

TRAITEMENT D'IMAGES COMPRESSION D'IMAGES

Max Mignotte

Département d'Informatique et de Recherche Opérationnelle. Http://www.iro.umontreal.ca/~mignotte/ift6150 E-mail: mignotte@iro.umontreal.ca

COMPRESSION D'IMAGES SOMMAIRE

Introduction	2
Compression RLE	3
Compression d'Huffman	4
Compression JPEG	6
Compression Fractale	10
Autres Format de Compressions	17

COMPRESSION D'IMAGES INTRODUCTION (1)

But de la compression

Réduire le volume des données (i.e., le nb. de bits) nécessaire pour représenter et coder les caractéristiques d'une image (i.e., élimine la redondance d'information)

- ► Réduction du coût de stockage
- ► Transmission rapide des données

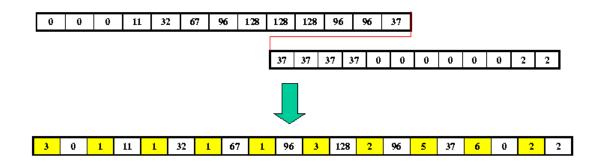
Taux de compression

$$C = rac{ ext{Nb. de bits après compression}}{ ext{Nb. de bits avant compression}}$$

Type de compression

• 2 grandes familles; avec ou sans perte

3 types de redondances


- Redondance de codage (compression RLE, etc.)
- Redondance spatiale (codage d'Huffman, etc.)
- Redondance visuelle (jpeg, fractale, etc.)

Mesure de la qualité de la compression d'une image

SNR =
$$\frac{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f^2(x,y)}{\sum_{x=0}^{M-1} \sum_{y=0}^{N-1} \left(f(x,y) - f_c(x,y) \right)^2}$$

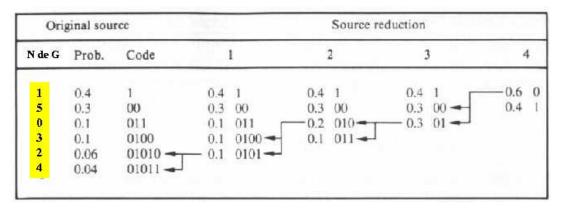
COMPRESSION RLE

Compression RLE

Principe

- RLE: Run Length Encoding
- Création d'une nouvelle séquence dans laquelle le deuxième élément correspond au niveau de gris et le premier élément correspond au nombre de pixels consécutif possédant ce niveaux de gris
- On code séparemment le niveaux de gris et l'ocurence de chaque pixel

Fort taux de compression pour des images possédant de nb. zones de régions homogènes


COMPRESSION D'HUFFMAN (1)

Principe

Utilisation d'un codage de longueur variable qui assigne le plus petit code (en longueur) pour les niveaux de gris d'occurence élevé

Origin	nal source	Source reduction					
N de G	Probability	1	2	3	4		
1	0.4	0.4	0.4	0.4	- 0.6		
5	0.3	0.3	0.3	0.3	0.4		
0	0.1	0.1	→ 0.2 -	► 0.3 –			
3	0.1	0.1	0.1				
2	0.06	-0.1					
4	0.04						

- Calcul de l'histogramme
- Constitution d'une table ou les niveaux de gris sont arrangés par ordre décroissant de probabilité
- Réduire le nombre de probabilité en combinant les deux plus faibles probabilités pour former une nouvelle probabilité
- Assigner la valeur du code pour chaque niv. de gris

COMPRESSION D'HUFFMAN (2)

Original source				Source reduction						
N de G	Prob.	Code		1	j j	2		3	4	4
1 5	0.4	1	0.4	1	0.4	1	0.4	1 _	-0.6	0
	0.3	00	0.3	00	0.3	00	0.3	00	0.4	l
0	0.1	011	0.1	011	-0.2	010	-0.3	01		
3	0.1	0100	0.1	0100	0.1	011				
0 3 2 4	0.06	01010	0.1	0101						
4	0.04	01011								

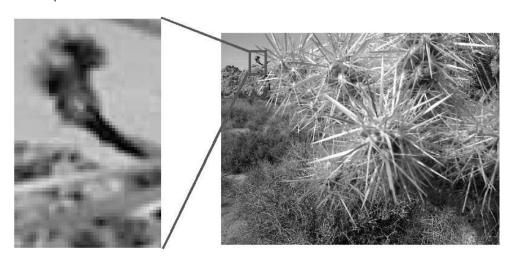
Nb. Moyen de bits utilisé pour le codage

Nb Moyen de bits =
$$(1 \times 0.4) + (2 \times 0.3) + (3 \times 0.1)$$

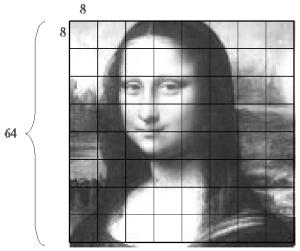
+ $(4 \times 0.1) + (5 \times 0.06) + (5 \times 0.04) = 2.2$ bits

Borne supérieure

Nb Moyen de bits
$$>$$
 Entropy $= -\sum_{i=0}^{G_{\mbox{\scriptsize max}}} h_i \log_2(h_i)$

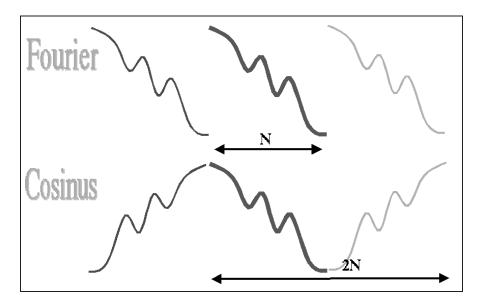

- ullet h_i : probabilité d'avoir le niveaux de gris =i
- ullet $G_{ ext{max}}$: Nb de niveaux de gris maximal

Exemple


Nb Moyen de bits
$$> 0.52877 + 0.52109 + 0.33219 + 0.33219 + 0.243533 + 0.18575 = 2.1435$$

COMPRESSION JPEG (1)

- Forte compression mais avec perte (25:1)
- ullet Basée sur la Transformée Cosinus Discrète (DCT) rapide (FDCT) 2D de sous images de tailles 8×8 pixels


Division de l'image en sous images 8×8

COMPRESSION JPEG (2)

Pourquoi la Transformée de Cosinus Discrète?

- La TF suppose que l'image à transformer est périodique ► crée des discontinuités ► hautes fréquences qui ne sont pas présent dans l'image
- la TCD suppose que l'image à transformer est paire
 ▶ aucune discontinuités

Pour une image de taille $N \times N$

$$C(u,\nu) = k_1(u)k_2(\nu) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos\left(\pi u \frac{x+\frac{1}{2}}{N}\right) \cos\left(\pi \nu \frac{y+\frac{1}{2}}{N}\right)$$

$$f(x,y) = \sum_{u=0}^{N-1} \sum_{\nu=0}^{N-1} C(u,\nu) \cos\left(\pi x \frac{u + \frac{1}{2}}{N}\right) \cos\left(\pi y \frac{\nu + \frac{1}{2}}{N}\right)$$

COMPRESSION JPEG (3)

Transformée de Cosinus Discrète et TCD inverse

$$C(u,\nu) = k_1(u)k_2(\nu) \sum_{x=0}^{N-1} \sum_{y=0}^{N-1} f(x,y) \cos\left(\pi u \frac{x + \frac{1}{2}}{N}\right) \cos\left(\pi \nu \frac{y + \frac{1}{2}}{N}\right)$$

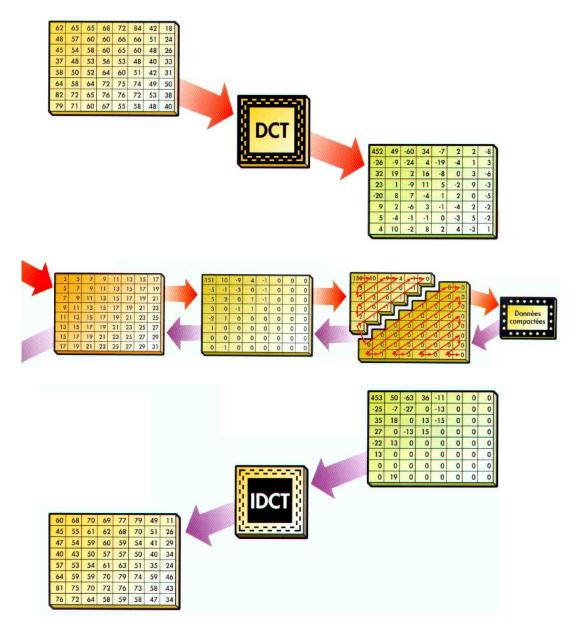
$$k_1(u) = \begin{cases} \sqrt{\frac{1}{N}} & \text{si } u = 0\\ \sqrt{\frac{2}{N}} & \text{sinon} \end{cases} \qquad k_2(\nu) = \begin{cases} \sqrt{\frac{1}{N}} & \text{si } \nu = 0\\ \sqrt{\frac{2}{N}} & \text{sinon} \end{cases}$$

Symétrie miroire

$$C(-u,\nu) = C(u,-\nu) = C(-u,-\nu) = C(u,\nu)$$

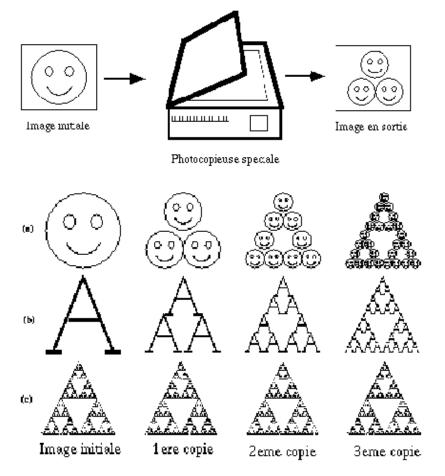
$$\operatorname{car} \cos(x) = \cos(-x)$$

Périodicité


$$C(u + 2N, \nu) = C(u, \nu + 2N) = C(u + 2N, \nu + 2N) = C(u, \nu)$$

$$\operatorname{car} \quad \cos\left(\pi(u+2N)\frac{x+\frac{1}{2}}{N}\right) = \cos\left(\pi u \frac{x+\frac{1}{2}}{N} + (2x+1)\pi\right)$$
$$= \cos\left(\pi u \left(x+\frac{\frac{1}{2}}{N}\right)\right)$$

Remarque


 TCD réelle ► Nb. de coefficients moins important que la TF

COMPRESSION JPEG (4)

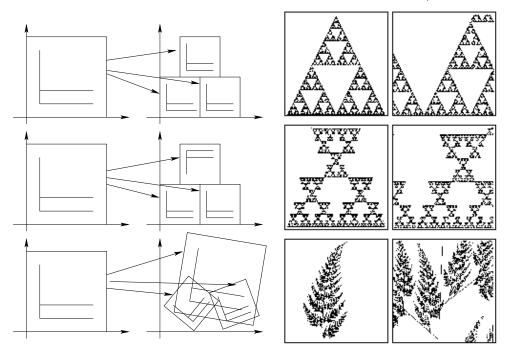
COMPRESSION FRACTALE (1)

Génération d'images fractales

Les trois premières copies générées par la photocopieuse pour différentes images d'entrée

► Toute les copies convergent vers la même image finale, que l'on appelle l'attracteur

COMPRESSION FRACTALE (2)


Résultat final ▶ dépend uniquement de la manière dont l'image d'entrée est transformée

Résultat final peut être décrit par un ensemble de transformations affines du type

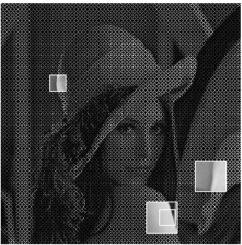
$$w_i \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} a_i & b_i \\ c_i & d_i \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} + \begin{bmatrix} e_i \\ f_i \end{bmatrix}$$

Condition Nécessaire : transformation contractante (i.e., 1 transformation donnée appliquée à 2 points de l'image initiale les rapproche l'un de l'autre dans la copie)

Des transformations, leurs attracteurs et un agrandissement de ceux-ci

COMPRESSION D'IMAGES COMPRESSION FRACTALE (3)

Chaque image est formée de copies transformées (et réduites) d'elle-même et donc doit avoir des détails à toute les échelles ▶ image fractale

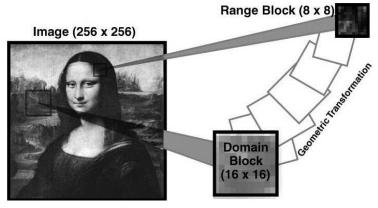

Principe de la compression fractale

Consiste à stocker les paramètres de la transformation donnant l'image finale considérée comme étant un attracteur (M. Barnsley)

Compression fractale d'images réelles

L'image d'un visage n'est pas fractales ou pas exactement auto-similaire, par contre ...

Exemple de régions qui sont similaires à différentes échelles


L'image est formée de copies convenablement transformée de parties d'elle-même

Compression d'une image quelconque : stockage des déformations permettant de générer cette image

COMPRESSION FRACTALE (4)

Algorithme

- Pour chaque sous-image R (8 \times 8 pixels)
 - Pour chaque transformation isométrique
 - Trouver une sous-image D (se recouvrant éventuellement) pouvant se superposer et les paramètres s et o tq. D et sT(R) + o soit le plus proche possible (par ex. au sens des moindres carrés)
- Écrire D, T, s, et o dans le fichier compressé

Transformations isométriques

 0° , 90° , 180° , 270° + flips verticaux \triangleright 8 Transformations

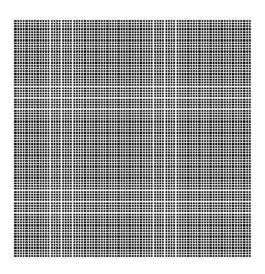
Exemple de flips

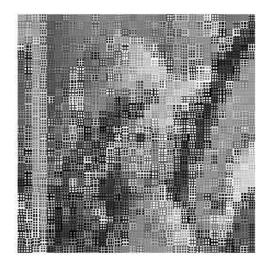
COMPRESSION FRACTALE (5)

Compression fractale

- Il existe 1024 carrés 8 x 8 qui sont des sous-parties de l'image ne se recouvrant pas
- On code la position (x,y) de la meilleure correspondance D (2 \times 8 bits)
- On code la transformation T avec 3 bits (8 transformations possibles)
- *s* : 5 bits, *o* : 7 bits
- $1024 \times ((2 \times 8) + 3 + 5 + 7) = 1024 \times 31$ bits = 31744 bits vs $256 \times 256 \times 8$ bits = 524288 bits (16.5 : 1)

Décompression fractale


- On démarre avec une image quelconque
- On prend chaque D (position dans le fichier) et on le transforme (T,S,o) en la sous image R correspondante
- Répéter jusqu'à convergence ▶ attracteur


Note

Compression avec perte

COMPRESSION D'IMAGES COMPRESSION FRACTALE (6)

Exemple

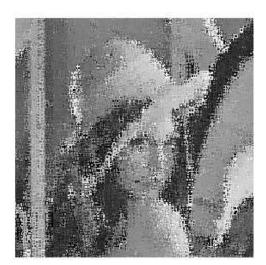


Image originale, première, seconde et dixième itération de la décompression fractale

COMPRESSION FRACTALE (7)

Original 512x512 Box triage

JPEG 512:512 Bost Lange Compression = 54 3:1 (0 147 bpp) 8511R = 23 7dB

Fractal Encoding
512x512 Box Image
Compression = 38 1:1 (0 137 bpp)
8511R = 27 2dB

513:517 Bost Urage
Compression = 38 0:1 (0 138 bpp)
8511R = 26 4dB

COMPRESSION D'IMAGES AUTRES FORMAT DE COMPRESSIONS

Format GIF

- Bien adapté au téléchargement
- Image compressée avec l'algorithme LZW (Lempel-Ziv & Welch) sous licence Unisys
- Palette de couleur (et non pas RGB), maximum de 256 couleurs simultanées, généralement suffisant sauf pour les images artistiques

Format PCX (Paintbrush)

- Bien adapté aux dessins
- Image compressée avec l'algorithme RLE (Run Length Encoding)
- Palette de couleur (max de 256 couleurs simultanément)

Format TIFF (Tagged Image File Format)

- Très "ouvert", permet différents formats, différentes options et compressions (différenciable par des "tags")
 ... ► donc pas très standart
- Pixel 24 bits (16.7 millions de couleurs)
- Difficile pour un logiciel de supporter tous les TIFF

Format BMP (BitMap de Microsoft)

- Format brute ("raw") ou binaire
- Image NON compressée
- Palette de 256 couleurs