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a b s t r a c t

Poisson editing, introduced in 2003, is becoming a technique with major applications in many different
domains of image processing and computer graphics. This letter presents an exact and fast Fourier imple-
mentation of the Poisson editing equation proposed in (Pérez et al., 2003). The proposed algorithm can
handle well all Poisson editing methods that are currently implemented with finite differences and mul-
tigrid methods. But it also authorizes fast complex editing strategies where the edited region is obtained
by an algorithm instead of a manual selection. The selected region can therefore have a complex topology
without additional computational cost. In this letter the proposed method is applied to a classic local con-
trast enhancement principle introduced in (Caselles et al., 1999). The manual selection of the dark regions
is replaced by a lower threshold and the method becomes fast, efficient, level-line preserving, and inter-
active. The proposed method can be tried on line on any uploaded image at http://www.ipol.im/pub/
demo/lmps_selective_contrast_adjustment/.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction

The concept of image editing encompasses the operations by
which the local content of one or several images is selected and
manipulated to create new syncretic images. The simplest such
operation is a copy-paste of a part of an image into another. Image
stitching, by which several images are fused into a panorama is an-
other example (Levin et al., 2004). Local contrast or color adjust-
ments after selecting manually a part of the image (for example
the shadows) is another variant. The inpainting operation, by
which an object is removed in the image and replaced by a texture
is also a classic editing operation. For many examples of such im-
age editing problems and surveys of the techniques we refer to
Pérez et al. (2003), Wang and Cohen (2008), and Bertalmio et al.
(2003).

Most image editing operations modify an input image I by man-
ually selecting a region X in it. The task is to fill in this region by
picking information from the rest of the image InX, or from an-
other image or, in the case of a selective contrast change, form
the image in X itself. The most recent algorithms to solve this
problem are based on partial differential equations. Two types of
PDE, parabolic equations and elliptic equations, are the most
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widely used. Image inpainting (Bertalmio et al., 2000) is based on
parabolic equations. Matting operations (Sun et al., 2004) are based
on the Poisson equation. The main challenge in image editing is to
avoid suspicious color or texture alterations which would reveal
the silhouette @X of the image region which has been modified
(Chuan et al., 2008; Jia et al., 2006). As amply demonstrated by
Pérez et al. (2003), the Poisson equation (1) is an extremely effi-
cient response to this problem:

DuðxÞ ¼ f ðxÞ if x 2 X;

uðxÞ ¼ gðxÞ if x 2 @X;

�
ð1Þ

where Duðx; yÞ ¼ @2u
@x2 þ @2u

@y2 is the Laplacian of u. The authors of Pérez
et al. (2003) proposed to use (1) for ‘‘seamless editing’’. They rely on
psychophysical observations suggesting that our vision perceives
the Laplacian of the images rather of the image itself. Thus the im-
age u is satisfactorily specified by giving its Laplacian. On the other
hand knowing the Laplacian inside the domain and the image value
on the boundary is enough to reconstruct the image, and this is
done by the Poisson equation. This work have been widely cited
and various improvements have been presented (Levin et al.,
2004; Jia et al., 2006; Chuan et al., 2008; Sun et al., 2004).

Although good results can be achieved using Poisson image
editing, it is often a time-consuming process for the user because
the region to be modified is selected manually and Poisson solvers
becomes slow when the domain has a complex topology. The goal
of this work is to accelerate the method by using only the Fourier
method. There is a wide choice of methods to solve a linear system
coming from a discrete elliptic equation. In the family of iterative
methods the multigrid method dominate. Their main idea is to
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accelerate the convergence of basic iterative methods like SOR.
Multigrid methods can treat arbitrary regions and boundary condi-
tions, but are notoriously slow when the regions have not a simple
geometry. Indeed, they proceed by a recursive subsampling of the
domain X. This is only efficient when X is a rectangle with dyadic
dimensions (or the union of a few rectangles with dyadic dimen-
sions). Efficient solvers comparable to the multigrid method to
solve the Poisson editing equations are examined in (Jeschke et
al., 2009) where the authors present a Laplacian solver for minimal
surfaces. In (Agarwala, 2007) the author proposes to use quad-
trees to improve the efficiency of the technique that constructs
seamless composites. Later solutions have also relied on the multi-
grid method: (Kazhdan and Hoppe, 2008; McCann and Pollard,
2008; Grady et al., 2005; Grady, 2008).

Our goal here is to show that a simple global reformulation of
the Poisson editing problem permits to use fast Fourier solvers. A
Fourier solver for the Poisson equation is exact, non-iterative and
in practice faster than a full multigrid method, even in the case
of a rectangular domain.

Since the proposed implementation method solves the Poisson
equation over the whole image domain instead of only the un-
known region X, it will be verified experimentally that the known
pixel values are only minimally altered.

The proposed numerical method permits to automatize a local
contrast enhancement proposed in (Pérez et al., 2003). The new
tool is fast and efficient, requiring no manual selection and allow-
ing one to edit regions with arbitrarily complex topology with no
additional cost.

A review of Poisson image editing is presented in Section 2. Sec-
tion 3 details the new implementation using the Fourier method. A
number of possible choices for the guidance vector field is exam-
ined. These different choices with experimental results are pre-
sented in Section 4. Finally, Section 5 shows some examples of
the correctness of the method.

2. Poisson image editing

In this Section, we detail the image Poisson reconstruction from
‘‘a guidance vector field’’, in the terminology of Pérez et al. (2003).
Let R, a closed subset of R2, be the image domain, and let X � R be a
closed subset with boundary @X. The problem is to find the image
whose gradient field is the closest, in L2-norm, to the prescribed
‘‘guidance vector field’’ v defined in X, under given boundary con-
ditions on @X. The image is known in the rest of the image, RnX
(Fig. 1). This problem writes

min
u

Z
X
jru� v j2; with uj@X ¼ f j@X ð2Þ

and its solution is the unique solution of the Poisson equation with
Dirichlet boundary conditions

Du ¼ divv ; with uj@X ¼ f j@X: ð3Þ
Fig. 1. The unknown function u interpolates f in domain X under a guidance vector
field v.
The variational problem (2) can be discretized using a finite differ-
ence approach. Using the notation of Pérez et al. (2003), it amounts
to solve the following linear equations

jNpjup �
X

q2Np\X
uq ¼

X
q2Np\@X

fq þ
X
q2Np

vpq; for all p 2 X; ð4Þ

where Np is the 4-connected neighborhood of p and vpq ¼ v pþq
2

� �
� pq�!.

Since the region X can have an arbitrary shape, the authors in (Pérez
et al., 2003) propose to solve the linear system (4) using iterative solv-
ers, for example the Gauss–Seidel iteration with overrelaxation or a
multigrid method.
3. How to solve the Poisson image editing equations using
Fourier transform?

The aim of this work is to solve the above variational problem
(2), and, consequently the associated PDE (3), using the Fourier
method. To do that the boundary of the domain X must coincide
with the coordinate lines, which in general is not the case. This
can be done by extending the definition domain of the guidance
vector field to the whole image domain R, and solving the varia-
tional problem over all the whole image domain. The guidance vec-
tor field v defined on X is extended to R by (Fig. 2)

V ¼
v over X

rf otherwise;

�
ð5Þ

where f is the image, which is known over RnX. Then the problem is
to minimize

min
u

Z
R
jru� V j2: ð6Þ

The minimizer is uniquely determined by the Euler–Lagrange
equation

Du ¼ divV ; over R; ð7Þ

with homogeneous Neumann boundary conditions

@u
@n
¼ 0 over @R; ð8Þ

where n is the direction orthogonal to the boundary.
By the above result the solution of the minimization problem

(6) is the restriction of an even function which is periodic with a
period twice the image size. The gradient field of the solution is
the vector field that best approximates, in the L2-norm, the guid-
ance vector field V. In RnX the gradient function approximates
the gradient of f and in that sense the solution is only an approxi-
mation of f. Yet, their Laplacians coincide, which means that they
differ only by a very smooth (harmonic) function. In X the gradient
of the solution approximates the given guidance vector field de-
fined in X.
Fig. 2. The guidance vector field V defined on the image domain.
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3.1. Fourier transform method

Since the Eq. (7) has constant coefficients and the boundaries of
R coincide with the coordinate lines, we can apply the Fourier
transform method to solve the partial differential equation. The
Neumann boundary condition is implicitly imposed by extending
the original image symmetrically across its sides, so that the ex-
tended image, which is four times bigger, becomes symmetric
and periodic. Once this is done, we can apply the Fourier transform.

The discrete Fourier transform (DFT) permits to compute di-
rectly the Fourier coefficients of a band limited and periodic func-
tion u from its samples ujl on a J � L grid by

dumn ¼
XJ�1

j¼0

XL�1

l¼0

ujle
�i2pjm

J e�i2pln
L ð9Þ

with m = 0, . . . , J � 1 and n = 0, . . . ,L � 1. The Fourier series formula
recovers u from its Fourier coefficients by

uðx; yÞ ¼ 1
JL

XJ�1

m¼0

XL�1

n¼0

dumn ei2pmx
J ei2pny

L : ð10Þ

Thus, by a simple differentiation, the Poisson equation Du = div (V)
translates into a relationship between the Fourier coefficients of u
and V:

2pm
J

� �2

þ 2pn
L

� �2
 !

ûmn ¼
2pim

J
cV1 mn þ

2pin
L

cV2 mn; ð11Þ

where V = (V1,V2).
In short, the strategy for solving (7-8) by Fourier technique is:

� Quadruplicate by symmetry the discrete domain and V.
� Compute the discrete Fourier transforms of V1 and V2.
� Compute the discrete Fourier transform of the solution ûmn as
ûmn ¼
2pim

J
cV1 mn þ 2pin

L
cV2 mn

2pm
J

� 	2
þ 2pn

L

� �2
: ð12Þ
� Obtain the samples ujl of the solution by the inverse discrete
Fourier transform.
� Restrict them to the initial domain.

Remark. The Fourier transform comes with some overhead such
as padding to the nearest power of 2, but with smart Fourier
libraries, like fftw, having integer values that are not powers of 2
is no more a complexity issue. Products of small factors are most
efficient, but an O(n logn) algorithm is used even for prime sizes.
Likewise, we mentioned for pedagogic reasons the quadruplica-
tion. In fact, again with smart libraries like fftw the quadruplication
is implicit and performed directly as a cosine transform.

3.2. Computation of the vector field V

The guidance vector field V defined in (5) depends on the gradi-
ent of the original image or on the gradient of some source image.
To compute the guidance vector field, multigrid methods use finite
differences approximating the gradient of the image. Actually the
Fourier method permits exact expressions for all derivatives. If
the guidance vector field is the gradient of some function
f ; V ¼ rf ¼ @f

@x ;
@f
@y

� 	
; then

cV1 mn ¼ �
2pim

J
f̂ mn; cV2 mn ¼ �

2pin
L

f̂ mn: ð13Þ

To solve the Eq. (11) for each choice of the guidance vector field it is
therefore necessary to compute the Fourier transform of the images
whose gradients compose the vector field.
4. Experimental results

Now we list some of the possible choices for the guidance vec-
tor field and show the results of the proposed implementation. In
some examples a classic multigrid method would work as well.
Yet, for all examples where the structure of X is complicated, using
the global Fourier strategy simplifies drastically the situation.

4.1. Local illumination changes

Perez et al. use the method of Fattal et al. (2002) to modify
smoothly the image dynamic range. The idea is to transform the
gradient field of the logarithm of the image to reduce the large gra-
dients and to increase the small ones. The transformed gradient is
used to reconstruct the logarithm of the image, by solving the Pois-
son equation. In fact in (Pérez et al., 2003) the authors select a re-
gion X, for example an under-exposed region, and transform the
gradient in the log-domain by

v ¼ abjrf j�brf ; ð14Þ

where a = 0.2 times the average gradient norm of f over X and
b = 0.2, that is, the guidance vector field is a concave function of
the gradient in the log-domain.

The Perez et al. method is relatively complex. Indeed, it depends
on two parameters, a, b. The selection of the dark region is manual
and only permits to select a few simple image regions. Thus, it is
not adapted to treat the dark regions of images with back light
or excessively dark shadows. Indeed, in such images the dark re-
gions can be many and have a complicated topology. Thus, they
can hardly be selected manually. The alternative proposed here is
to select the dark region using a threshold T. T = 50 was the default
threshold used successfully in all treated examples. Applying this
threshold in classic JPEG images to the gray level intensity yields
automatically the perceptually dark regions. Over the dark region,
the gradient vector of the gray level intensity is amplified by a fac-
tor a. Since a stronger factor would amplify too much the noise, the
default value was 2.5.

These values (T = 50, a = 2.5) are easily explained. First of all
most eight bit digital images have their parts with luminance be-
low 50 quite dark and no detail can be really seen on most screens
below this value. It is therefore natural to try to enhance contrast
in these regions. If such dark regions are small then the method
needs not be applied, no image improvement is possible. If instead
the dark regions are large, this contrast enhancement can add up
valuable visual information. Now the question is: why a = 2.5 as
default value? Here again, we assume a decent quality image,
where the noise standard deviation does not exceed four. Then
multiplying the contrast by 2.5 gives back a final noise of standard
deviation less than 10, which is the limit where the noise is still
tolerable for users.

In short, the default values T = 50 and a = 2.5 are not universal.
They are motivated by the average quality eight bit images and the
average sensitivity of visual perception in dark regions. If the
method has to become automatic, then the best method is to select
the level k such that the level set {xju(x) 6 k} has its area equal to
25% of the image area. Then a = 2.5, as indicated. With these de-
fault values for T, a the proposed algorithm becomes fully auto-
matic, and it is anyway easy to change them interactively:

� Select the dark region X by the threshold T.
� Define the guidance vector field by
V ¼
rf in R nX;

arf in X;

�
ð15Þ
where f is the gray level intensity.



Fig. 3. Top left: original image. Top right: zones with intensity below T = 50. Bottom: result using guidance vector field (15) with a = 2.5.
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� Solve the Poisson equation with Neumann boundary conditions
using the Fourier transform as explained in the previous
section.
� Compute the color channels proportionally using the new gray

level intensity.

Figs. 3–5 show results obtained using the proposed algorithm.
Note the complexity of the topology dark regions. The method
can be tried on line on any uploaded image at http://www.ipo-
l.im/pub/demo/lmps_selective_contrast_adjustment/.
4.2. Other editing operations

The goal of this short section is to illustrate the fact that the
proposed Fourier method gives equivalent results to multigrid
Fig. 4. Top left: original image. Top right: zones with intensity below T
methods. In the classic copy-paste problem, the guidance vector
field v is a gradient field from another source image g. The guid-
ance field therefore is

V ¼
rg; over X;

rf ; otherwise;

�
; ð16Þ

where f be the image which will be kept on RnX. Fig. 6 shows the
source image g, the original image f and the obtained result.

The same technique also can be used as inpainting method,
using as source image the destination image itself, typically to
remove an object and to replace it by a texture patch from the
same image. In Fig. 7 we can observe an example of this
application.

Another application proposed in Perez et al. involves the guid-
ance vector field
= 50. Bottom: result using guidance vector field (15) with a = 2.5.

http://www.ipol.im/pub/demo/lmps_selective_contrast_adjustment/
http://www.ipol.im/pub/demo/lmps_selective_contrast_adjustment/


Fig. 5. Top left: original image. Top right: zones with intensity below T = 50. Bottom: result using guidance vector field (15) with a = 2.5.

Fig. 6. Top left: source image. Top right: destination image. Bottom: result.

Fig. 7. Left: original image. Right: the deer is eliminated, using the original image as source and destination image.

346 J.-M. Morel et al. / Pattern Recognition Letters 33 (2012) 342–348
V ¼
rf ; if jrf j > jrgj;
rg; otherwise:

�
ð17Þ

In this case, two images are mixed into one, thus creating a realistic
graffiti (Fig. 8).
5. Correctness of the method

Since the proposed implementation solves the Poisson equation
over the whole image domain instead of the selected sub-domain,
it is a sanity check to verify that the known pixel values are only



Fig. 8. Left: text image. Middle: texture image. Right: mixing result.

Table 1
Comparison between original image and result of Neumann problem.

Image MSE PSNR MD

Fig. 3 0.00325 71.72 0.1136
Fig. 4 0.00575 69.33 0.055
Fig. 5 4.9e�5 88.89 0.026
Fig. 7 1.15e�5 96.46 0.005
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minimally altered. This was done experimentally with the original
images of Figs. 4, 6 and 7. On these images we solved the Neumann
problem

Du ¼ Df ; in R;
@u
@n ¼ 0; in @R

(
ð18Þ

and finally we imposed that mean and standard deviation of u re-
main the same as for f. Table 1 shows the MSE, PSNR, and MD (max-
imal difference) between u and f. It remains far below the any
perceptual difference in these images.

To confirm that outside the selection area the changes intro-
duced are negligible and no Gibbs effect is produced, Fig. 9 shows
an experiment where we have pasted a high frequency texture on a
low frequency texture. The Poisson editing technique creates a
minimal perturbation on the background and no Gibbs effect. By
Fig. 9. Top left: low frequency texture. Top right: h
looking carefully at the boundary of the pasted region, one can,
however observe some diffusion from the extrema of the high fre-
quency texture into the low texture region.
6. Discussion

Seamless image editing introduced by Pérez et al. (2003) re-
quires to solve a large linear system on an arbitrary region of the
image domain, and becomes slow and difficult if the region is
non connected and complex, thus not amenable to multigrid meth-
ods. The Fourier approach proposed here is able to solve all image
editing tools proposed in (Pérez et al., 2003). The Fourier method is
exact, non-iterative, and allows to treat regions with arbitrary
topology. Its main advantage with respect to former implementa-
tions is that it is no more limited to a manual selection of one or
several simple regions; image regions selected automatically by
any criterion can be edited at no additional computational cost.
There are only two cases where the original numerical method
by finite difference and the multigrid decomposition is preferable.
The first case is when the edited region is actually small and rect-
angular, in which case the complexity of a multigrid method, being
proportional to the domain size, becomes inferior to the FFT com-
plexity on the whole image. The second case is when it is abso-
lutely required not to alter, even minimally, the colors in the
image outside the edited zone. To illustrate the simplicity of the
method, a fast and automatic local contrast enhancement algo-
rithm treating complex regions has been tested.
igh frequency texture. Bottom: pasting result.



348 J.-M. Morel et al. / Pattern Recognition Letters 33 (2012) 342–348
References

Agarwala, A., 2007. Efficient gradient-domain compositing using quadtrees. ACM
Trans. Graph. 26.

Bertalmio, M., Vese, L., Sapiro, G., Osher, S., 2003. Simultaneous structure and
texture image inpainting. IEEE Trans. Image Processing. 12, 882–889.

Bertalmio, M., Sapiro, G., Ballester, C., Caselles, V., 2000. Image inpainting. In:
SIGGRAPH’00.

Caselles, V., Lisani, J.L., Morel, J.M., Sapiro, G., 1999. Shape preserving local
histogram modification. IEEE Trans. Image Process. 8, 220–230.

Chuan, Q., Shuozhong, W., Xinpeng, Z., 2008. Image editing without color
inconsistency using modified poisson equation. In: Interant. Conf. on
Intelligent Information Hiding and Multimedia Signal Processing, pp. 397–401.

Fattal, R., Lischinski, D., Werman, M., 2002. Gradient domain high dynamic range
compression. ACM Trans. Graph. 21, 242–256.

Grady, L., 2008. A lattice-preserving multigrid method for solving inhomogeneous
poisson equation used in image analysis. In: Proc. 10th European Conf. on
Computer Vision, pp. 252–264.

Grady, L., Tasdizen, T., Whitaker, R., 2005. A geometric multigrid approach to
solving the 2d inhomogeneous laplace equation with internal dirichlet
boundary conditions, In: IEEE Internat. Conf. on Image Processing, vol. 2, pp.
642–645.

Jeschke, S., Cline, D., Wonka, P., 2009. A GPU Laplacian solver for diffusion curves
and Poisson image editing. ACM Trans. Graph. 28, 1–8.

Jia, J., Sun, J., Tang, C.K., Shum, H.Y., 2006. Drag-and-drop pasting. ACM Trans. Graph.
3, 631–636.

Kazhdan, M., Hoppe, H., 2008. Streaming multigrid for gradient-domain operations
on large images. ACM Trans. Graph. 27.

Levin, A., Zomet, A., Peleg, S., Weiss, Y., 2004. Seamless image stitching in the
gradient domain. In: Proc. Eighth European Conf. on Computer Vision, vol. 4, pp.
377–389.

McCann, J., Pollard, N.S., 2008. Real-time gradient-domain painting. ACM Trans.
Graph. 27.

Pérez, P., Gangnet, M., Blake, A., 2003. Poisson image editing. ACM Trans. Graph.
(SIGGRAPH’03) 22, 313–318.

Sun, J., Jia, J., Tang, C.K., Shum, H.Y., 2004. Poisson matting. ACM Trans. Graph. 23,
315–321.

Wang, J., Cohen, M.F., 2008. Image and Video Matting: A survey. Now Publishers.


	Fourier implementation of Poisson image editing
	1 Introduction
	2 Poisson image editing
	3 How to solve the Poisson image editing equations using Fourier transform?
	3.1 Fourier transform method
	3.2 Computation of the vector field V

	4 Experimental results
	4.1 Local illumination changes
	4.2 Other editing operations

	5 Correctness of the method
	6 Discussion
	References


