymmetric type of window has a Fourier
transform that is real-only.) I thank DSP guru Prof. Fredric J. Harris, San Diego State University, for
his personal guidance enabling the creation of the following procedures.

I.1 Chebyshev Windows for FIR Filter Design
Symmetric Chebyshev window sequences, used in the Window Design Method of tapped-delay line
FIR filters, are computed as follows:

1. Given a desired Chebyshev window sequence length of N, where N is an odd integer, define
integer M = N–1.

2. Define the window’s sidelobe-level control parameter as γ. The window’s sidelobe peak levels
will be –20γ dB below the main lobe’s peak level. (For example, if we desire frequency-domain
sidelobe levels to be 40 dB below the main lobe’s peak level, then we set γ = 2.)

3. Compute parameter α as
(I-1)

4. Compute the M-length sequence A(m) using
(I-2)

where the index m is 0 ≤ m ≤ (M–1).
5. For each m, evaluate the Mth-degree Chebyshev polynomial whose argument is A(m) to generate

a frequency-domain sequence W(m). There are many ways to evaluate Chebyshev polynomials.
Due to its simplicity of notation, we suggest the following:

(I-3)

or
(I-4)

depending on whether or not an individual |A(m)| value is greater than unity. In theory the resultant
W(m) sequence is real-only, but our software’s computational numerical errors may produce a



complex-valued W(m) with very small imaginary parts. Those imaginary parts, if they exist,
should be ignored. The above (−1)m factors are necessary because the frequency-domain index m
is never less than zero. Note: If your software does not accommodate complex values, then you
can avoid problems by replacing A(m) with |A(m)| in this step.

6. Compute a preliminary time-domain window sequence, w(m), using
w(m) = real part of the M-point inverse DFT of W(m).

7. Replace w(0), the first w(m) time sample, with w(0)/2.
8. Append that new w(0) sample value to the end of the M-point w(m) sequence, w(N–1) = w(0),

creating the desired N-length w(k) window sequence where the time index k is 0 ≤ k ≤ (N–1).
9. Normalize the amplitude of w(k), to obtain a unity peak amplitude, by dividing each sample of

w(k) from Step 8 by the maximum sample value in w(k).
The above procedure seems a bit involved but it’s not really so bad, as the following Chebyshev
window design example will show. Assume we need an N = 9-sample Chebyshev window function
whose frequency-domain sidelobes are 60 dB below the window’s main lobe level. Given those
requirements, N = 9, M = 8, γ = 3, and from Eq. (I-1)

α = cosh[cosh–1(103)/8] = 1.4863.
After the inverse DFT operation in the above Step 6, w(m = 0)/2 = 11.91, thus we set w(k = 0) = w(k
= 8) = 11.91. The maximum value of w(k) is 229.6323, so we divide the entire w(k) sequence by that
value, yielding our final normalized 9-sample symmetric Chebyshev window sequence listed in the
rightmost column of Table I-1.

Table I-1 Nine-Point Symmetric Chebyshev Window Computations

I.2 Chebyshev Windows for Spectrum Analysis
Nonsymmetric Chebyshev window sequences, used for spectral leakage reduction in spectrum
analysis applications, are computed using the above steps with the following changes:

• For a Q-length nonsymmetric Chebyshev window sequence, where Q is an even integer, in the
above Step 1 set M = Q.

• Skip the above Step 8, retaining the Q-length nonsymmetric w(k) sequence, where the time index k
is 0 ≤ k ≤ (Q–1). Normalize the amplitude of the w(k) sequence as described in the above Step 9.

If Q = 8, for example, our final γ = 3 normalized 8-sample nonsymmetric Chebyshev window
sequence would be the samples listed in the rightmost column of Table I-2.



Table I-2 Eight-Point Nonsymmetric Chebyshev Window Computations





Index

A
Absolute value, 9. See also Magnitude.
A/D converters, quantization noise

clipping, 706
crest factor, 640
dithering, 706–709
effective bits, 641
fixed-point binary word length, effects of, 634–642
oversampling, 704–706
reducing, 704–709
SNR (signal-to-noise ratio), 637–642, 711–714
triangular dither, 708

A/D converters, testing techniques
A/D dynamic range, estimating, 714–715
histogram testing, 711
missing codes, detecting, 715–716
quantization noise, estimating with the FFT, 709–714
SFDR (spurious free dynamic range), 714–715
SINAD (signal-to-noise-and-distortion), 711–714
SNR (signal-to-noise ratio), 711–714

Adaptive filters, 184
Addition

block diagram symbol, 10
complex numbers, 850

Additive white noise (AWN), 380
AGC (automatic gain control), 783–784
Aliasing

definition, 36
frequency-domain ambiguity, 33–38
in IIR filters, 304–305

All-ones rectangular functions
DFT for, 115–118
Dirichlet kernel, 115–118, 120

Allpass filters, definition, 893
AM demodulation

filtering narrowband noise, 792–797
Hilbert transforms, 484–485



Amplitude
definition, 8
loss. See Attenuation.

Amplitude response, DFT
complex input, 73
real cosine input, 83–84

Analog, definition, 2
Analog filters

approximating, 302
vs. digital, 169

Analog signal processing, 2
Analog-to-digital (A/D) converters. See A/D converters.
Analytic signals

bandpass quadrature, 455
definition, 483
generation methods, comparing, 497–498
half-band FIR filters, 497
time-domain, generating, 495–497

Anti-aliasing filters, 42, 555–558
Anti-imaging filters, 555–558
Arctangent

approximation, 756–758
vector rotation. See Vector rotation with arctangents.

Argand, Jean Robert, 848
Argand diagrams of complex numbers, 848
Argand plane, 440–441
Attenuation

CIC filters, improving, 557–558
definition, 894

Automatic gain control (AGC), 783–784
Average, statistical measures of noise, 868–870
Average power in electrical circuits, calculating, 874–875
Averaging signals. See Signal averaging.
AWN (additive white noise), 380

B
Band reject filters, 894
Band-limited signals, 38
Bandpass design, for FIR filters, 201–203
Bandpass filters



comb filters, 400
definition, 895
from half-band FIR filters, 497
multisection complex FSFs, 398–403

Bandpass sampling
1st-order sampling, 46
definition, 43
optimum sampling frequency, 46
positioning sampled spectra, 48
real signals, 46
sampling translation, 44
SNR (signal-to-noise) ratio, 48–49
spectral inversion, 46–47
spectral replication, 44–45

Bandpass signals
in the frequency-domain, 454–455
interpolating, 728–730

Bandwidth, definition, 895
Bartlett windows. See Triangular windows.
Base 8 (octal) numbers, 624–625
Base 16 (hexadecimal) numbers, 625
Bell, Alexander Graham, 885
Bels, definition, 885
Bessel functions

definition, 895
Bessel-derived filters, ripples, 901
Bessel’s correction, 870–871
Bias

DC, sources and removal, 761
in estimates, 870–871
fixed-point binary formats, 628
in signal variance, computing, 797–799

Bilateral Laplace transforms, 258
Bilinear transform method, designing IIR filters

analytical methods, 302
definition, 257
example, 326–330
frequency warping, 319, 321–325, 328–330
mapping complex variables, 320–324
process description, 324–326



Bin centers, calculating absolute frequency, 139–140
Binary points, 629
Binary shift multiplication/division, polynomial evaluation, 773–774
Biquad filters, 299
Bit normalization, 653
Bit reversals

avoiding, 158
fast Fourier transform input/output data index, 149–151

Bits, definition, 623
Blackman windows

in FIR filter design, 195–201
spectral leakage reduction, 686

Blackman windows (exact), 686, 733
Blackman-Harris windows, 686, 733
Block averaging, SNR (signal-to-noise ratio), 770
Block convolution. See Fast convolution.
Block diagrams

filter structure, 172–174
quadrature sampling, 459–462
symbols, 10–11
uses for, 10

Block floating point, 656–657
Boxcar windows. See Rectangular windows.
Butterfly patterns in FFTs

description, 145–149
optimized, 156
radix-2 structures, 151–154
single butterfly structures, 154–158
wingless, 156

Butterworth function
definition, 895
derived filters, ripples, 901

C
Cardano, Girolamo, 439
Carrier frequency, 44
Cartesian form, quadrature signals, 442
Cascaded filters, 295–299, 895
Cascaded integrators, 563
Cascaded-comb subfilters, 412–413



Cascade/parallel filter combinations, 295–297
Cauer filters, 896
Causal systems, 258
Center frequency, definition, 895
Central Limit Theory, 723
Central-difference differentiators, 363–366
CFT (continuous Fourier transform), 59, 98–102
Chebyshev function, definition, 895
Chebyshev windows, 197–201, 927–930
Chebyshev-derived filters, ripples, 900
CIC (cascaded integrator-comb) filters

cascaded integrators, 563
comb section, 553
compensation FIR filters, 563–566
definition, 895
implementation issues, 558–563
nonrecursive, 765–768
recursive running sum filters, 551–552
structures, 553–557
substructure sharing, 765–770
transposed structures, 765–770
two’s complement overflow, 559–563

Circular buffers, IFIR filters, 388–389
Clipping A/D converter quantization noise, 706
Coefficients. See Filter coefficients.
Coherent sampling, 711
Coherent signal averaging. See Signal averaging, coherent.
Comb filters. See also Differentiators.

alternate FSF structures, 416–418
bandpass FIR filtering, 400
cascaded-comb subfilters, 412–413
with complex resonators, 392–398
frequency response, 903–904
second-order comb filters, 412–413

Comb section. CIC filters, 553
Commutative property, LTI, 18–19
Commutator model, polyphase filters, 524
Compensation FIR filters, CIC filters, 563–566
Complex conjugate, DFT symmetry, 73
Complex down-conversion



decimation, in frequency translation, 782
quadrature signals, 455, 456–462

Complex exponentials, quadrature signals, 447
Complex frequency, Laplace variable, 258
Complex frequency response, filters, 277
Complex mixing, quadrature signals, 455
Complex multipliers, down-converting quadrature signals, 458
Complex number notation, quadrature signals, 440–446
Complex numbers. See also Quadrature signals.

Argand diagrams, 848
arithmetic of, 848–858
definition, 439
as a function of time, 446–450
graphical representation of, 847–848
rectangular form, definition, 848–850
rectangular form, vs. polar, 856–857
roots of, 853–854
trigonometric form, 848–850

Complex phasors, quadrature signals, 446–450
Complex plane, quadrature signals, 440–441, 446
Complex resonators

with comb filters, 392–398
FSF (frequency sampling filters), 394–398

Complex signals. See Quadrature signals.
Conditional stability, Laplace transform, 268
Conjugation, complex numbers, 851–852
Constant-coefficient transversal FIR filters, 184
Continuous Fourier transform (CFT), 59, 98–102
Continuous lowpass filters, 41
Continuous signal processing

definition, 2
frequency in, 5–6

Continuous signals, definition, 2
Continuous systems, time representation, 5
Continuous time-domain, Laplace transform, 258–259
Converting analog to digital. See A/D converters.
Convolution. See also FIR (finite impulse response) filters, convolution.

fast, 716–722
LTI, 19
overlap-and-add, 720–722



overlap-and-save, 718–720
Cooley, J., 135
CORDIC (COordinate Rotation DIgital Computer), 756–758
Coupled quadrature oscillator, 787
Coupled-form IIR filter, 834–836
Crest factor, 640
Critical Nyquist, 37
Cutoff frequencies

definition, 896
designing FIR filters, 186

D
Data formats

base systems, 624
definition, 623
place value system, 624

Data formats, binary numbers. See also Fixed-point binary formats; Floating-point binary formats.
1.15 fixed-point, 630–632
block floating point, 656–657
converting to hexadecimal, 625
converting to octal, 624–625
definition, 623
dynamic range, 632–634
precision, 632–634
representing negative values, 625–626

Data overflow. See Overflow.
dB (decibels), definition, 886, 896
dBm (decibels), definition, 892
DC

bias, sources of, 761
block-data DC removal, 762
defined, 62
from a time-domain signal, 812–815

DC removal, real-time
using filters, 761–763
noise shaping property, 765
with quantization, 763–765

Deadband effects, 293
DEC (Digital Equipment Corp.), floating-point binary formats, 654–655
Decibels



bels, definition, 885
common constants, 889–891
dB, definition, 886, 896
dBm, definition, 892

Decimation. See also Interpolation.
combining with interpolation, 521–522
definition, 508
to implement down-conversion, 676–679
multirate filters, 521–522
sample rate converters, 521–522
drawing downsampled spectra, 515–516
frequency properties, 514–515
magnitude loss in the frequency-domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515
example, 512–513
overview, 510–511
polyphase decomposition, 514

Decimation filters
choosing, 510
definition, 896

Decimation-in-frequency algorithms, FFTs
radix-2 butterfly structures, 151–154, 734–735

Decimation-in-time algorithms, FFTs
index bit reversal, 149–151
radix-2 butterfly structures, 151–154
single butterfly structures, 154–158, 735–737

Demodulation
AM, 484–485
FM, 486
quadrature signals, 453–455, 456–462

Descartes, René, 439
Detection

envelope, 784–786
peak threshold, with matched filters, 377, 379–380
quadrature signals, 453–454
signal transition, 820–821
single tone. See Single tone detection.

DFT (discrete Fourier transform). See also DTFT (discrete-time Fourier transform); SDFT (sliding



DFT).
analyzing FIR filters, 228–230
computing large DFTs from small FFTs, 826–829
definition, 60
examples, 63–73, 78–80
versus FFT, 136–137
frequency axis, 77
frequency granularity, improving. See Zero padding.
frequency spacing, 77
frequency-domain sampling, 98–102
inverse, 80–81
linearity, 75
magnitudes, 75–76
picket fence effect, 97
rectangular functions, 105–112
resolution, 77, 98–102
scalloping loss, 96–97
shifting theorem, 77–78
spectral estimation, improving. See Zero padding.
time reversal, 863–865
zero padding, 97–102

DFT leakage. See also Spectral leakage, FFTs.
cause, 82–84
definition, 81
description, 81–82
predicting, 82–84
sinc functions, 83, 89
wraparound, 86–88

DFT leakage, minimizing
Chebyshev windows, 96
Hamming windows, 89–93
Hanning windows, 89–97
Kaiser windows, 96
rectangular windows, 89–97
triangular windows, 89–93
windowing, 89–97

DFT processing gain
average output noise-power level, 103–104
inherent gain, 102–105
integration gain, 105



multiple DFTs, 105
output signal-power level, 103–104
single DFT, 102–105
SNR (signal-to-noise ratio), 103–104

DIF (decimation-in-frequency), 734–735
Difference equations

example, 5
IIR filters, 255–256

Differentiators
central-difference, 363–366
differentiating filters, 364
first-difference, 363–366
narrowband, 366–367
optimized wideband, 369–370
overview, 361–363
performance improvement, 810–812
wideband, 367–369

Digital differencer. See Differentiators.
Digital Equipment Corp. (DEC), floating-point binary formats, 654–655
Digital filters. See also specific filters.

vs. analog, 169
definition, 896

Digital signal processing, 2
Direct Form I filters, 275–278, 289
Direct Form II filters, 289–292
Direct Form implementations, IIR filters, 292–293
Dirichlet, Peter, 108
Dirichlet kernel

all-ones rectangular functions, 115–118, 120
general rectangular functions, 108–112
symmetrical rectangular functions, 113–114

Discrete convolution in FIR filters. See also FIR (finite impulse response) filters, convolution.
description, 214–215
in the time domain, 215–219

Discrete Fourier transform (DFT). See DFT (discrete Fourier transform).
Discrete Hilbert transforms. See Hilbert transforms.
Discrete linear systems, 12–16
Discrete systems

definition, 4
example, 4–5



time representation, 5
Discrete-time expression, 4
Discrete-time Fourier transform (DTFT), 101, 120–123
Discrete-time signals

example of, 2
frequency in, 5–6
sampling, frequency-domain ambiguity, 33–38
use of term, 2

Discrete-time waveforms, describing, 8
Dispersion, statistical measures of noise, 869
DIT (decimation-in-time), 735–737
Dithering

A/D converter quantization noise, 706–709
with filters, 294
triangular, 708

Dolph-Chebyshev windows in FIR filter design, 197
Down-conversion

Delay/Hilbert transform filter, 817–818, 819–820
filtering and decimation, 676–679
folded FIR filters, 818
frequency translation, without multiplication, 676–679
half-band filters, 817–818
single-decimation technique, 819–820

Down-conversion, quadrature signals
complex, 455, 456–462
complex multipliers, 458
sampling with digital mixing, 462–464

Downsampling, decimation
drawing downsampled spectra, 515–516
frequency properties, 514–515
magnitude loss in the frequency-domain, 515
overview, 508–510
time invariance, 514
time properties, 514–515

DTFT (discrete-time Fourier transform), 101, 120–123. See also DFT (discrete Fourier transform).
Dynamic range

binary numbers, 632–634
floating-point binary formats, 656–658
SFDR (spurious free dynamic range), 714–715

E



Elliptic functions, definition, 896
Elliptic-derived filters, ripples, 900
Envelope delay. See Group delay.
Envelope detection

approximate, 784–786
Hilbert transforms, 483–495

Equiripple filters, 418, 901
Estrin’s Method, polynomial evaluation, 774–775
Euler, Leonhard, 442, 444
Euler’s equation

bilinear transform design of IIR filters, 322
DFT equations, 60, 108
impulse invariance design of IIR filters, 315
quadrature signals, 442–443, 449, 453

Exact Blackman windows, 686
Exact interpolation, 778–781
Exponent, floating-point binary format, 652
Exponential averagers, 608–612
Exponential moving averages, 801–802
Exponential signal averaging. See Signal averaging, exponential.
Exponential variance computation, 801–802

F
Fast convolution, 716–722
FFT (fast Fourier transform)

averaging multiple, 139
constant-geometry algorithms, 158
convolution. See Fast convolution.
decimation-in-frequency algorithms, 151–154
decimation-in-time algorithms, 149–158
versus DFT, 136–137
exact interpolation, 778–781
fast FIR filtering, 716–722
hints for using, 137–141
history of, 135
interpolated analytic signals, computing, 781
interpolated real signals, interpolating, 779–780
interpreting results, 139–141
inverse, computing, 699–702, 831–833
in place algorithm, 157



radix-2 algorithm, 141–149
radix-2 butterfly structures, 151–158
signal averaging, 600–603
single tone detection, 737–738, 740–741
vs. single tone detection, 740–741
software programs, 141
time-domain interpolation, 778–781
Zoom FFT, 749–753

FFT (fast Fourier transform), real sequences
a 2N-point real FFT, 695–699
two N-point real FFTs, 687–694

FFT (fast Fourier transform), twiddle factors
derivation of the radix-2 FFT algorithm, 143–149
DIF (decimation-in-frequency), 734–735
DIT (decimation-in-time), 735–737

Fibonacci, 450–451
Filter coefficients

definition, 897
for FIRs. See Impulse response.
flipping, 493–494
for FSF (frequency sampling filters), 913–926
quantization, 293–295

Filter order, 897
Filter taps, estimating, 234–235, 386–387
Filters. See also FIR (finite impulse response) filters; IIR (infinite impulse response) filters; Matched
filters; specific filters.

adaptive filters, 184
allpass, 893
analog vs. digital, 169
band reject, 894
bandpass, 895
cascaded, 895
Cauer, 896
CIC, 895
DC-removal, 762–763
decimation, 896
differentiating, 364. See also Differentiators.
digital, 896
down-conversion, 676–679
equiripple, 418



highpass, 898
linear phase, 899
lowpass, 899
narrowband noise, 792–797
nonrecursive, 226–230, 290–291, 899
optimal FIR, 418
overview, 169–170
parallel, 295–297
passband, 900
process description, 169–170
prototype, 303
quadrature, 900
real-time DC removal, 762–763
recursive, 290–291, 900
recursive running sum, 551–552
Remez Exchange, 418
sharpening, 726–728
structure, diagramming, 172–174
time-domain slope detection, 820–821
transposed structure, 291–292
transversal, 173–174. See also FIR (finite impulse response) filters.
zero-phase, 725, 902

Filters, analytic signals
half-band FIR filters, 497
I-channel filters, 496
in-phase filters, 496
Q-channel filters, 496
quadrature phase filters, 496
time-domain FIR filter implementation, 489–494

Finite-word-length errors, 293–295
FIR (finite impulse response) filters. See also FSF (frequency sampling filters); IFIR (interpolated
FIR) filters; IIR (infinite impulse response) filters.

coefficients. See Impulse response.
constant coefficients, 184
definition, 897
fast FIR filtering using the FFT, 716–722
folded structure. See Folded FIR filters.
frequency magnitude response, determining, 179
frequency-domain response, determining, 179
group delay, 211–212



half-band. See Half-band FIR filters.
vs. IIR filters, 332–333
impulse response, 177–179
narrowband lowpass. See IFIR (interpolated FIR) filters.
nonrecursive, analyzing, 226–230
phase response in, 209–214
phase unwrapping, 210
phase wrapping, 209, 900
polyphase filters, 522–527
sharpening, 726–728
signal averaging. See Signal averaging, with FIR filters.
signal averaging with, 178, 180–184
stopband attenuation, improving, 726–728
tapped delay, 181–182
transient response, 181–182
z-transform of, 288–289

FIR (finite impulse response) filters, analyzing
with DFTs, 228–230
estimating number of, 234–235
fractional delay, 233
group delay, 230–233
passband gain, 233–234
stopband attenuation, 234–235
symmetrical-coefficient FIR filters, 232–233

FIR (finite impulse response) filters, convolution
description, 175–186
discrete, description, 214–215
discrete, in the time domain, 215–219
fast convolution, 716–722
impulse response, 177–178
inputs, time order reversal, 176
signal averaging, 175–176
theorem, applying, 222–226
theorem, description, 219–222
time-domain aliasing, avoiding, 718–722
time-domain convolution vs. frequency-domain multiplication, 191–194

FIR (finite impulse response) filters, designing
bandpass method, 201–203
cutoff frequencies, 186
with forward FFT software routines, 189



Fourier series design method. See Window design method, FIR filters.
Gibbs’s phenomenon, 193
highpass method, 203–204
low-pass design, 186–201
magnitude fluctuations, 190–194
Optimal design method, 204–207
Parks-McClellan Exchange method, 204–207
passband ripples, minimizing, 190–194, 204–207. See also Windows.
Remez method, 204–207
stopband ripples, minimizing, 204–207
time-domain coefficients, determining, 186–194
time-domain convolution vs. frequency-domain multiplication, 191–194
very high performance filters, 775–778
window design method, 186–194
windows used in, 194–201

1st-order IIR filters, signal averaging, 612–614
1st-order sampling, 46
First-difference differentiators, 363–366
Fixed-point binary formats. See also Floating-point binary formats.

1.15 format, 630–632
bias, 628
binary points, 629
decimal numbers, converting to 1.5 binary, 632
fractional binary numbers, 629–632
hexadecimal (base 16) numbers, 625
integer plus fraction, 629
lsb (least significant bit), 624
msb (most significant bit), 624
octal (base 8) numbers, 624–625
offset, 627–628
overflow, 629
Q30 format, 629
radix points, 629
representing negative values, 625–626
sign extend operations, 627
sign-magnitude, 625–626
two’s complement, 626–627, 629

Fixed-point binary formats, finite word lengths
A/D converter best estimate values, 635
A/D converter quantization noise, 634–642



A/D converter vs. SNR, 640–642
convergent rounding, 651
crest factor, 640
data overflow, 642–646
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651
truncation, 646–649

Floating-point binary formats. See also Fixed-point binary formats.
bit normalization, 653
common formats, 654–655
DEC (Digital Equipment Corp.), 654–655
description, 652
dynamic range, 656–658
evaluating, 652
exponent, 652
fractions, 653
gradual underflow, 656
hidden bits, 653
IBM, 654–655
IEEE Standard P754, 654–655
mantissa, 652
MIL-STD 1750A, 654–655
min/max values, determining, 656–657
unnormalized fractions, 656
word lengths, 655

FM demodulation
algorithms for, 758–761
filtering narrowband noise, 792–797
Hilbert transforms, 486

Folded FIR filters
designing Hilbert transforms, 493
down-conversion, 818
frequency translation, without multiplication, 678
half-band filters, sample rate conversion, 548
Hilbert transforms, designing, 493
multipliers, reducing, 702–704
nonrecursive, 419–420



tapped-delay line, 389
Folding frequencies, 40
Forward FFT

computing, 831–833
software routines for designing FIR filters, 189

Fourier series design FIR filters. See Window design method, FIR filters.
Fourier transform pairs, FIR filters, 178–179
Fractional binary numbers, 629–632
Fractional delay, FIR filters, 233
Frequency

continuous vs. discrete systems, 5
of discrete signals, determining. See DFT (discrete Fourier transform).
discrete-time signals, 5–6
properties, interpolation, 519
resolution, improving with FIR filters, 228–230
units of measure, 2–3

Frequency attenuation, FIR filters, 182
Frequency axis

definition, 77
DFT, 77
in Hz, 118
normalized angle variable, 118
in radians/seconds, 118–119
rectangular functions, 118–120
with zero padding, 100

Frequency domain
definition, 6
Hamming windows, 683–686
Hanning windows, 683–686
listing sequences, 7
performance. IIR filters, 282–289
quadrature signals, 451–454
spectral leak reduction, 683–686
windowing in, 683–686
windows, 683–686

Frequency magnitude response
definition, 897
determining with FIR filters, 179

Frequency response
LTI, determining, 19



for Mth-order IIR filter, 275–276
Frequency response, FIR filters

determining, 179–186
factors affecting, 174
modifying, 184–186

Frequency sampling design method vs. FSF, 393–394
Frequency sampling filters. See FSF (frequency sampling filters).
Frequency translation, bandpass sampling, 44
Frequency translation, with decimation

complex down-conversion, 782
complex signals, 781–783
real signals, 781

Frequency translation, without multiplication
by 1/2 the sampling rate, 671–673
by 1/4 the sampling rate, 674–676
down-conversion, 676–679
inverting the output spectrum, 678–679

Frequency translation to baseband, quadrature signals, 319
Frequency warping, 319, 321–325, 328–330
FSF (frequency sampling filters). See also FIR (finite impulse response) filters.

complex resonators, 394–398
designing, 423–426
frequency response, single complex FSF, 904–905
history of, 392–394
linear-phase multisection real-valued, 409–410
modeling, 413–414
multisection complex, 398–403
multisection real-valued, 406–409
vs. Parks-McClellan filters, 392
real FSF transfer function, 908–909
stability, 403–406
stopband attenuation, increasing, 414–416
stopband sidelobe level suppression, 416
transition band coefficients, 414–416
Type IV example, 419–420, 423–426

G
Gain. See also DFT processing gain.

AGC (automatic gain control), 783–784
IIR filters, scaling, 300–302



integration, signal averaging, 600–603
passband, 233–234
windows, 92

Gauss, Karl, 439, 444
Gaussian PDFs, 882–883
General numbers, 446. See also Complex numbers.
Geometric series, closed form, 107, 859–861
Gibbs’s phenomenon, 193
Goertzel algorithm, single tone detection

advantages of, 739
description, 738–740
example, 740
vs. the FFT, 740–741
stability, 838–840

Gold-Rader filter, 834–836
Gradual underflow, floating-point binary formats, 656
Gregory, James, 23
Group delay

definition, 897–898
differentiators, 365
filters, computing, 830–831
FIR filters, 211–212, 230–233

H
Half Nyquist, 37
Half-band FIR filters

analytic signals, 497
as complex bandpass filters, 497
definition, 898
description, 207–209
down-conversion, 817–818
frequency translation, 802–804

Half-band FIR filters, sample rate conversion
fundamentals, 544–546
implementation, 546–548
overview, 543

Hamming, Richard, 366
Hamming windows

in the frequency domain, 683–686
spectral peak location, 733



Hann windows. See Hanning windows.
Hanning windows

description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733

Harmonic sampling. See Bandpass sampling.
Harmonics of discrete signals, determining. See DFT (discrete Fourier transform).
Harris, Fred, 791
Heaviside, Oliver, 257
Hertz, 3
Hertz, Heinrich, 3
Hexadecimal (base 16) numbers, 625
Hidden bits, floating-point binary formats, 653
Highpass filters, definition, 898
Highpass method, designing FIR filters, 203–204
Hilbert, David, 479
Hilbert transformers, designing

common mistake, 493–494
even-tap transformers, 493
frequency-domain transformers, 494–495
half-band filter coefficient modification, 804–805
half-band filter frequency translation, 802–804
odd-tap transformers, 493
time-domain FIR filter implementation, 489–494
time-domain transformers, 489–494

Hilbert transforms
AM demodulation, 484–485
definition, 480
envelope detection, 483–495
example, 481–482
FM demodulation, 486
impulse response, 487–489
one-sided spectrum, 483
signal envelope, 483–495

Hilbert transforms, analytic signals
definition, 483
generation methods, comparing, 497–498
half-band FIR filters, 497
time-domain, generating, 495–497



Histogram testing, A/D converter techniques, 711
Homogeneity property, 12
Horner, William, 773
Horner’s Rule, 772–774
Human ear, sensitivity to decibels, 886

I
IBM, floating-point binary formats, 654–655
I-channel filters, analytic signals, 496
IDFT (inverse discrete Fourier transform), 80–81
IEEE Standard P754, floating-point binary formats, 654–655
IF sampling. See Bandpass sampling.
IFIR (interpolated FIR) filters. See also FIR (finite impulse response) filters.

computational advantage, 384–385, 391
definition, 381
expansion factor M, 381, 385–386
filter taps, estimating, 386–387
image-reject subfilter, 382–384, 390
implementation issues, 388–389
interpolated, definition, 384
interpolators. See Image-reject subfilter.
lowpass design example, 389–391
optimum expansion factor, 386
performance modeling, 387–388
prototype filters, 382
shaping subfilters, 382, 385

IIR (infinite impulse response) filters. See also FIR (finite impulse response) filters; FSF (frequency
sampling filters).

allpass, 893
analytical design methods, 302
coupled-form, 834–836
definition, 899
design techniques, 257. See also specific techniques.
difference equations, 255–256
vs. FIR filters, 253, 332–333
frequency domain performance, 282–289
infinite impulse response, definition, 280
interpolated, example, 837–838
phase equalizers. See Allpass filters.
poles, 284–289
recursive filters, 290–291



scaling the gain, 300–302
SNR (signal-to-noise ratio), 302
stability, 263–270
z-domain transfer function, 282–289
zeros, 284–289
z-plane pole / zero properties, 288–289
z-transform, 270–282

IIR (infinite impulse response) filters, pitfalls in building
coefficient quantization, 293–295
deadband effects, 293
Direct Form implementations, 292–293
dither sequences, 294
finite word length errors, 293–295
limit cycles, 293
limited-precision coefficients, 293
overflow, 293–295
overflow oscillations, 293
overview, 292–293
rounding off, 293

IIR (infinite impulse response) filters, structures
biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form 1, 275–278, 289
Direct Form II, 289–292
optimizing partitioning, 297–299
parallel filter properties, 295–297
transposed, 291–292
transposed Direct Form II, 289–290
transposition theorem, 291–292

Imaginary numbers, 439, 446
Imaginary part, quadrature signals, 440, 454–455
Impulse invariance method, designing IIR filters

aliasing, 304–305
analytical methods, 302
definition, 257
Method 1, description, 305–307
Method 1, example, 310–313



Method 2, description, 307–310
Method 2, example, 313–319
preferred method, 317
process description, 303–310
prototype filters, 303

Impulse response
convolution in FIR filters, 177–178
definition, 898–899
FIR filters, 177–179
Hilbert transforms, 487–489

Incoherent signal averaging. See Signal averaging, incoherent.
Infinite impulse response (IIR) filters. See IIR (infinite impulse response) filters.
Integer plus fraction fixed-point binary formats, 629
Integration gain, signal averaging, 600–603
Integrators

CIC filters, 553
overview, 370
performance comparison, 373–376
rectangular rule, 371–372
Simpson’s rule, 372, 373–376
Tick’s rule, 373–376
trapezoidal rule, 372

Intermodulation distortion, 16
Interpolated analytic signals, computing, 781
Interpolated FIR (IFIR) filters. See IFIR (interpolated FIR) filters.
Interpolated real signals, interpolating, 779–780
Interpolation. See also Decimation.

accuracy, 519
bandpass signals, 728–730
combining with decimation, 521–522
definition, 384, 508
drawing upsampled spectra, 520–521
exact, 778–781
frequency properties, 519
history of, 519
linear, 815–816
multirate filters, 521–522
overview, 516–518
sample rate converters, 521–522
time properties, 519



time-domain, 778–781
unwanted spectral images, 519
upsampling, 517–518, 520–521
zero stuffing, 518

Interpolation filters, 518
Inverse DFT, 80–81
Inverse discrete Fourier transform (IDFT), 80–81
Inverse FFT, 699–702, 831–833
Inverse of complex numbers, 853
Inverse sinc filters, 563–566
I/Q demodulation, quadrature signals, 459–462

J
Jacobsen, Eric, 775
j-operator, quadrature signals, 439, 444–450

K
Kaiser, James, 270
Kaiser windows, in FIR filter design, 197–201
Kaiser-Bessel windows, in FIR filter design, 197
Kelvin, Lord, 60
Kootsookos, Peter, 603, 724
Kotelnikov, V., 42

L
Lanczos differentiators, 366–367
Laplace transfer function

conditional stability, 268
description, 262–263
determining system stability, 263–264, 268
impulse invariance design, Method 1, 305–307, 310–313
impulse invariance design, Method 2, 307–310, 313–319
in parallel filters, 295–297
second order, 265–268

Laplace transform. See also Z-transform.
bilateral transform, 258
causal systems, 258
conditional stability, 268
for continuous time-domain, 258–259
description, 257–263
development of, 257



one-sided transform, 258
one-sided/causal, 258
poles on the s-plane, 263–270
stability, 263–270
two-sided transform, 258
zeros on the s-plane, 263–270

Laplace variable, complex frequency, 258
Leakage. See DFT leakage.
Leaky integrator, 614
Least significant bit (lsb), 624
l’Hopital’s Rule, 110
Limit cycles, 293
Linear, definition, 12
Linear differential equations, solving. See Laplace transform.
Linear interpolation, 815–816
Linear phase filters, 899
Linear systems, example, 13–14
Linear time-invariant (LTI) systems. See LTI (linear time-invariant) systems.
Linearity, DFT, 75
Linear-phase filters

DC removal, 812–815
definition, 899

Logarithms
and complex numbers, 854–856
measuring signal power, 191

Lowpass design
designing FIR filters, 186–201
IFIR filters, example, 389–391

Lowpass filters, definition, 899
Lowpass signals

definition, 38
sampling, 38–42

lsb (least significant bit), 624
LTI (linear time-invariant) systems

analyzing, 19–21
commutative property, 18–19
convolution, 19
DFT (discrete Fourier transform), 19
discrete linear systems, 12–16
frequency response, determining, 19



homogeneity property, 12
intermodulation distortion, 16
internally generated sinusoids, 16
linear, definition, 12
linear system, example, 13–14
nonlinear system, example, 14–16
output sequence, determining, 19
overview, 12
proportionality characteristic, 12
rearranging sequential order, 18–19
time-invariant systems, 17–18
unit impulse response, 19–20

M
MAC (multiply and accumulate) architecture

polynomial evaluation, 773
programmable DSP chips, 333

Magnitude
approximation (vector), 679–683
of complex numbers, 848
definition, 8–9
DFT, 75–76

Magnitude and angle form of complex numbers, 848–850
Magnitude response of DFTs

aliased sinc function, 108
all-ones rectangular functions, 115–118
fluctuations. See Scalloping.
general rectangular functions, 106–112
overview, 105–106
sidelobe magnitudes, 110–111
symmetrical rectangular functions, 112–115

Magnitude response of DFTs, Dirichlet kernel
all-ones rectangular functions, 115–118, 120
general rectangular functions, 108–112
symmetrical rectangular functions, 113–114

Magnitude-angle form, quadrature signals, 442
Mantissa, floating-point binary formats, 652
Matched filters

definition, 376
example, 378–380



implementation considerations, 380
peak detection threshold, 377, 379–380
properties, 376–378
purpose, 376
SNR (signal-power-to-noise-power ratio), maximizing, 376

McClellan, James, 206. See also Parks-McClellan algorithm.
Mean (statistical measure of noise)

definition, 868–869
PDF (probability density function), 879–882
of random functions, 879–882

Mean (statistical average), of random functions, 879–882
Mehrnia, A., 386
MIL-STD 1750A, floating-point binary formats, 654–655
Missing

A/D conversion codes, checking, 715–716
sample data, recovering, 823–826. See also Interpolation.

Mixing. See Frequency translation.
Modeling FSF (frequency sampling filters), 413–414
Modulation, quadrature signals, 453–454
Modulus of complex numbers, 848
Most significant bit (msb), 624
Moving averages

CIC filters, 551–552
as digital lowpass filters, 20–21, 173, 231
sample rate conversion, CIC filters, 551–552

Moving averages, coherent signal averaging
exponential moving averages, computing, 801–802
exponential signal averaging, 801–802
moving averages, computing, 799–801
nonrecursive moving averagers, 606–608
recursive moving averagers, 606–608
time-domain averaging, 604–608

msb (most significant bit), 624
Multiplication

block diagram symbol, 10
CIC filters, simplified, 765–770
complex numbers, 850–851

Multirate filters
decimation, 521–522
interpolation, 521–522



Multirate systems, sample rate conversion
filter mathematical notation, 534–535
signal mathematical notation, 533–534
z-transform analysis, 533–535

Multirate systems, two-stage decimation, 511

N
Narrowband differentiators, 366–367
Narrowband noise filters, 792–797
Natural logarithms of complex numbers, 854
Negative frequency, quadrature signals, 450–451
Negative values in binary numbers, 625–626
Newton, Isaac, 773
Newton’s method, 372
Noble identities, polyphase filters, 536
Noise

definition, 589
measuring. See Statistical measures of noise.
random, 868

Noise shaping property, 765
Nonlinear systems, example, 14–16
Nonrecursive CIC filters

description, 765–768
prime-factor-R technique, 768–770

Nonrecursive filters. See FIR filters
Nonrecursive moving averagers, 606–608
Normal distribution of random data, generating, 722–724
Normal PDFs, 882–883
Normalized angle variable, 118–119
Notch filters. See Band reject filters.
Nyquist, H., 42
Nyquist criterion, sampling lowpass signals, 40

O
Octal (base 8) numbers, 624–625
Offset fixed-point binary formats, 627–628
1.15 fixed-point binary format, 630–632
Optimal design method, designing FIR filters, 204–207
Optimal FIR filters, 418
Optimization method, designing IIR filters

definition, 257



description, 302
iterative optimization, 330
process description, 330–332

Optimized butterflies, 156
Optimized wideband differentiators, 369–370
Optimum sampling frequency, 46
Order

of filters, 897
polyphase filters, swapping, 536–537

Orthogonality, quadrature signals, 448
Oscillation, quadrature signals, 459–462
Oscillator, quadrature

coupled, 787
overview, 786–789
Taylor series approximation, 788

Overflow
computing the magnitude of complex numbers, 815
fixed-point binary formats, 629, 642–646
two’s complement, 559–563

Overflow errors, 293–295
Overflow oscillations, 293
Oversampling A/D converter quantization noise, 704–706

P
Parallel filters, Laplace transfer function, 295–297
Parks-McClellan algorithm

designing FIR filters, 204–207
vs. FSF (frequency sampling filters), 392
optimized wideband differentiators, 369–370

Parzen windows. See Triangular windows.
Passband, definition, 900
Passband filters, definition, 900
Passband gain, FIR filters, 233–234
Passband ripples

cascaded filters, estimating, 296–297
definition, 296, 900
IFIR filters, 390
minimizing, 190–194, 204–207

PDF (probability density function)
Gaussian, 882–883



mean, calculating, 879–882
mean and variance of random functions, 879–882
normal, 882–883
variance, calculating, 879–882

Peak correlation, matched filters, 379
Peak detection threshold, matched filters, 377, 379–380
Periodic sampling

aliasing, 33–38
frequency-domain ambiguity, 33–38

Periodic sampling
1st-order sampling, 46
anti-aliasing filters, 42
bandpass, 43–49
coherent sampling, 711
definition, 43
folding frequencies, 40
Nyquist criterion, 40
optimum sampling frequency, 46
real signals, 46
sampling translation, 44
SNR (signal-to-noise) ratio, 48–49
spectral inversion, 46–47
undersampling, 40

Phase angles, signal averaging, 603–604
Phase delay. See Phase response.
Phase response

definition, 900
in FIR filters, 209–214

Phase unwrapping, FIR filters, 210
Phase wrapping, FIR filters, 209, 900
Pi, calculating, 23
Picket fence effect, 97
Pisa, Leonardo da, 450–451
Polar form

complex numbers, vs. rectangular, 856–857
quadrature signals, 442, 443–444

Poles
IIR filters, 284–289
on the s-plane, Laplace transform, 263–270

Polynomial curve fitting, 372



Polynomial evaluation
binary shift multiplication/division, 773–774
Estrin’s Method, 774–775
Horner’s Rule, 772–774
MAC (multiply and accumulate) architecture, 773

Polynomial factoring, CIC filters, 765–770
Polynomials, finding the roots of, 372
Polyphase decomposition

CIC filters, 765–770
definition, 526
diagrams, 538–539
two-stage decimation, 514

Polyphase filters
benefits of, 539
commutator model, 524
implementing, 535–540
issues with, 526
noble identities, 536
order, swapping, 536–537
overview, 522–528
polyphase decomposition, 526, 538–539
prototype FIR filters, 522
uses for, 522

Power, signal. See also Decibels.
absolute, 891–892
definition, 9
relative, 885–889

Power spectrum, 63, 140–141
Preconditioning FIR filters, 563–566
Prewarp, 329
Prime decomposition, CIC filters, 768–770
Prime factorization, CIC filters, 768–770
Probability density function (PDF). See PDF (probability density function).
Processing gain or loss. See DFT processing gain; Gain; Loss.
Prototype filters

analog, 303
FIR polyphase filters, 522
IFIR filters, 382

Q



Q30 fixed-point binary formats, 629
Q-channel filters, analytic signals, 496
Quadratic factorization formula, 266, 282
Quadrature component, 454–455
Quadrature demodulation, 455, 456–462
Quadrature filters, definition, 900
Quadrature mixing, 455
Quadrature oscillation, 459–462
Quadrature oscillator

coupled, 787
overview, 786–789
Taylor series approximation, 788

Quadrature phase, 440
Quadrature processing, 440
Quadrature sampling block diagram, 459–462
Quadrature signals. See also Complex numbers.

analytic, 455
Argand plane, 440–441
bandpass signals in the frequency-domain, 454–455
Cartesian form, 442
complex exponentials, 447
complex mixing, 455
complex number notation, 440–446
complex phasors, 446–450
complex plane, 440–441, 446
decimation, in frequency translation, 781–783
definition, 439
demodulation, 453–454
detection, 453–454
down-conversion. See Down-conversion, quadrature signals.
Euler’s identity, 442–443, 449, 453
exponential form, 442
in the frequency domain, 451–454
generating from real signals. See Hilbert transforms.
generation, 453–454
imaginary part, 440, 454–455
in-phase component, 440, 454–455
I/Q demodulation, 459–462
j-operator, 439, 444–450
magnitude-angle form, 442



mixing to baseband, 455
modulation, 453–454
negative frequency, 450–451
orthogonality, 448
polar form, 442, 443–444
positive frequency, 451
real axis, 440
real part, 440, 454–455
rectangular form, 442
representing real signals, 446–450
sampling scheme, advantages of, 459–462
simplifying mathematical analysis, 443–444
three-dimensional frequency-domain representation, 451–454
trigonometric form, 442, 444
uses for, 439–440

Quantization
coefficient/errors, 293–295
noise. See A/D converters, quantization noise.
real-time DC removal, 763–765

R
Radix points, fixed-point binary formats, 629
Radix-2 algorithm, FFT

butterfly structures, 151–154
computing large DFTs, 826–829
decimation-in-frequency algorithms, 151–154
decimation-in-time algorithms, 151–154
derivation of, 141–149
FFT (fast Fourier transform), 151–158
twiddle factors, 143–149

Raised cosine windows. See Hanning windows.
Random data

Central Limit Theory, 723
generating a normal distribution of, 722–724

Random functions, mean and variance, 879–882
Random noise, 868. See also SNR (signal-to-noise ratio).
Real numbers

definition, 440
graphical representation of, 847–848

Real sampling, 46



Real signals
bandpass sampling, 46
decimation, in frequency translation, 781
generating complex signals from. See Hilbert transforms.
representing with quadrature signals, 446–450

Rectangular form of complex numbers
definition, 848–850
vs. polar form, 856–857

Rectangular form of quadrature signals, 442
Rectangular functions

all ones, 115–118
DFT, 105–112
frequency axis, 118–120
general, 106–112
overview, 105–106
symmetrical, 112–115
time axis, 118–120

Rectangular windows, 89–97, 686
Recursive filters. See IIR filters
Recursive moving averagers, 606–608
Recursive running sum filters, 551–552
Remez Exchange, 204–207, 418
Replications, spectral. See Spectral replications.
Resolution, DFT, 77, 98–102
Ripples

in Bessel-derived filters, 901
in Butterworth-derived filters, 901
in Chebyshev-derived filters, 900
definition, 900–901
designing FIR filters, 190–194
in Elliptic-derived filters, 900
equiripple, 418, 901
out-of-band, 901
in the passband, 900
in the stopband, 901

rms value of continuous sinewaves, 874–875
Roll-off, definition, 901
Roots of

complex numbers, 853–854
polynomials, 372



Rosetta Stone, 450
Rounding fixed-point binary numbers

convergent rounding, 651
data rounding, 649–652
effective bits, 641
round off noise, 636–637
round to even method, 651
round-to-nearest method, 650–651

Roundoff errors, 293

S
Sample rate conversion. See also Polyphase filters.

decreasing. See Decimation.
definition, 507
with IFIR filters, 548–550
increasing. See Interpolation.
missing data, recovering, 823–826. See also Interpolation.
by rational factors, 540–543

Sample rate conversion, multirate systems
filter mathematical notation, 534–535
signal mathematical notation, 533–534
z-transform analysis, 533–535

Sample rate conversion, with half-band filters
folded FIR filters, 548
fundamentals, 544–546
implementation, 546–548
overview, 543

Sample rate converters, 521–522
Sampling, periodic. See Periodic sampling.
Sampling translation, 44
Sampling with digital mixing, 462–464
Scaling IIR filter gain, 300–302
Scalloping loss, 96–97
SDFT (sliding DFT)

algorithm, 742–746
overview, 741
stability, 746–747

SFDR (spurious free dynamic range), 714–715
Shannon, Claude, 42
Shape factor, 901



Sharpened FIR filters, 726–728
Shifting theorem, DFT, 77–78
Shift-invariant systems. See Time-invariant systems.
Sidelobe magnitudes, 110–111
Sidelobes

Blackman window and, 194–197
DFT leakage, 83, 89
FIR (finite impulse response) filters, 184
ripples, in low-pass FIR filters, 193–194

Sign extend operations, 627
Signal averaging. See also SNR (signal-to-noise ratio).

equation, 589
frequency-domain. See Signal averaging, incoherent.
integration gain, 600–603
mathematics, 592–594, 599
multiple FFTs, 600–603
phase angles, 603–604
postdetection. See Signal averaging, incoherent.
quantifying noise reduction, 594–597
rms. See Signal averaging, incoherent.
scalar. See Signal averaging, incoherent.
standard deviation, 590
time-domain. See Signal averaging, coherent.
time-synchronous. See Signal averaging, coherent.
variance, 589–590
video. See Signal averaging, incoherent.

Signal averaging, coherent
exponential averagers, 608–612
exponential moving averages, computing, 801–802
exponential smoothing, 608
filtering aspects, 604–608
moving averagers, 604–608
moving averages, computing, 799–801
nonrecursive moving averagers, 606–608
overview, 590–597
recursive moving averagers, 606–608
reducing measurement uncertainty, 593, 604–608
time-domain filters, 609–612
true signal level, 604–608
weighting factors, 608, 789



Signal averaging, exponential
1st-order IIR filters, 612–614
dual-mode technique, 791
example, 614
exponential smoothing, 608
frequency-domain filters, 612–614
moving average, computing, 801–802
multiplier-free technique, 790–791
overview, 608
single-multiply technique, 789–790

Signal averaging, incoherent
1st-order IIR filters, 612–614
example, 614
frequency-domain filters, 612–614
overview, 597–599

Signal averaging, with FIR filters
convolution, 175–176
example, 170–174, 183–184
as a lowpass filter, 180–182
performance improvement, 178

Signal envelope, Hilbert transforms, 483–495
Signal power. See also Decibels.

absolute, 891–892
relative, 885–889

Signal processing
analog, 2. See also Continuous signals.
definition, 2
digital, 2
operational symbols, 10–11

Signal transition detection, 820–821
Signal variance

biased and unbiased, computing, 797–799, 799–801
definition, 868–870
exponential, computing, 801–802
PDF (probability density function), 879–882
of random functions, 879–882
signal averaging, 589–590

Signal-power-to-noise-power ratio (SNR), maximizing, 376
Signal-to-noise ratio (SNR). See SNR (signal-to-noise ratio).
Sign-magnitude, fixed-point binary formats, 625–626



Simpson, Thomas, 372
SINAD (signal-to-noise-and-distortion), 711–714
Sinc filters. See CIC (cascaded integrator-comb) filters.
Sinc functions, 83, 89, 116
Single tone detection, FFT method

drawbacks, 737–738
vs. Goertzel algorithm, 740–741

Single tone detection, Goertzel algorithm
advantages of, 739
description, 738–740
example, 740
vs. the FFT, 740–741
stability, 838–840

Single tone detection, spectrum analysis, 737–741
Single-decimation down-conversion, 819–820
Single-multiply technique, exponential signal averaging, 789–790
Single-stage decimation, vs. two-stage, 514
Single-stage interpolation, vs. two-stage, 532
Sliding DFT (SDFT). See SDFT (sliding DFT).
Slope detection, 820-821
Smoothing impulsive noise, 770–772
SNDR. See SINAD (signal-to-noise-and-distortion).
SNR (signal-to-noise ratio)

vs. A/D converter, fixed-point binary finite word lengths, 640–642
A/D converters, 711–714
bandpass sampling, 48–49
block averaging, 770
corrected mean, 771
DFT processing gain, 103–104
IIR filters, 302
measuring. See Statistical measures of noise.
reducing. See Signal averaging.
smoothing impulsive noise, 770–772

SNR (signal-power-to-noise-power ratio), maximizing, 376
Software programs, fast Fourier transform, 141
Someya, I., 42
Spectral inversion

around signal center frequency, 821–823
bandpass sampling, 46–47

Spectral leakage, FFTs, 138–139, 683–686. See also DFT leakage.



Spectral leakage reduction
A/D converter testing techniques, 710–711
Blackman windows, 686
frequency domain, 683–686

Spectral peak location
estimating, algorithm for, 730–734
Hamming windows, 733
Hanning windows, 733

Spectral replications
bandpass sampling, 44–45
sampling lowpass signals, 39–40

Spectral vernier. See Zoom FFT.
Spectrum analysis. See also SDFT (sliding DFT); Zoom FFT.

center frequencies, expanding, 748–749
with SDFT (sliding DFT), 748–749
single tone detection, 737–741
weighted overlap-add, 755
windowed-presum FFT, 755
Zoom FFT, 749–753

Spectrum analyzer, 753–756
Spurious free dynamic range (SFDR), 714–715
Stability

comb filters, 403–404
conditional, 268
FSF (frequency sampling filters), 403–406
IIR filters, 263–270
Laplace transfer function, 263–264, 268
Laplace transform, 263–270
SDFT (sliding DFT), 746–747
single tone detection, 838–840
z-transform and, 272–274, 277

Stair-step effect, A/D converter quantization noise, 637
Standard deviation

of continuous sinewaves, 874–875
definition, 870
signal averaging, 590

Statistical measures of noise
average, 868–870
average power in electrical circuits, 874–875
Bessel’s correction, 870–871



biased estimates, 870–871
dispersion, 869
fluctuations around the average, 869
overview, 867–870. See also SNR (signal-to-noise ratio).
of real-valued sequences, 874
rms value of continuous sinewaves, 874–875
of short sequences, 870–871
standard deviation, definition, 870
standard deviation, of continuous sinewaves, 874–875
summed sequences, 872–874
unbiased estimates, 871

Statistical measures of noise, estimating SNR
for common devices, 876
controlling SNR test signals, 879
in the frequency domain, 877–879
overview, 875–876
in the time domain, 876–877

Statistical measures of noise, mean
definition, 868–869
PDF (probability density function), 879–882
of random functions, 879–882

Statistical measures of noise, variance. See also Signal variance.
definition, 868–870
PDF (probability density function), 879–882
of random functions, 879–882

Steinmetz, Charles P., 446
Stockham, Thomas, 716
Stopband, definition, 901
Stopband ripples

definition, 901
minimizing, 204–207

Stopband sidelobe level suppression, 416
Structure, definition, 901
Structures, IIR filters

biquad filters, 299
cascade filter properties, 295–297
cascaded, 295–299
cascade/parallel combinations, 295–297
changing, 291–292
Direct Form 1, 275–278, 289



Direct Form II, 289–292
optimizing partitioning, 297–299
parallel filter properties, 295–297
transposed, 291–292
transposed Direct Form II, 289–290
transposition theorem, 291–292

Sub-Nyquist sampling. See Bandpass sampling.
Substructure sharing, 765–770
Subtraction

block diagram symbol, 10
complex numbers, 850

Summation
block diagram symbol, 10
description, 11
equation, 10
notation, 11

Symbols
block diagram, 10–11
signal processing, 10–11

Symmetrical rectangular functions, 112–115
Symmetrical-coefficient FIR filters, 232–233
Symmetry, DFT, 73–75

T
Tacoma Narrows Bridge collapse, 263
Tap, definition, 901
Tap weights. See Filter coefficients.
Tapped delay, FIR filters, 174, 181–182
Taylor series approximation, 788
Tchebyschev function, definition, 902
Tchebyschev windows, in FIR filter design, 197
Time data, manipulating in FFTs, 138–139
Time invariance, decimation, 514
Time properties

decimation, 514–515
interpolation, 519

Time representation, continuous vs. discrete systems, 5
Time reversal, 863–865
Time sequences, notation syntax, 7
Time-domain



aliasing, avoiding, 718–722
analytic signals, generating, 495–497
coefficients, determining, 186–194
convolution, matched filters, 380
convolution vs. frequency-domain multiplication, 191–194
equations, example, 7
FIR filter implementation, 489–494
Hilbert transforms, designing, 489–494
interpolation, 778–781
slope filters, 820–821

Time-domain data, converting
from frequency-domain data. See IDFT (inverse discrete Fourier transform).
to frequency-domain data. See DFT (discrete Fourier transform).

Time-domain filters
coherent signal averaging, 609–612
exponential signal averaging, 609–612

Time-domain signals
amplitude, determining, 140
continuous, Laplace transform for, 258
DC removal, 812–815
definition, 4
vs. frequency-domain, 120–123

Time-invariant systems. See also LTI (linear time-invariant) systems.
analyzing, 19–21
commutative property, 18–19
definition, 17–18
example of, 17–18

Tone detection. See Single tone detection.
Transfer functions. See also Laplace transfer function.

definition, 902
real FSF, 908–909
z-domain, 282–289

Transient response, FIR filters, 181–182
Transition region, definition, 902
Translation, sampling, 44
Transposed Direct Form II filters, 289–290
Transposed Direct Form II structure, 289–290
Transposed filters, 291–292
Transposed structures, 765–770
Transposition theorem, 291–292



Transversal filters, 173–174. See also FIR (finite impulse response) filters.
Triangular dither, 708
Triangular windows, 89–93
Trigonometric form, quadrature signals, 442, 444
Trigonometric form of complex numbers, 848–850
Truncation, fixed-point binary numbers, 646–649
Tukey, J., 135
Two’s complement

fixed-point binary formats, 626–627, 629
overflow, 559–563

Two-sided Laplace transform, 258
Type-IV FSF

examples, 419–420, 423–426
frequency response, 910–912
optimum transition coefficients, 913–926

U
Unbiased estimates, 871
Unbiased signal variance, computing, 797–799, 799–801
Undersampling lowpass signals, 40. See also Bandpass sampling.
Uniform windows. See Rectangular windows.
Unit circles

definition, 271
z-transform, 271

Unit circles, FSF
forcing poles and zeros inside, 405
pole / zero cancellation, 395–398

Unit delay
block diagram symbol, 10
description, 11

Unit impulse response, LTI, 19–20
Unnormalized fractions, floating-point binary formats, 656
Unwrapping, phase, 210
Upsampling, interpolation, 517–518, 520–521

V
Variance. See Signal variance.
Vector, definition, 848
Vector rotation with arctangents

to the 1st octant, 805–808
division by zero, avoiding, 808



jump address index bits, 807
overview, 805
by ±π/8, 809–810
rotational symmetries, 807

Vector-magnitude approximation, 679–683
von Hann windows. See Hanning windows.

W
Warping, frequency, 319, 321–325, 328–330
Weighted overlap-add spectrum analysis, 755
Weighting factors, coherent signal averaging, 608, 789
Wideband compensation, 564
Wideband differentiators, 367–370
Willson, A., 386
Window design method, FIR filters, 186–194
Windowed-presum FFT spectrum analysis, 755
Windows

Blackman, 195–201, 686, 733
Blackman-Harris, 686, 733
exact Blackman, 686
FFTs, 139
in the frequency domain, 683–686
magnitude response, 92–93
mathematical expressions of, 91
minimizing DFT leakage, 89–97
processing gain or loss, 92
purpose of, 96
rectangular, 89–97, 686
selecting, 96
triangular, 89–93

Windows, Hamming
description, 89–93
DFT leakage reduction, 89–93
in the frequency domain, 683–686
spectral peak location, 733

Windows, Hanning
description, 89–97
DFT leakage, minimizing, 89–97
in the frequency domain, 683–686
spectral peak location, 733



Windows used in FIR filter design
Bessel functions, 198–199
Blackman, 195–201
Chebyshev, 197–201, 927–930
choosing, 199–201
Dolph-Chebyshev, 197
Kaiser, 197–201
Kaiser-Bessel, 197
Tchebyschev, 197

Wingless butterflies, 156
Wraparound leakage, 86–88
Wrapping, phase, 209, 900

Z
z-domain expression for Mth-order IIR filter, 275–276
z-domain transfer function, IIR filters, 282–289
Zero padding

alleviating scalloping loss, 97–102
FFTs, 138–139
FIR filters, 228–230
improving DFT frequency granularity, 97–102
spectral peak location, 731

Zero stuffing
interpolation, 518
narrowband lowpass filters, 834–836

Zero-overhead looping
DSP chips, 333
FSF (frequency sampling filters), 422–423
IFIR filters, 389

Zero-phase filters
definition, 902
techniques, 725

Zeros
IIR filters, 284–289
on the s-plane, Laplace transform, 263–270

Zoom FFT, 749–753
Zoom FFT, 749–753
z-plane pole / zero properties, IIR filters, 288–289
z-transform. See also Laplace transform.

definition, 270



description of, 270–272
FIR filters, 288–289
IIR filters, 270–282
infinite impulse response, definition, 280
polar form, 271
poles, 272–274
unit circles, 271
zeros, 272–274

z-transform, analyzing IIR filters
digital filter stability, 272–274, 277
Direct Form 1 structure, 275–278
example, 278–282
frequency response, 277–278
overview, 274–275
time delay, 274–278
z-domain transfer function, 275–278, 279–280
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